Properties

Label 2646.2.t.b.2285.3
Level $2646$
Weight $2$
Character 2646.2285
Analytic conductor $21.128$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2646,2,Mod(1979,2646)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2646, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2646.1979"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,8,0,0,0,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 23 x^{14} - 8 x^{13} - 131 x^{12} + 380 x^{11} - 289 x^{10} - 880 x^{9} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2285.3
Root \(-1.68301 - 0.409224i\) of defining polynomial
Character \(\chi\) \(=\) 2646.2285
Dual form 2646.2.t.b.1979.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +1.42985 q^{5} -1.00000i q^{8} +(-1.23829 - 0.714925i) q^{10} +3.41945i q^{11} +(-5.48813 - 3.16857i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(1.14201 - 1.97802i) q^{17} +(1.87673 - 1.08353i) q^{19} +(0.714925 + 1.23829i) q^{20} +(1.70972 - 2.96133i) q^{22} +8.05411i q^{23} -2.95553 q^{25} +(3.16857 + 5.48813i) q^{26} +(0.298879 - 0.172558i) q^{29} +(3.76052 - 2.17114i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-1.97802 + 1.14201i) q^{34} +(1.07786 + 1.86690i) q^{37} -2.16707 q^{38} -1.42985i q^{40} +(-0.202180 + 0.350186i) q^{41} +(2.90883 + 5.03824i) q^{43} +(-2.96133 + 1.70972i) q^{44} +(4.02706 - 6.97507i) q^{46} +(-2.75915 + 4.77898i) q^{47} +(2.55956 + 1.47776i) q^{50} -6.33715i q^{52} +(8.56310 + 4.94391i) q^{53} +4.88930i q^{55} -0.345115 q^{58} +(5.51480 + 9.55191i) q^{59} +(9.94175 + 5.73987i) q^{61} -4.34228 q^{62} -1.00000 q^{64} +(-7.84721 - 4.53059i) q^{65} +(-2.12683 - 3.68377i) q^{67} +2.28402 q^{68} -3.55393i q^{71} +(0.201057 + 0.116080i) q^{73} -2.15571i q^{74} +(1.87673 + 1.08353i) q^{76} +(-7.28100 + 12.6111i) q^{79} +(-0.714925 + 1.23829i) q^{80} +(0.350186 - 0.202180i) q^{82} +(-0.811624 - 1.40577i) q^{83} +(1.63290 - 2.82827i) q^{85} -5.81766i q^{86} +3.41945 q^{88} +(2.02974 + 3.51562i) q^{89} +(-6.97507 + 4.02706i) q^{92} +(4.77898 - 2.75915i) q^{94} +(2.68345 - 1.54929i) q^{95} +(-9.18719 + 5.30423i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 6 q^{13} - 8 q^{16} + 18 q^{17} + 16 q^{25} - 12 q^{26} - 6 q^{29} - 6 q^{31} - 2 q^{37} + 6 q^{41} - 2 q^{43} - 12 q^{44} + 6 q^{46} - 18 q^{47} + 12 q^{50} - 36 q^{53} - 12 q^{58} + 30 q^{59}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.42985 0.639449 0.319724 0.947511i \(-0.396410\pi\)
0.319724 + 0.947511i \(0.396410\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.23829 0.714925i −0.391581 0.226079i
\(11\) 3.41945i 1.03100i 0.856889 + 0.515501i \(0.172394\pi\)
−0.856889 + 0.515501i \(0.827606\pi\)
\(12\) 0 0
\(13\) −5.48813 3.16857i −1.52213 0.878804i −0.999658 0.0261501i \(-0.991675\pi\)
−0.522476 0.852654i \(-0.674991\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.14201 1.97802i 0.276978 0.479739i −0.693655 0.720308i \(-0.744001\pi\)
0.970632 + 0.240569i \(0.0773339\pi\)
\(18\) 0 0
\(19\) 1.87673 1.08353i 0.430553 0.248580i −0.269029 0.963132i \(-0.586703\pi\)
0.699582 + 0.714552i \(0.253370\pi\)
\(20\) 0.714925 + 1.23829i 0.159862 + 0.276889i
\(21\) 0 0
\(22\) 1.70972 2.96133i 0.364514 0.631357i
\(23\) 8.05411i 1.67940i 0.543052 + 0.839699i \(0.317269\pi\)
−0.543052 + 0.839699i \(0.682731\pi\)
\(24\) 0 0
\(25\) −2.95553 −0.591106
\(26\) 3.16857 + 5.48813i 0.621408 + 1.07631i
\(27\) 0 0
\(28\) 0 0
\(29\) 0.298879 0.172558i 0.0555003 0.0320431i −0.471993 0.881602i \(-0.656465\pi\)
0.527493 + 0.849559i \(0.323132\pi\)
\(30\) 0 0
\(31\) 3.76052 2.17114i 0.675410 0.389948i −0.122713 0.992442i \(-0.539160\pi\)
0.798123 + 0.602494i \(0.205826\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −1.97802 + 1.14201i −0.339227 + 0.195853i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.07786 + 1.86690i 0.177199 + 0.306917i 0.940920 0.338629i \(-0.109963\pi\)
−0.763721 + 0.645546i \(0.776630\pi\)
\(38\) −2.16707 −0.351545
\(39\) 0 0
\(40\) 1.42985i 0.226079i
\(41\) −0.202180 + 0.350186i −0.0315752 + 0.0546898i −0.881381 0.472406i \(-0.843386\pi\)
0.849806 + 0.527096i \(0.176719\pi\)
\(42\) 0 0
\(43\) 2.90883 + 5.03824i 0.443592 + 0.768325i 0.997953 0.0639521i \(-0.0203705\pi\)
−0.554361 + 0.832277i \(0.687037\pi\)
\(44\) −2.96133 + 1.70972i −0.446437 + 0.257750i
\(45\) 0 0
\(46\) 4.02706 6.97507i 0.593757 1.02842i
\(47\) −2.75915 + 4.77898i −0.402463 + 0.697086i −0.994023 0.109175i \(-0.965179\pi\)
0.591560 + 0.806261i \(0.298512\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.55956 + 1.47776i 0.361977 + 0.208987i
\(51\) 0 0
\(52\) 6.33715i 0.878804i
\(53\) 8.56310 + 4.94391i 1.17623 + 0.679098i 0.955140 0.296155i \(-0.0957044\pi\)
0.221093 + 0.975253i \(0.429038\pi\)
\(54\) 0 0
\(55\) 4.88930i 0.659273i
\(56\) 0 0
\(57\) 0 0
\(58\) −0.345115 −0.0453158
\(59\) 5.51480 + 9.55191i 0.717966 + 1.24355i 0.961805 + 0.273737i \(0.0882598\pi\)
−0.243839 + 0.969816i \(0.578407\pi\)
\(60\) 0 0
\(61\) 9.94175 + 5.73987i 1.27291 + 0.734915i 0.975535 0.219845i \(-0.0705551\pi\)
0.297376 + 0.954760i \(0.403888\pi\)
\(62\) −4.34228 −0.551470
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −7.84721 4.53059i −0.973326 0.561950i
\(66\) 0 0
\(67\) −2.12683 3.68377i −0.259833 0.450045i 0.706364 0.707849i \(-0.250334\pi\)
−0.966197 + 0.257804i \(0.917001\pi\)
\(68\) 2.28402 0.276978
\(69\) 0 0
\(70\) 0 0
\(71\) 3.55393i 0.421773i −0.977511 0.210887i \(-0.932365\pi\)
0.977511 0.210887i \(-0.0676351\pi\)
\(72\) 0 0
\(73\) 0.201057 + 0.116080i 0.0235320 + 0.0135862i 0.511720 0.859152i \(-0.329009\pi\)
−0.488188 + 0.872739i \(0.662342\pi\)
\(74\) 2.15571i 0.250597i
