Defining parameters
| Level: | \( N \) | \(=\) | \( 265 = 5 \cdot 53 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 265.j (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 265 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(54\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(265, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 58 | 58 | 0 |
| Cusp forms | 50 | 50 | 0 |
| Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(265, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 265.2.j.a | $2$ | $2.116$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(-2\) | \(-2\) | \(q+q^{2}+2 i q^{3}-q^{4}+(2 i-1)q^{5}+\cdots\) |
| 265.2.j.b | $48$ | $2.116$ | None | \(-4\) | \(0\) | \(0\) | \(2\) | ||