Properties

Label 265.2.m
Level $265$
Weight $2$
Character orbit 265.m
Rep. character $\chi_{265}(6,\cdot)$
Character field $\Q(\zeta_{26})$
Dimension $216$
Newform subspaces $1$
Sturm bound $54$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 265 = 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 265.m (of order \(26\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 53 \)
Character field: \(\Q(\zeta_{26})\)
Newform subspaces: \( 1 \)
Sturm bound: \(54\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(265, [\chi])\).

Total New Old
Modular forms 360 216 144
Cusp forms 312 216 96
Eisenstein series 48 0 48

Trace form

\( 216 q + 18 q^{4} + 4 q^{6} - 4 q^{7} - 52 q^{8} + 18 q^{9} - 20 q^{10} + 8 q^{11} + 8 q^{13} + 4 q^{15} - 42 q^{16} - 20 q^{17} - 52 q^{22} - 80 q^{24} + 18 q^{25} - 26 q^{26} - 12 q^{28} - 68 q^{29} - 52 q^{31}+ \cdots + 94 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(265, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
265.2.m.a 265.m 53.e $216$ $2.116$ None 265.2.m.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{26}]$

Decomposition of \(S_{2}^{\mathrm{old}}(265, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(265, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 2}\)