\(75\) 0 0
\(76\) 1.87673 + 1.08353i 0.215276 + 0.124290i
\(77\) 0 0
\(78\) 0 0
\(79\) −7.28100 + 12.6111i −0.819177 + 1.41886i 0.0871130 + 0.996198i \(0.472236\pi\)
−0.906290 + 0.422657i \(0.861097\pi\)
\(80\) −0.714925 + 1.23829i −0.0799311 + 0.138445i
\(81\) 0 0
\(82\) 0.350186 0.202180i 0.0386716 0.0223270i
\(83\) −0.811624 1.40577i −0.0890873 0.154304i 0.818038 0.575164i \(-0.195062\pi\)
−0.907126 + 0.420860i \(0.861728\pi\)
\(84\) 0 0
\(85\) 1.63290 2.82827i 0.177113 0.306769i
\(86\) 5.81766i 0.627334i
\(87\) 0 0
\(88\) 3.41945 0.364514
\(89\) 2.02974 + 3.51562i 0.215152 + 0.372655i 0.953320 0.301963i \(-0.0976419\pi\)
−0.738167 + 0.674618i \(0.764309\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.97507 + 4.02706i −0.727201 + 0.419850i
\(93\) 0 0
\(94\) 4.77898 2.75915i 0.492914 0.284584i
\(95\) 2.68345 1.54929i 0.275316 0.158954i
\(96\) 0 0
\(97\) −9.18719 + 5.30423i −0.932818 + 0.538563i −0.887702 0.460419i \(-0.847699\pi\)
−0.0451164 + 0.998982i \(0.514366\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.47776 2.55956i −0.147776 0.255956i
\(101\) −8.04886 −0.800892 −0.400446 0.916320i \(-0.631145\pi\)
−0.400446 + 0.916320i \(0.631145\pi\)
\(102\) 0 0
\(103\) 2.81391i 0.277263i −0.990344 0.138631i \(-0.955730\pi\)
0.990344 0.138631i \(-0.0442703\pi\)
\(104\) −3.16857 + 5.48813i −0.310704 + 0.538156i
\(105\) 0 0
\(106\) −4.94391 8.56310i −0.480195 0.831722i
\(107\) −13.7019 + 7.91078i −1.32461 + 0.764764i −0.984460 0.175607i \(-0.943811\pi\)
−0.340150 + 0.940371i \(0.610478\pi\)
\(108\) 0 0
\(109\) 5.10675 8.84514i 0.489138 0.847211i −0.510784 0.859709i \(-0.670645\pi\)
0.999922 + 0.0124977i \(0.00397826\pi\)
\(110\) 2.44465 4.23425i 0.233088 0.403720i
\(111\) 0 0
\(112\) 0 0
\(113\) −7.28808 4.20778i −0.685605 0.395834i 0.116359 0.993207i \(-0.462878\pi\)
−0.801963 + 0.597373i \(0.796211\pi\)
\(114\) 0 0
\(115\) 11.5162i 1.07389i
\(116\) 0.298879 + 0.172558i 0.0277502 + 0.0160216i
\(117\) 0 0
\(118\) 11.0296i 1.01536i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.692610 −0.0629646
\(122\) −5.73987 9.94175i −0.519664 0.900084i
\(123\) 0 0
\(124\) 3.76052 + 2.17114i 0.337705 + 0.194974i
\(125\) −11.3752 −1.01743
\(126\) 0 0
\(127\) 5.77773 0.512691 0.256345 0.966585i \(-0.417482\pi\)
0.256345 + 0.966585i \(0.417482\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 4.53059 + 7.84721i 0.397359 + 0.688246i
\(131\) 4.45667 0.389381 0.194690 0.980865i \(-0.437630\pi\)
0.194690 + 0.980865i \(0.437630\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.25366i 0.367460i
\(135\) 0 0
\(136\) −1.97802 1.14201i −0.169613 0.0979264i
\(137\) 9.65668i 0.825026i 0.910952 + 0.412513i \(0.135349\pi\)
−0.910952 + 0.412513i \(0.864651\pi\)
\(138\) 0 0
\(139\) 16.0680 + 9.27686i 1.36287 + 0.786853i 0.990005 0.141033i \(-0.0450423\pi\)
0.372864 + 0.927886i \(0.378376\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.77696 + 3.07779i −0.149119 + 0.258282i
\(143\) 10.8348 18.7664i 0.906049 1.56932i
\(144\) 0 0
\(145\) 0.427352 0.246732i 0.0354896 0.0204899i
\(146\) −0.116080 0.201057i −0.00960689 0.0166396i
\(147\) 0 0
\(148\) −1.07786 + 1.86690i −0.0885993 + 0.153458i
\(149\) 6.50694i 0.533069i 0.963825 + 0.266535i \(0.0858786\pi\)
−0.963825 + 0.266535i \(0.914121\pi\)
\(150\) 0 0
\(151\) 5.75901 0.468661 0.234331 0.972157i \(-0.424710\pi\)
0.234331 + 0.972157i \(0.424710\pi\)
\(152\) −1.08353 1.87673i −0.0878862 0.152223i
\(153\) 0 0
\(154\) 0 0
\(155\) 5.37699 3.10441i 0.431890 0.249352i
\(156\) 0 0
\(157\) −6.89669 + 3.98180i −0.550415 + 0.317783i −0.749290 0.662243i \(-0.769605\pi\)
0.198874 + 0.980025i \(0.436272\pi\)
\(158\) 12.6111 7.28100i 1.00328 0.579245i
\(159\) 0 0
\(160\) 1.23829 0.714925i 0.0978952 0.0565198i
\(161\) 0 0
\(162\) 0 0
\(163\) 5.69256 + 9.85980i 0.445876 + 0.772279i 0.998113 0.0614080i \(-0.0195591\pi\)
−0.552237 + 0.833687i \(0.686226\pi\)
\(164\) −0.404360 −0.0315752
\(165\) 0 0
\(166\) 1.62325i 0.125988i
\(167\) 5.66418 9.81065i 0.438308 0.759171i −0.559252 0.828998i \(-0.688911\pi\)
0.997559 + 0.0698271i \(0.0222447\pi\)
\(168\) 0 0
\(169\) 13.5797 + 23.5208i 1.04459 + 1.80929i
\(170\) −2.82827 + 1.63290i −0.216918 + 0.125238i
\(171\) 0 0
\(172\) −2.90883 + 5.03824i −0.221796 + 0.384162i
\(173\) −10.8457 + 18.7853i −0.824584 + 1.42822i 0.0776528 + 0.996980i \(0.475257\pi\)
−0.902237 + 0.431241i \(0.858076\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.96133 1.70972i −0.223218 0.128875i
\(177\) 0 0
\(178\) 4.05949i 0.304271i
\(179\) −18.0057 10.3956i −1.34581 0.777002i −0.358155 0.933662i \(-0.616594\pi\)
−0.987653 + 0.156660i \(0.949927\pi\)
\(180\) 0 0
\(181\) 21.5301i 1.60032i −0.599788 0.800159i \(-0.704748\pi\)
0.599788 0.800159i \(-0.295252\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8.05411 0.593757
\(185\) 1.54117 + 2.66939i 0.113309 + 0.196258i
\(186\) 0 0
\(187\) 6.76372 + 3.90503i 0.494612 + 0.285564i
\(188\) −5.51829 −0.402463
\(189\) 0 0
\(190\) −3.09858 −0.224795
\(191\) 6.38207 + 3.68469i 0.461791 + 0.266615i 0.712797 0.701371i \(-0.247428\pi\)
−0.251006 + 0.967985i \(0.580761\pi\)
\(192\) 0 0
\(193\) 1.41279 + 2.44703i 0.101695 + 0.176141i 0.912383 0.409337i \(-0.134240\pi\)
−0.810688 + 0.585478i \(0.800907\pi\)
\(194\) 10.6085 0.761643
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0883i 1.85871i 0.369183 + 0.929357i \(0.379637\pi\)
−0.369183 + 0.929357i \(0.620363\pi\)
\(198\) 0 0
\(199\) −13.3511 7.70826i −0.946434 0.546424i −0.0544625 0.998516i \(-0.517345\pi\)
−0.891971 + 0.452092i \(0.850678\pi\)
\(200\) 2.95553i 0.208987i
\(201\) 0 0
