Properties

Label 265.2.d
Level $265$
Weight $2$
Character orbit 265.d
Rep. character $\chi_{265}(264,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $3$
Sturm bound $54$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 265 = 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 265.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 265 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(54\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(265, [\chi])\).

Total New Old
Modular forms 28 28 0
Cusp forms 24 24 0
Eisenstein series 4 4 0

Trace form

\( 24 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 4 q^{10} + 8 q^{11} + 4 q^{15} - 12 q^{16} - 32 q^{24} - 28 q^{25} + 4 q^{29} - 16 q^{36} + 16 q^{40} - 36 q^{44} + 40 q^{46} - 40 q^{49} + 24 q^{54} - 20 q^{59} + 28 q^{60}+ \cdots + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(265, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
265.2.d.a 265.d 265.d $4$ $2.116$ 4.0.4400.1 None 265.2.d.a \(-2\) \(-6\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{2})q^{2}+(-2+\beta _{2})q^{3}-\beta _{2}q^{4}+\cdots\)
265.2.d.b 265.d 265.d $4$ $2.116$ 4.0.4400.1 None 265.2.d.a \(2\) \(6\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{2})q^{2}+(2-\beta _{2})q^{3}-\beta _{2}q^{4}+\cdots\)
265.2.d.c 265.d 265.d $16$ $2.116$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 265.2.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{10}q^{2}-\beta _{15}q^{3}+(1+\beta _{1})q^{4}-\beta _{14}q^{5}+\cdots\)