Properties

Label 265.2
Level 265
Weight 2
Dimension 2417
Nonzero newspaces 12
Newform subspaces 24
Sturm bound 11232
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 265 = 5 \cdot 53 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 24 \)
Sturm bound: \(11232\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(265))\).

Total New Old
Modular forms 3016 2725 291
Cusp forms 2601 2417 184
Eisenstein series 415 308 107

Trace form

\( 2417 q - 55 q^{2} - 56 q^{3} - 59 q^{4} - 79 q^{5} - 168 q^{6} - 60 q^{7} - 67 q^{8} - 65 q^{9} - 81 q^{10} - 168 q^{11} - 80 q^{12} - 66 q^{13} - 76 q^{14} - 82 q^{15} - 187 q^{16} - 70 q^{17} - 91 q^{18}+ \cdots + 312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(265))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
265.2.a \(\chi_{265}(1, \cdot)\) 265.2.a.a 1 1
265.2.a.b 2
265.2.a.c 2
265.2.a.d 2
265.2.a.e 2
265.2.a.f 2
265.2.a.g 2
265.2.a.h 4
265.2.b \(\chi_{265}(54, \cdot)\) 265.2.b.a 26 1
265.2.c \(\chi_{265}(211, \cdot)\) 265.2.c.a 18 1
265.2.d \(\chi_{265}(264, \cdot)\) 265.2.d.a 4 1
265.2.d.b 4
265.2.d.c 16
265.2.e \(\chi_{265}(23, \cdot)\) 265.2.e.a 2 2
265.2.e.b 48
265.2.j \(\chi_{265}(83, \cdot)\) 265.2.j.a 2 2
265.2.j.b 48
265.2.k \(\chi_{265}(16, \cdot)\) 265.2.k.a 108 12
265.2.k.b 108
265.2.l \(\chi_{265}(4, \cdot)\) 265.2.l.a 288 12
265.2.m \(\chi_{265}(6, \cdot)\) 265.2.m.a 216 12
265.2.n \(\chi_{265}(24, \cdot)\) 265.2.n.a 312 12
265.2.o \(\chi_{265}(3, \cdot)\) 265.2.o.a 600 24
265.2.t \(\chi_{265}(2, \cdot)\) 265.2.t.a 600 24

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(265))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(265)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 2}\)