\(202\) 6.97052 + 4.02443i 0.490444 + 0.283158i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.289087 + 0.500713i −0.0201907 + 0.0349713i
\(206\) −1.40695 + 2.43692i −0.0980272 + 0.169788i
\(207\) 0 0
\(208\) 5.48813 3.16857i 0.380533 0.219701i
\(209\) 3.70508 + 6.41739i 0.256286 + 0.443900i
\(210\) 0 0
\(211\) 4.42465 7.66371i 0.304605 0.527592i −0.672568 0.740035i \(-0.734809\pi\)
0.977173 + 0.212443i \(0.0681421\pi\)
\(212\) 9.88782i 0.679098i
\(213\) 0 0
\(214\) 15.8216 1.08154
\(215\) 4.15919 + 7.20393i 0.283655 + 0.491304i
\(216\) 0 0
\(217\) 0 0
\(218\) −8.84514 + 5.10675i −0.599069 + 0.345873i
\(219\) 0 0
\(220\) −4.23425 + 2.44465i −0.285473 + 0.164818i
\(221\) −12.5350 + 7.23707i −0.843194 + 0.486818i
\(222\) 0 0
\(223\) −6.88961 + 3.97772i −0.461363 + 0.266368i −0.712617 0.701553i \(-0.752490\pi\)
0.251254 + 0.967921i \(0.419157\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4.20778 + 7.28808i 0.279897 + 0.484796i
\(227\) 9.23968 0.613259 0.306630 0.951829i \(-0.400799\pi\)
0.306630 + 0.951829i \(0.400799\pi\)
\(228\) 0 0
\(229\) 8.44454i 0.558031i −0.960287 0.279016i \(-0.909992\pi\)
0.960287 0.279016i \(-0.0900081\pi\)
\(230\) 5.75809 9.97330i 0.379677 0.657620i
\(231\) 0 0
\(232\) −0.172558 0.298879i −0.0113290 0.0196223i
\(233\) 14.4176 8.32399i 0.944526 0.545323i 0.0531500 0.998587i \(-0.483074\pi\)
0.891376 + 0.453264i \(0.149741\pi\)
\(234\) 0 0
\(235\) −3.94517 + 6.83323i −0.257354 + 0.445751i
\(236\) −5.51480 + 9.55191i −0.358983 + 0.621776i
\(237\) 0 0
\(238\) 0 0
\(239\) 23.6325 + 13.6442i 1.52866 + 0.882572i 0.999418 + 0.0341012i \(0.0108569\pi\)
0.529242 + 0.848471i \(0.322476\pi\)
\(240\) 0 0
\(241\) 25.2900i 1.62907i 0.580111 + 0.814537i \(0.303009\pi\)
−0.580111 + 0.814537i \(0.696991\pi\)
\(242\) 0.599818 + 0.346305i 0.0385578 + 0.0222613i
\(243\) 0 0
\(244\) 11.4797i 0.734915i
\(245\) 0 0
\(246\) 0 0
\(247\) −13.7330 −0.873811
\(248\) −2.17114 3.76052i −0.137868 0.238794i
\(249\) 0 0
\(250\) 9.85123 + 5.68761i 0.623046 + 0.359716i
\(251\) 8.19337 0.517161 0.258581 0.965990i \(-0.416745\pi\)
0.258581 + 0.965990i \(0.416745\pi\)
\(252\) 0 0
\(253\) −27.5406 −1.73146
\(254\) −5.00366 2.88886i −0.313958 0.181264i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.63445 −0.413846 −0.206923 0.978357i \(-0.566345\pi\)
−0.206923 + 0.978357i \(0.566345\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 9.06117i 0.561950i
\(261\) 0 0
\(262\) −3.85959 2.22833i −0.238446 0.137667i
\(263\) 6.04590i 0.372806i 0.982473 + 0.186403i \(0.0596830\pi\)
−0.982473 + 0.186403i \(0.940317\pi\)
\(264\) 0 0
\(265\) 12.2440 + 7.06905i 0.752140 + 0.434248i
\(266\) 0 0
\(267\) 0 0
\(268\) 2.12683 3.68377i 0.129917 0.225022i
\(269\) −3.41069 + 5.90750i −0.207954 + 0.360186i −0.951070 0.308976i \(-0.900014\pi\)
0.743116 + 0.669163i \(0.233347\pi\)
\(270\) 0 0
\(271\) 4.39780 2.53907i 0.267148 0.154238i −0.360443 0.932781i \(-0.617375\pi\)
0.627591 + 0.778543i \(0.284041\pi\)
\(272\) 1.14201 + 1.97802i 0.0692444 + 0.119935i
\(273\) 0 0
\(274\) 4.82834 8.36293i 0.291691 0.505223i
\(275\) 10.1063i 0.609431i
\(276\) 0 0
\(277\) −1.97913 −0.118915 −0.0594573 0.998231i \(-0.518937\pi\)
−0.0594573 + 0.998231i \(0.518937\pi\)
\(278\) −9.27686 16.0680i −0.556389 0.963694i
\(279\) 0 0
\(280\) 0 0
\(281\) 15.2703 8.81631i 0.910950 0.525937i 0.0302131 0.999543i \(-0.490381\pi\)
0.880737 + 0.473606i \(0.157048\pi\)
\(282\) 0 0
\(283\) −4.46337 + 2.57693i −0.265320 + 0.153182i −0.626759 0.779213i \(-0.715619\pi\)
0.361439 + 0.932396i \(0.382286\pi\)
\(284\) 3.07779 1.77696i 0.182633 0.105443i
\(285\) 0 0
\(286\) −18.7664 + 10.8348i −1.10968 + 0.640673i
\(287\) 0 0
\(288\) 0 0
\(289\) 5.89164 + 10.2046i 0.346567 + 0.600271i
\(290\) −0.493463 −0.0289772
\(291\) 0 0
\(292\) 0.232161i 0.0135862i
\(293\) −1.03248 + 1.78831i −0.0603183 + 0.104474i −0.894608 0.446852i \(-0.852545\pi\)
0.834289 + 0.551327i \(0.185878\pi\)
\(294\) 0 0
\(295\) 7.88534 + 13.6578i 0.459102 + 0.795188i
\(296\) 1.86690 1.07786i 0.108511 0.0626491i
\(297\) 0 0
\(298\) 3.25347 5.63517i 0.188468 0.326437i
\(299\) 25.5201 44.2020i 1.47586 2.55627i
\(300\) 0 0
\(301\) 0 0
\(302\) −4.98745 2.87950i −0.286995 0.165697i
\(303\) 0 0
\(304\) 2.16707i 0.124290i
\(305\) 14.2152 + 8.20716i 0.813961 + 0.469941i
\(306\) 0 0
\(307\) 1.09119i 0.0622772i 0.999515 + 0.0311386i \(0.00991333\pi\)
−0.999515 + 0.0311386i \(0.990087\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −6.20881 −0.352637
\(311\) 7.61100 + 13.1826i 0.431580 + 0.747519i 0.997010 0.0772777i \(-0.0246228\pi\)
−0.565429 + 0.824797i \(0.691289\pi\)
\(312\) 0 0
\(313\) −10.0202 5.78518i −0.566377 0.326998i 0.189324 0.981915i \(-0.439370\pi\)
−0.755701 + 0.654917i \(0.772704\pi\)
\(314\) 7.96361 0.449412
\(315\) 0 0
\(316\) −14.5620 −0.819177
\(317\) −14.8613 8.58020i −0.834696 0.481912i 0.0207618 0.999784i \(-0.493391\pi\)
−0.855458 + 0.517872i \(0.826724\pi\)
\(318\) 0 0
\(319\) 0.590051 + 1.02200i 0.0330365 + 0.0572210i
\(320\) −1.42985 −0.0799311
\(321\) 0 0
\(322\) 0 0
\(323\) 4.94962i 0.275404i
\(324\) 0 0
\(325\) 16.2203 + 9.36481i 0.899742 + 0.519466i
\(326\) 11.3851i 0.630563i
\(327\) 0 0
\(328\) 0.350186 + 0.202180i 0.0193358 + 0.0111635i
\(329\) 0 0
\(330\) 0 0
\(331\) 13.2466 22.9437i 0.728096 1.26110i −0.229591 0.973287i \(-0.573739\pi\)
0.957687 0.287812i \(-0.0929280\pi\)
\(332\) 0.811624 1.40577i 0.0445436 0.0771519i
\(333\) 0 0
\(334\) −9.81065 + 5.66418i −0.536815 + 0.309930i
\(335\) −3.04105 5.26725i −0.166150 0.287780i
\(336\) 0 0
\(337\) 4.06451 7.03993i 0.221408 0.383490i −0.733828 0.679335i \(-0.762268\pi\)
0.955236 + 0.295846i \(0.0956015\pi\)
\(338\) 27.1594i 1.47728i
\(339\) 0 0
