Properties

Label 265.2.k
Level $265$
Weight $2$
Character orbit 265.k
Rep. character $\chi_{265}(16,\cdot)$
Character field $\Q(\zeta_{13})$
Dimension $216$
Newform subspaces $2$
Sturm bound $54$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 265 = 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 265.k (of order \(13\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 53 \)
Character field: \(\Q(\zeta_{13})\)
Newform subspaces: \( 2 \)
Sturm bound: \(54\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(265, [\chi])\).

Total New Old
Modular forms 336 216 120
Cusp forms 288 216 72
Eisenstein series 48 0 48

Trace form

\( 216 q - 4 q^{2} - 26 q^{4} - 4 q^{6} - 4 q^{7} + 40 q^{8} - 18 q^{9} + 20 q^{10} - 16 q^{11} - 20 q^{12} - 8 q^{13} - 36 q^{14} - 4 q^{15} - 58 q^{16} - 20 q^{17} - 56 q^{18} - 12 q^{19} - 16 q^{21} + 20 q^{22}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(265, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
265.2.k.a 265.k 53.d $108$ $2.116$ None 265.2.k.a \(-5\) \(-2\) \(-9\) \(7\) $\mathrm{SU}(2)[C_{13}]$
265.2.k.b 265.k 53.d $108$ $2.116$ None 265.2.k.b \(1\) \(2\) \(9\) \(-11\) $\mathrm{SU}(2)[C_{13}]$

Decomposition of \(S_{2}^{\mathrm{old}}(265, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(265, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 2}\)