Defining parameters
| Level: | \( N \) | \(=\) | \( 265 = 5 \cdot 53 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 265.k (of order \(13\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 53 \) |
| Character field: | \(\Q(\zeta_{13})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(54\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(265, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 336 | 216 | 120 |
| Cusp forms | 288 | 216 | 72 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(265, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 265.2.k.a | $108$ | $2.116$ | None | \(-5\) | \(-2\) | \(-9\) | \(7\) | ||
| 265.2.k.b | $108$ | $2.116$ | None | \(1\) | \(2\) | \(9\) | \(-11\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(265, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(265, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 2}\)