\(340\) 3.26580 0.177113
\(341\) 7.42410 + 12.8589i 0.402037 + 0.696349i
\(342\) 0 0
\(343\) 0 0
\(344\) 5.03824 2.90883i 0.271644 0.156834i
\(345\) 0 0
\(346\) 18.7853 10.8457i 1.00991 0.583069i
\(347\) 22.1851 12.8086i 1.19096 0.687599i 0.232433 0.972612i \(-0.425331\pi\)
0.958524 + 0.285013i \(0.0919979\pi\)
\(348\) 0 0
\(349\) 9.11932 5.26504i 0.488146 0.281831i −0.235659 0.971836i \(-0.575725\pi\)
0.723805 + 0.690005i \(0.242391\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.70972 + 2.96133i 0.0911285 + 0.157839i
\(353\) 12.8437 0.683602 0.341801 0.939772i \(-0.388963\pi\)
0.341801 + 0.939772i \(0.388963\pi\)
\(354\) 0 0
\(355\) 5.08158i 0.269702i
\(356\) −2.02974 + 3.51562i −0.107576 + 0.186327i
\(357\) 0 0
\(358\) 10.3956 + 18.0057i 0.549424 + 0.951630i
\(359\) 25.6881 14.8311i 1.35577 0.782753i 0.366718 0.930332i \(-0.380482\pi\)
0.989050 + 0.147579i \(0.0471482\pi\)
\(360\) 0 0
\(361\) −7.15191 + 12.3875i −0.376416 + 0.651972i
\(362\) −10.7650 + 18.6456i −0.565798 + 0.979991i
\(363\) 0 0
\(364\) 0 0
\(365\) 0.287482 + 0.165978i 0.0150475 + 0.00868767i
\(366\) 0 0
\(367\) 23.9979i 1.25268i −0.779550 0.626340i \(-0.784552\pi\)
0.779550 0.626340i \(-0.215448\pi\)
\(368\) −6.97507 4.02706i −0.363600 0.209925i
\(369\) 0 0
\(370\) 3.08235i 0.160244i
\(371\) 0 0
\(372\) 0 0
\(373\) −11.8390 −0.612998 −0.306499 0.951871i \(-0.599158\pi\)
−0.306499 + 0.951871i \(0.599158\pi\)
\(374\) −3.90503 6.76372i −0.201925 0.349744i
\(375\) 0 0
\(376\) 4.77898 + 2.75915i 0.246457 + 0.142292i
\(377\) −2.18705 −0.112639
\(378\) 0 0
\(379\) −13.1379 −0.674850 −0.337425 0.941352i \(-0.609556\pi\)
−0.337425 + 0.941352i \(0.609556\pi\)
\(380\) 2.68345 + 1.54929i 0.137658 + 0.0794769i
\(381\) 0 0
\(382\) −3.68469 6.38207i −0.188525 0.326535i
\(383\) −17.5521 −0.896868 −0.448434 0.893816i \(-0.648018\pi\)
−0.448434 + 0.893816i \(0.648018\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.82559i 0.143819i
\(387\) 0 0
\(388\) −9.18719 5.30423i −0.466409 0.269281i
\(389\) 21.8410i 1.10738i 0.832722 + 0.553691i \(0.186781\pi\)
−0.832722 + 0.553691i \(0.813219\pi\)
\(390\) 0 0
\(391\) 15.9312 + 9.19786i 0.805674 + 0.465156i
\(392\) 0 0
\(393\) 0 0
\(394\) 13.0441 22.5931i 0.657154 1.13822i
\(395\) −10.4107 + 18.0319i −0.523821 + 0.907285i
\(396\) 0 0
\(397\) −33.7636 + 19.4935i −1.69455 + 0.978348i −0.743792 + 0.668411i \(0.766975\pi\)
−0.950757 + 0.309937i \(0.899692\pi\)
\(398\) 7.70826 + 13.3511i 0.386380 + 0.669230i
\(399\) 0 0
\(400\) 1.47776 2.55956i 0.0738882 0.127978i
\(401\) 23.1979i 1.15845i 0.815169 + 0.579223i \(0.196644\pi\)
−0.815169 + 0.579223i \(0.803356\pi\)
\(402\) 0 0
\(403\) −27.5177 −1.37075
\(404\) −4.02443 6.97052i −0.200223 0.346796i
\(405\) 0 0
\(406\) 0 0
\(407\) −6.38377 + 3.68567i −0.316432 + 0.182692i
\(408\) 0 0
\(409\) 21.3205 12.3094i 1.05423 0.608659i 0.130398 0.991462i \(-0.458374\pi\)
0.923830 + 0.382803i \(0.125041\pi\)
\(410\) 0.500713 0.289087i 0.0247285 0.0142770i
\(411\) 0 0
\(412\) 2.43692 1.40695i 0.120058 0.0693157i
\(413\) 0 0
\(414\) 0 0
\(415\) −1.16050 2.01005i −0.0569667 0.0986693i
\(416\) −6.33715 −0.310704
\(417\) 0 0
\(418\) 7.41017i 0.362443i
\(419\) −8.53996 + 14.7916i −0.417204 + 0.722619i −0.995657 0.0930969i \(-0.970323\pi\)
0.578453 + 0.815716i \(0.303657\pi\)
\(420\) 0 0
\(421\) −7.35652 12.7419i −0.358535 0.621000i 0.629182 0.777258i \(-0.283390\pi\)
−0.987716 + 0.156258i \(0.950057\pi\)
\(422\) −7.66371 + 4.42465i −0.373064 + 0.215388i
\(423\) 0 0
\(424\) 4.94391 8.56310i 0.240097 0.415861i
\(425\) −3.37524 + 5.84608i −0.163723 + 0.283577i
\(426\) 0 0
\(427\) 0 0
\(428\) −13.7019 7.91078i −0.662305 0.382382i
\(429\) 0 0
\(430\) 8.31838i 0.401148i
\(431\) −8.32286 4.80521i −0.400898 0.231459i 0.285973 0.958238i \(-0.407683\pi\)
−0.686871 + 0.726779i \(0.741016\pi\)
\(432\) 0 0
\(433\) 9.04314i 0.434585i −0.976106 0.217293i \(-0.930277\pi\)
0.976106 0.217293i \(-0.0697226\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 10.2135 0.489138
\(437\) 8.72690 + 15.1154i 0.417464 + 0.723069i
\(438\) 0 0
\(439\) −0.791370 0.456897i −0.0377700 0.0218065i 0.480996 0.876723i \(-0.340275\pi\)
−0.518766 + 0.854916i \(0.673608\pi\)
\(440\) 4.88930 0.233088
\(441\) 0 0
\(442\) 14.4741 0.688465
\(443\) 25.4279 + 14.6808i 1.20812 + 0.697507i 0.962348 0.271821i \(-0.0876259\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(444\) 0 0
\(445\) 2.90223 + 5.02681i 0.137579 + 0.238294i
\(446\) 7.95544 0.376701
\(447\) 0 0
\(448\) 0 0
\(449\) 3.36736i 0.158915i 0.996838 + 0.0794577i \(0.0253189\pi\)
−0.996838 + 0.0794577i \(0.974681\pi\)
\(450\) 0 0
\(451\) −1.19744 0.691343i −0.0563853 0.0325541i
\(452\) 8.41555i 0.395834i
\(453\) 0 0
\(454\) −8.00180 4.61984i −0.375543 0.216820i
\(455\) 0 0
\(456\) 0 0
\(457\) 7.55693 13.0890i 0.353498 0.612277i −0.633362 0.773856i \(-0.718325\pi\)
0.986860 + 0.161579i \(0.0516588\pi\)
\(458\) −4.22227 + 7.31319i −0.197294 + 0.341723i
\(459\) 0 0
\(460\) −9.97330 + 5.75809i −0.465008 + 0.268472i
\(461\) −5.19445 8.99706i −0.241930 0.419035i 0.719334 0.694664i \(-0.244447\pi\)
−0.961264 + 0.275629i \(0.911114\pi\)
\(462\) 0 0
\(463\) −2.65722 + 4.60244i −0.123492 + 0.213894i −0.921142 0.389226i \(-0.872743\pi\)
0.797651 + 0.603120i \(0.206076\pi\)
\(464\) 0.345115i 0.0160216i
\(465\) 0 0
\(466\) −16.6480 −0.771203
\(467\) −9.74994 16.8874i −0.451173 0.781455i 0.547286 0.836946i \(-0.315661\pi\)
−0.998459 + 0.0554907i \(0.982328\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 6.83323 3.94517i 0.315193 0.181977i
\(471\) 0 0
\(472\) 9.55191 5.51480i 0.439662 0.253839i
\(473\) −17.2280 + 9.94659i −0.792144 + 0.457345i
\(474\) 0 0
\(475\) −5.54674 + 3.20241i −0.254502 + 0.146937i
\(476\) 0 0
\(477\) 0 0
\(478\) −13.6442 23.6325i −0.624073 1.08093i
\(479\) −27.8024 −1.27033 −0.635163 0.772378i \(-0.719067\pi\)
−0.635163 + 0.772378i \(0.719067\pi\)
\(480\) 0 0
\(481\) 13.6611i 0.622891i
\(482\) 12.6450 21.9018i 0.575965 0.997600i
\(483\) 0 0
\(484\) −0.346305 0.599818i −0.0157411 0.0272645i
\(485\) −13.1363 + 7.58425i −0.596489 + 0.344383i
\(486\) 0 0
\(487\) 3.73838 6.47506i 0.169402 0.293413i −0.768808 0.639480i \(-0.779150\pi\)
0.938210 + 0.346067i \(0.112483\pi\)
\(488\) 5.73987 9.94175i 0.259832 0.450042i
\(489\) 0 0
\(490\) 0 0
\(491\) −19.1466 11.0543i −0.864073 0.498873i 0.00130103 0.999999i \(-0.499586\pi\)
−0.865374 + 0.501126i \(0.832919\pi\)
\(492\) 0 0
\(493\) 0.788249i 0.0355009i
\(494\) 11.8931 + 6.86651i 0.535098 + 0.308939i
\(495\) 0 0
\(496\) 4.34228i 0.194974i
\(497\) 0 0
\(498\) 0 0
\(499\) 32.9042 1.47300 0.736498 0.676439i \(-0.236478\pi\)
0.736498 + 0.676439i \(0.236478\pi\)
\(500\) −5.68761 9.85123i −0.254358 0.440560i
\(501\) 0 0
\(502\) −7.09567 4.09669i −0.316695 0.182844i
\(503\) 25.6142 1.14208 0.571039 0.820923i \(-0.306540\pi\)
0.571039 + 0.820923i \(0.306540\pi\)
\(504\) 0 0
\(505\) −11.5087 −0.512129
\(506\) 23.8509 + 13.7703i 1.06030 + 0.612165i
\(507\) 0 0
\(508\) 2.88886 + 5.00366i 0.128173 + 0.222002i
\(509\) −21.4717 −0.951715 −0.475857 0.879522i \(-0.657862\pi\)
−0.475857 + 0.879522i \(0.657862\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 5.74560 + 3.31723i 0.253428 + 0.146317i
\(515\) 4.02347i 0.177295i
\(516\) 0 0
\(517\) −16.3415 9.43475i −0.718697 0.414940i
\(518\) 0 0
\(519\) 0 0
\(520\) −4.53059 + 7.84721i −0.198679 + 0.344123i
\(521\) 3.23087 5.59604i 0.141547 0.245167i −0.786532 0.617549i \(-0.788126\pi\)
0.928079 + 0.372382i \(0.121459\pi\)
\(522\) 0 0
\(523\) −11.7830 + 6.80291i −0.515234 + 0.297470i −0.734982 0.678086i \(-0.762810\pi\)
0.219749 + 0.975557i \(0.429476\pi\)
\(524\) 2.22833 + 3.85959i 0.0973452 + 0.168607i
\(525\) 0 0
\(526\) 3.02295 5.23590i 0.131807 0.228296i
\(527\) 9.91784i 0.432028i
\(528\) 0 0
\(529\) −41.8687 −1.82038
\(530\) −7.06905 12.2440i −0.307060 0.531843i
\(531\) 0 0
\(532\) 0 0
\(533\) 2.21918 1.28124i 0.0961233 0.0554968i
\(534\) 0 0
\(535\) −19.5916 + 11.3112i −0.847020 + 0.489027i
\(536\) −3.68377 + 2.12683i −0.159115 + 0.0918650i
\(537\) 0 0
\(538\) 5.90750 3.41069i 0.254690 0.147045i
\(539\) 0 0
\(540\) 0 0
\(541\) −14.9288 25.8574i −0.641838 1.11170i −0.985022 0.172428i \(-0.944839\pi\)
0.343184 0.939268i \(-0.388494\pi\)
\(542\) −5.07815 −0.218125
\(543\) 0 0
\(544\) 2.28402i 0.0979264i
\(545\) 7.30188 12.6472i 0.312778 0.541748i
\(546\) 0 0
\(547\) −9.07207 15.7133i −0.387894 0.671852i 0.604272 0.796778i \(-0.293464\pi\)
−0.992166 + 0.124926i \(0.960131\pi\)
\(548\) −8.36293 + 4.82834i −0.357247 + 0.206256i
\(549\) 0 0
\(550\) −5.05313 + 8.75228i −0.215466 + 0.373199i
\(551\) 0.373944 0.647690i 0.0159305 0.0275925i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.71398 + 0.989567i 0.0728201 + 0.0420427i
\(555\) 0 0
\(556\) 18.5537i 0.786853i
\(557\) −32.5079 18.7684i −1.37740 0.795245i −0.385558 0.922684i \(-0.625991\pi\)
−0.991846 + 0.127439i \(0.959324\pi\)
\(558\) 0 0
\(559\) 36.8674i 1.55932i
\(560\) 0 0
\(561\) 0 0
\(562\) −17.6326 −0.743787
\(563\) 3.55341 + 6.15468i 0.149758 + 0.259389i 0.931138 0.364667i \(-0.118817\pi\)
−0.781380 + 0.624056i \(0.785484\pi\)
\(564\) 0 0
\(565\) −10.4209 6.01649i −0.438409 0.253116i
\(566\) 5.15385 0.216633
\(567\) 0 0
\(568\) −3.55393 −0.149119
\(569\) −35.6499 20.5825i −1.49452 0.862862i −0.494541 0.869154i \(-0.664664\pi\)
−0.999980 + 0.00629202i \(0.997997\pi\)
\(570\) 0 0
\(571\) −2.21293 3.83290i −0.0926080 0.160402i 0.816000 0.578052i \(-0.196187\pi\)
−0.908608 + 0.417650i \(0.862854\pi\)
\(572\) 21.6695 0.906049
\(573\) 0 0
\(574\) 0 0
\(575\) 23.8042i 0.992702i
\(576\) 0 0
\(577\) −2.37542 1.37145i −0.0988900 0.0570941i 0.449739 0.893160i \(-0.351517\pi\)
−0.548629 + 0.836066i \(0.684850\pi\)
\(578\) 11.7833i 0.490119i
\(579\) 0 0
\(580\) 0.427352 + 0.246732i 0.0177448 + 0.0102450i
\(581\) 0 0
\(582\) 0 0
\(583\) −16.9054 + 29.2811i −0.700151 + 1.21270i
\(584\) 0.116080 0.201057i 0.00480344 0.00831981i
\(585\) 0 0
\(586\) 1.78831 1.03248i 0.0738745 0.0426515i
\(587\) −9.90248 17.1516i −0.408719 0.707922i 0.586027 0.810291i \(-0.300691\pi\)
−0.994747 + 0.102369i \(0.967358\pi\)
\(588\) 0 0
\(589\) 4.70501 8.14931i 0.193866 0.335786i
\(590\) 15.7707i 0.649268i
\(591\) 0 0
\(592\) −2.15571 −0.0885993
\(593\) −0.434850 0.753183i −0.0178572 0.0309295i 0.856959 0.515385i \(-0.172351\pi\)
−0.874816 + 0.484456i \(0.839018\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.63517 + 3.25347i −0.230826 + 0.133267i
\(597\) 0 0
\(598\) −44.2020 + 25.5201i −1.80756 + 1.04359i
\(599\) −2.33277 + 1.34682i −0.0953143 + 0.0550297i −0.546899 0.837198i \(-0.684192\pi\)
0.451585 + 0.892228i \(0.350859\pi\)
\(600\) 0 0
\(601\) 0.115325 0.0665827i 0.00470419 0.00271596i −0.497646 0.867380i \(-0.665802\pi\)
0.502350 + 0.864664i \(0.332469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 2.87950 + 4.98745i 0.117165 + 0.202936i
\(605\) −0.990329 −0.0402626
\(606\) 0 0
\(607\) 44.3243i 1.79907i −0.436851 0.899534i \(-0.643906\pi\)
0.436851 0.899534i \(-0.356094\pi\)
\(608\) 1.08353 1.87673i 0.0439431 0.0761117i
\(609\) 0 0
\(610\) −8.20716 14.2152i −0.332298 0.575557i
\(611\) 30.2851 17.4851i 1.22520 0.707372i
\(612\) 0 0
\(613\) 3.29901 5.71406i 0.133246 0.230789i −0.791680 0.610936i \(-0.790793\pi\)
0.924926 + 0.380147i \(0.124127\pi\)
\(614\) 0.545593 0.944994i 0.0220183 0.0381369i
\(615\) 0 0
\(616\) 0 0
\(617\) 7.99450 + 4.61563i 0.321846 + 0.185818i 0.652215 0.758034i \(-0.273840\pi\)
−0.330369 + 0.943852i \(0.607173\pi\)
\(618\) 0 0
\(619\) 6.53894i 0.262822i 0.991328 + 0.131411i \(0.0419508\pi\)
−0.991328 + 0.131411i \(0.958049\pi\)
\(620\) 5.37699 + 3.10441i 0.215945 + 0.124676i
\(621\) 0 0
\(622\) 15.2220i 0.610347i
\(623\) 0 0
\(624\) 0 0
\(625\) −1.48722 −0.0594888
\(626\) 5.78518 + 10.0202i 0.231222 + 0.400489i
\(627\) 0 0
\(628\) −6.89669 3.98180i −0.275208 0.158891i
\(629\) 4.92368 0.196320
\(630\) 0 0
\(631\) 13.8837 0.552699 0.276350 0.961057i \(-0.410875\pi\)
0.276350 + 0.961057i \(0.410875\pi\)
\(632\) 12.6111 + 7.28100i 0.501641 + 0.289623i
\(633\) 0 0
\(634\) 8.58020 + 14.8613i 0.340763 + 0.590219i
\(635\) 8.26129 0.327839
\(636\) 0 0
\(637\) 0 0
\(638\) 1.18010i 0.0467207i
\(639\) 0 0
\(640\) 1.23829 + 0.714925i 0.0489476 + 0.0282599i
\(641\) 15.2351i 0.601752i −0.953663 0.300876i \(-0.902721\pi\)
0.953663 0.300876i \(-0.0972790\pi\)
\(642\) 0 0
\(643\) −16.5813 9.57324i −0.653904 0.377532i 0.136046 0.990702i \(-0.456560\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.47481 + 4.28649i −0.0973700 + 0.168650i
\(647\) −0.793991 + 1.37523i −0.0312150 + 0.0540660i −0.881211 0.472723i \(-0.843271\pi\)
0.849996 + 0.526789i \(0.176604\pi\)
\(648\) 0 0
\(649\) −32.6622 + 18.8576i −1.28211 + 0.740224i
\(650\) −9.36481 16.2203i −0.367318 0.636213i
\(651\) 0 0
\(652\) −5.69256 + 9.85980i −0.222938 + 0.386140i
\(653\) 17.9639i 0.702983i 0.936191 + 0.351492i \(0.114325\pi\)
−0.936191 + 0.351492i \(0.885675\pi\)
\(654\) 0 0
\(655\) 6.37237 0.248989
\(656\) −0.202180 0.350186i −0.00789380 0.0136725i
\(657\) 0 0
\(658\) 0 0
\(659\) −10.0955 + 5.82866i −0.393266 + 0.227052i −0.683574 0.729881i \(-0.739576\pi\)
0.290308 + 0.956933i \(0.406242\pi\)
\(660\) 0 0
\(661\) 15.7786 9.10975i 0.613715 0.354328i −0.160703 0.987003i \(-0.551376\pi\)
0.774418 + 0.632674i \(0.218043\pi\)
\(662\) −22.9437 + 13.2466i −0.891732 + 0.514842i
\(663\) 0 0
\(664\) −1.40577 + 0.811624i −0.0545546 + 0.0314971i
\(665\) 0 0
\(666\) 0 0
\(667\) 1.38980 + 2.40720i 0.0538132 + 0.0932072i
\(668\) 11.3284 0.438308
\(669\) 0 0
\(670\) 6.08209i 0.234972i
\(671\) −19.6272 + 33.9953i −0.757699 + 1.31237i
\(672\) 0 0
\(673\) 2.41106 + 4.17608i 0.0929395 + 0.160976i 0.908747 0.417348i \(-0.137040\pi\)
−0.815807 + 0.578324i \(0.803707\pi\)
\(674\) −7.03993 + 4.06451i −0.271168 + 0.156559i
\(675\) 0 0
\(676\) −13.5797 + 23.5208i −0.522297 + 0.904645i
\(677\) 11.5645 20.0303i 0.444460 0.769827i −0.553554 0.832813i \(-0.686729\pi\)
0.998014 + 0.0629856i \(0.0200622\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.82827 1.63290i −0.108459 0.0626189i
\(681\) 0 0
\(682\) 14.8482i 0.568567i
\(683\) −6.80041 3.92622i −0.260210 0.150233i 0.364220 0.931313i \(-0.381336\pi\)
−0.624431 + 0.781080i \(0.714669\pi\)
\(684\) 0 0
\(685\) 13.8076i 0.527562i
\(686\) 0 0
\(687\) 0 0
\(688\) −5.81766 −0.221796
\(689\) −31.3303 54.2656i −1.19359 2.06736i
\(690\) 0 0
\(691\) 14.8676 + 8.58379i 0.565589 + 0.326543i 0.755386 0.655281i \(-0.227450\pi\)
−0.189797 + 0.981823i \(0.560783\pi\)
\(692\) −21.6914 −0.824584
\(693\) 0 0
\(694\) −25.6171 −0.972412
\(695\) 22.9748 + 13.2645i 0.871485 + 0.503152i
\(696\) 0 0
\(697\) 0.461782 + 0.799830i 0.0174912 + 0.0302957i
\(698\) −10.5301 −0.398570
\(699\) 0 0
\(700\) 0 0
\(701\) 34.9404i 1.31968i −0.751406 0.659840i \(-0.770624\pi\)
0.751406 0.659840i \(-0.229376\pi\)
\(702\) 0 0
\(703\) 4.04570 + 2.33579i 0.152587 + 0.0880959i
\(704\) 3.41945i 0.128875i
\(705\) 0 0
\(706\) −11.1230 6.42186i −0.418619 0.241690i
\(707\) 0 0
\(708\) 0 0
\(709\) 12.1668 21.0735i 0.456933 0.791432i −0.541864 0.840466i \(-0.682281\pi\)
0.998797 + 0.0490345i \(0.0156144\pi\)
\(710\) −2.54079 + 4.40078i −0.0953542 + 0.165158i
\(711\) 0 0
\(712\) 3.51562 2.02974i 0.131753 0.0760678i
\(713\) 17.4866 + 30.2877i 0.654879 + 1.13428i
\(714\) 0 0
\(715\) 15.4921 26.8331i 0.579372 1.00350i
\(716\) 20.7912i 0.777002i
\(717\) 0 0
\(718\) −29.6621 −1.10698
\(719\) −8.76887 15.1881i −0.327024 0.566422i 0.654896 0.755719i \(-0.272712\pi\)
−0.981920 + 0.189297i \(0.939379\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 12.3875 7.15191i 0.461014 0.266167i
\(723\) 0 0
\(724\) 18.6456 10.7650i 0.692958 0.400079i
\(725\) −0.883344 + 0.509999i −0.0328066 + 0.0189409i
\(726\) 0 0
\(727\) −33.8627 + 19.5507i −1.25590 + 0.725094i −0.972275 0.233841i \(-0.924870\pi\)
−0.283625 + 0.958935i \(0.591537\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −0.165978 0.287482i −0.00614311 0.0106402i
\(731\) 13.2876 0.491461
\(732\) 0 0
\(733\) 23.4489i 0.866105i 0.901369 + 0.433053i \(0.142564\pi\)
−0.901369 + 0.433053i \(0.857436\pi\)
\(734\) −11.9989 + 20.7828i −0.442889 + 0.767107i
\(735\) 0 0
\(736\) 4.02706 + 6.97507i 0.148439 + 0.257104i
\(737\) 12.5965 7.27257i 0.463997 0.267889i
\(738\) 0 0
\(739\) 13.3662 23.1509i 0.491682 0.851618i −0.508272 0.861197i \(-0.669716\pi\)
0.999954 + 0.00957820i \(0.00304888\pi\)
\(740\) −1.54117 + 2.66939i −0.0566547 + 0.0981288i
\(741\) 0 0
\(742\) 0 0
\(743\) 11.0914 + 6.40360i 0.406903 + 0.234925i 0.689458 0.724326i \(-0.257849\pi\)
−0.282555 + 0.959251i \(0.591182\pi\)
\(744\) 0 0
\(745\) 9.30395i 0.340870i
\(746\) 10.2528 + 5.91948i 0.375383 + 0.216727i
\(747\) 0 0
\(748\) 7.81007i 0.285564i
\(749\) 0 0
\(750\) 0 0
\(751\) −10.2483 −0.373967 −0.186984 0.982363i \(-0.559871\pi\)
−0.186984 + 0.982363i \(0.559871\pi\)
\(752\) −2.75915 4.77898i −0.100616 0.174272i
\(753\) 0 0
\(754\) 1.89404 + 1.09352i 0.0689768 + 0.0398238i
\(755\) 8.23452 0.299685
\(756\) 0 0
\(757\) 11.0844 0.402868 0.201434 0.979502i \(-0.435440\pi\)
0.201434 + 0.979502i \(0.435440\pi\)
\(758\) 11.3778 + 6.56897i 0.413260 + 0.238596i
\(759\) 0 0
\(760\) −1.54929 2.68345i −0.0561987 0.0973390i
\(761\) −16.2999 −0.590870 −0.295435 0.955363i \(-0.595465\pi\)
−0.295435 + 0.955363i \(0.595465\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 7.36938i 0.266615i
\(765\) 0 0
\(766\) 15.2005 + 8.77603i 0.549217 + 0.317091i
\(767\) 69.8962i 2.52380i
\(768\) 0 0
\(769\) 41.4043 + 23.9048i 1.49308 + 0.862029i 0.999968 0.00793771i \(-0.00252668\pi\)
0.493110 + 0.869967i \(0.335860\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.41279 + 2.44703i −0.0508476 + 0.0880706i
\(773\) 6.25441 10.8330i 0.224956 0.389635i −0.731350 0.682002i \(-0.761110\pi\)
0.956306 + 0.292367i \(0.0944429\pi\)
\(774\) 0 0
\(775\) −11.1143 + 6.41686i −0.399239 + 0.230501i
\(776\) 5.30423 + 9.18719i 0.190411 + 0.329801i
\(777\) 0 0
\(778\) 10.9205 18.9148i 0.391518 0.678130i
\(779\) 0.876275i 0.0313958i
\(780\) 0 0
\(781\) 12.1525 0.434849
\(782\) −9.19786 15.9312i −0.328915 0.569697i
\(783\) 0 0
\(784\) 0 0
\(785\) −9.86123 + 5.69338i −0.351962 + 0.203206i
\(786\) 0 0
\(787\) −0.226048 + 0.130509i −0.00805773 + 0.00465213i −0.504023 0.863690i \(-0.668147\pi\)
0.495966 + 0.868342i \(0.334814\pi\)
\(788\) −22.5931 + 13.0441i −0.804846 + 0.464678i
\(789\) 0 0
\(790\) 18.0319 10.4107i 0.641548 0.370398i
\(791\) 0 0
\(792\) 0 0
\(793\) −36.3744 63.0024i −1.29169 2.23728i
\(794\) 38.9869 1.38359
\(795\) 0 0
\(796\) 15.4165i 0.546424i
\(797\) −1.85220 + 3.20810i −0.0656083 + 0.113637i −0.896964 0.442104i \(-0.854232\pi\)
0.831355 + 0.555741i \(0.187565\pi\)
\(798\) 0 0
\(799\) 6.30194 + 10.9153i 0.222946 + 0.386155i
\(800\) −2.55956 + 1.47776i −0.0904942 + 0.0522468i
\(801\) 0 0
\(802\) 11.5989 20.0899i 0.409573 0.709400i
\(803\) −0.396931 + 0.687504i −0.0140074 + 0.0242615i
\(804\) 0 0
\(805\) 0 0
\(806\) 23.8310 + 13.7588i 0.839411 + 0.484634i
\(807\) 0 0
\(808\) 8.04886i 0.283158i
\(809\) 5.94276 + 3.43105i 0.208936 + 0.120629i 0.600817 0.799387i \(-0.294842\pi\)
−0.391881 + 0.920016i \(0.628175\pi\)
\(810\) 0 0
\(811\) 23.1945i 0.814470i 0.913323 + 0.407235i \(0.133507\pi\)
−0.913323 + 0.407235i \(0.866493\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 7.37134 0.258365
\(815\) 8.13951 + 14.0980i 0.285114 + 0.493833i
\(816\) 0 0
\(817\) 10.9182 + 6.30363i 0.381980 + 0.220536i
\(818\) −24.6187 −0.860774
\(819\) 0 0
\(820\) −0.578174 −0.0201907
\(821\) 3.28550 + 1.89688i 0.114665 + 0.0662017i 0.556236 0.831025i \(-0.312245\pi\)
−0.441571 + 0.897226i \(0.645579\pi\)
\(822\) 0 0
\(823\) 7.45395 + 12.9106i 0.259828 + 0.450036i 0.966196 0.257810i \(-0.0830007\pi\)
−0.706368 + 0.707845i \(0.749667\pi\)
\(824\) −2.81391 −0.0980272
\(825\) 0 0
\(826\) 0 0
\(827\) 21.9819i 0.764384i −0.924083 0.382192i \(-0.875169\pi\)
0.924083 0.382192i \(-0.124831\pi\)
\(828\) 0 0
\(829\) −12.2406 7.06713i −0.425135 0.245452i 0.272137 0.962259i \(-0.412270\pi\)
−0.697272 + 0.716807i \(0.745603\pi\)
\(830\) 2.32100i 0.0805631i
\(831\) 0 0
\(832\) 5.48813 + 3.16857i 0.190267 + 0.109851i
\(833\) 0 0
\(834\) 0 0
\(835\) 8.09893 14.0278i 0.280275 0.485451i
\(836\) −3.70508 + 6.41739i −0.128143 + 0.221950i
\(837\) 0 0
\(838\) 14.7916 8.53996i 0.510969 0.295008i
\(839\) −8.92488 15.4583i −0.308121 0.533681i 0.669830 0.742514i \(-0.266367\pi\)
−0.977951 + 0.208833i \(0.933034\pi\)
\(840\) 0 0
\(841\) −14.4404 + 25.0116i −0.497946 + 0.862469i
\(842\) 14.7130i 0.507045i
\(843\) 0 0
\(844\) 8.84930 0.304605
\(845\) 19.4170 + 33.6312i 0.667964 + 1.15695i
\(846\) 0 0
\(847\) 0 0
\(848\) −8.56310 + 4.94391i −0.294058 + 0.169775i
\(849\) 0 0
\(850\) 5.84608 3.37524i 0.200519 0.115770i
\(851\) −15.0362 + 8.68118i −0.515436 + 0.297587i
\(852\) 0 0
\(853\) 35.2392 20.3454i 1.20657 0.696612i 0.244559 0.969634i \(-0.421357\pi\)
0.962008 + 0.273022i \(0.0880233\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 7.91078 + 13.7019i 0.270385 + 0.468320i
\(857\) 5.45792 0.186439 0.0932194 0.995646i \(-0.470284\pi\)
0.0932194 + 0.995646i \(0.470284\pi\)
\(858\) 0 0
\(859\) 44.8973i 1.53188i 0.642914 + 0.765938i \(0.277725\pi\)
−0.642914 + 0.765938i \(0.722275\pi\)
\(860\) −4.15919 + 7.20393i −0.141827 + 0.245652i
\(861\) 0 0
\(862\) 4.80521 + 8.32286i 0.163666 + 0.283478i
\(863\) 19.6689 11.3559i 0.669539 0.386558i −0.126363 0.991984i \(-0.540330\pi\)
0.795902 + 0.605426i \(0.206997\pi\)
\(864\) 0 0
\(865\) −15.5077 + 26.8602i −0.527279 + 0.913274i
\(866\) −4.52157 + 7.83159i −0.153649 + 0.266128i
\(867\) 0 0
\(868\) 0 0
\(869\) −43.1229 24.8970i −1.46284 0.844573i
\(870\) 0 0
\(871\) 26.9560i 0.913371i
\(872\) −8.84514 5.10675i −0.299534 0.172936i
\(873\) 0 0
\(874\) 17.4538i 0.590384i
\(875\) 0 0
\(876\) 0 0
\(877\) −30.4891 −1.02954 −0.514771 0.857327i \(-0.672123\pi\)
−0.514771 + 0.857327i \(0.672123\pi\)
\(878\) 0.456897 + 0.791370i 0.0154195 + 0.0267074i
\(879\) 0 0
\(880\) −4.23425 2.44465i −0.142737 0.0824091i
\(881\) −29.3810 −0.989871 −0.494935 0.868930i \(-0.664808\pi\)
−0.494935 + 0.868930i \(0.664808\pi\)
\(882\) 0 0
\(883\) 14.1682 0.476798 0.238399 0.971167i \(-0.423377\pi\)
0.238399 + 0.971167i \(0.423377\pi\)
\(884\) −12.5350 7.23707i −0.421597 0.243409i
\(885\) 0 0
\(886\) −14.6808 25.4279i −0.493212 0.854268i
\(887\) −32.7073 −1.09821 −0.549103 0.835755i \(-0.685030\pi\)
−0.549103 + 0.835755i \(0.685030\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 5.80446i 0.194566i
\(891\) 0 0
\(892\) −6.88961 3.97772i −0.230681 0.133184i
\(893\) 11.9585i 0.400176i
\(894\) 0 0
\(895\) −25.7454 14.8641i −0.860575 0.496853i
\(896\) 0 0
\(897\) 0 0
\(898\) 1.68368 2.91622i 0.0561851 0.0973154i
\(899\) 0.749293 1.29781i 0.0249903 0.0432845i
\(900\) 0 0
\(901\) 19.5583 11.2920i 0.651580 0.376190i
\(902\) 0.691343 + 1.19744i 0.0230192 + 0.0398704i
\(903\) 0 0
\(904\) −4.20778 + 7.28808i −0.139949 + 0.242398i
\(905\) 30.7848i 1.02332i
\(906\) 0 0
\(907\) 56.6934 1.88248 0.941238 0.337745i \(-0.109664\pi\)
0.941238 + 0.337745i \(0.109664\pi\)
\(908\) 4.61984 + 8.00180i 0.153315 + 0.265549i
\(909\) 0 0
\(910\) 0 0
\(911\) −0.621795 + 0.358994i −0.0206010 + 0.0118940i −0.510265 0.860017i \(-0.670453\pi\)
0.489664 + 0.871911i \(0.337119\pi\)
\(912\) 0 0
\(913\) 4.80697 2.77530i 0.159087 0.0918492i
\(914\) −13.0890 + 7.55693i −0.432945 + 0.249961i
\(915\) 0 0
\(916\) 7.31319 4.22227i 0.241635 0.139508i
\(917\) 0 0
\(918\) 0 0
\(919\) 18.9720 + 32.8605i 0.625829 + 1.08397i 0.988380 + 0.152004i \(0.0485727\pi\)
−0.362550 + 0.931964i \(0.618094\pi\)
\(920\) 11.5162 0.379677
\(921\) 0 0
\(922\) 10.3889i 0.342140i
\(923\) −11.2609 + 19.5044i −0.370656 + 0.641996i
\(924\) 0 0
\(925\) −3.18563 5.51768i −0.104743 0.181420i
\(926\) 4.60244 2.65722i 0.151246 0.0873217i
\(927\) 0 0
\(928\) 0.172558 0.298879i 0.00566448 0.00981117i
\(929\) 21.4350 37.1265i 0.703259 1.21808i −0.264057 0.964507i \(-0.585061\pi\)
0.967316 0.253574i \(-0.0816060\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 14.4176 + 8.32399i 0.472263 + 0.272661i
\(933\) 0 0
\(934\) 19.4999i 0.638055i
\(935\) 9.67111 + 5.58362i 0.316279 + 0.182604i
\(936\) 0 0
\(937\) 8.64637i 0.282464i −0.989976 0.141232i \(-0.954894\pi\)
0.989976 0.141232i \(-0.0451064\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −7.89034 −0.257354
\(941\) 5.04603 + 8.73997i 0.164496 + 0.284915i 0.936476 0.350731i \(-0.114067\pi\)
−0.771980 + 0.635646i \(0.780734\pi\)
\(942\) 0 0
\(943\) −2.82044 1.62838i −0.0918460 0.0530273i
\(944\) −11.0296 −0.358983
\(945\) 0 0
\(946\) 19.8932 0.646783
\(947\) −50.4627 29.1346i −1.63982 0.946749i −0.980895 0.194537i \(-0.937680\pi\)
−0.658922 0.752212i \(-0.728987\pi\)
\(948\) 0 0
\(949\) −0.735619 1.27413i −0.0238792 0.0413600i
\(950\) 6.40483 0.207800
\(951\) 0 0
\(952\) 0 0
\(953\) 46.9356i 1.52039i 0.649694 + 0.760196i \(0.274897\pi\)
−0.649694 + 0.760196i \(0.725103\pi\)
\(954\) 0 0
\(955\) 9.12541 + 5.26856i 0.295291 + 0.170487i
\(956\) 27.2885i 0.882572i
\(957\) 0 0
\(958\) 24.0776 + 13.9012i 0.777912 + 0.449128i
\(959\) 0 0
\(960\) 0 0
\(961\) −6.07230 + 10.5175i −0.195881 + 0.339275i
\(962\) −6.83054 + 11.8308i −0.220225 + 0.381441i
\(963\) 0 0
\(964\) −21.9018 + 12.6450i −0.705410 + 0.407269i
\(965\) 2.02008 + 3.49889i 0.0650288 + 0.112633i
\(966\) 0 0
\(967\) 6.43145 11.1396i 0.206822 0.358226i −0.743890 0.668302i \(-0.767021\pi\)
0.950712 + 0.310077i \(0.100355\pi\)
\(968\) 0.692610i 0.0222613i
\(969\) 0 0
\(970\) 15.1685 0.487031
\(971\) −17.3742 30.0930i −0.557565 0.965731i −0.997699 0.0677990i \(-0.978402\pi\)
0.440134 0.897932i \(-0.354931\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −6.47506 + 3.73838i −0.207474 + 0.119785i
\(975\) 0 0
\(976\) −9.94175 + 5.73987i −0.318228 + 0.183729i
\(977\) 17.6381 10.1834i 0.564293 0.325795i −0.190574 0.981673i \(-0.561035\pi\)
0.754867 + 0.655878i \(0.227701\pi\)
\(978\) 0 0
\(979\) −12.0215 + 6.94060i −0.384208 + 0.221822i
\(980\) 0 0
\(981\) 0 0
\(982\) 11.0543 + 19.1466i 0.352756 + 0.610992i
\(983\) −29.3364 −0.935686 −0.467843 0.883811i \(-0.654969\pi\)
−0.467843 + 0.883811i \(0.654969\pi\)
\(984\) 0 0
\(985\) 37.3023i 1.18855i
\(986\) −0.394124 + 0.682643i −0.0125515 + 0.0217398i
\(987\) 0 0
\(988\) −6.86651 11.8931i −0.218453 0.378371i
\(989\) −40.5786 + 23.4280i −1.29032 + 0.744968i
\(990\) 0 0
\(991\) −14.8114 + 25.6540i −0.470498 + 0.814927i −0.999431 0.0337371i \(-0.989259\pi\)
0.528933 + 0.848664i \(0.322592\pi\)
\(992\) 2.17114 3.76052i 0.0689338 0.119397i
\(993\) 0 0
\(994\) 0 0
\(995\) −19.0901 11.0217i −0.605196 0.349410i
\(996\) 0 0
\(997\) 27.0213i 0.855772i −0.903833 0.427886i \(-0.859258\pi\)
0.903833 0.427886i \(-0.140742\pi\)
\(998\) −28.4959 16.4521i −0.902022 0.520783i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.t.b.2285.3 16
3.2 odd 2 882.2.t.a.815.7 16
7.2 even 3 378.2.l.a.341.6 16
7.3 odd 6 2646.2.m.a.881.7 16
7.4 even 3 2646.2.m.b.881.6 16
7.5 odd 6 2646.2.l.a.1097.7 16
7.6 odd 2 378.2.t.a.17.2 16
9.2 odd 6 2646.2.l.a.521.3 16
9.7 even 3 882.2.l.b.227.6 16
21.2 odd 6 126.2.l.a.5.3 16
21.5 even 6 882.2.l.b.509.2 16
21.11 odd 6 882.2.m.b.293.1 16
21.17 even 6 882.2.m.a.293.4 16
21.20 even 2 126.2.t.a.59.6 yes 16
28.23 odd 6 3024.2.ca.c.2609.3 16
28.27 even 2 3024.2.df.c.17.3 16
63.2 odd 6 378.2.t.a.89.2 16
63.11 odd 6 2646.2.m.a.1763.7 16
63.13 odd 6 1134.2.k.a.647.7 16
63.16 even 3 126.2.t.a.47.6 yes 16
63.20 even 6 378.2.l.a.143.2 16
63.23 odd 6 1134.2.k.a.971.7 16
63.25 even 3 882.2.m.a.587.4 16
63.34 odd 6 126.2.l.a.101.7 yes 16
63.38 even 6 2646.2.m.b.1763.6 16
63.41 even 6 1134.2.k.b.647.2 16
63.47 even 6 inner 2646.2.t.b.1979.3 16
63.52 odd 6 882.2.m.b.587.1 16
63.58 even 3 1134.2.k.b.971.2 16
63.61 odd 6 882.2.t.a.803.7 16
84.23 even 6 1008.2.ca.c.257.3 16
84.83 odd 2 1008.2.df.c.689.6 16
252.79 odd 6 1008.2.df.c.929.6 16
252.83 odd 6 3024.2.ca.c.2033.3 16
252.191 even 6 3024.2.df.c.1601.3 16
252.223 even 6 1008.2.ca.c.353.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.l.a.5.3 16 21.2 odd 6
126.2.l.a.101.7 yes 16 63.34 odd 6
126.2.t.a.47.6 yes 16 63.16 even 3
126.2.t.a.59.6 yes 16 21.20 even 2
378.2.l.a.143.2 16 63.20 even 6
378.2.l.a.341.6 16 7.2 even 3
378.2.t.a.17.2 16 7.6 odd 2
378.2.t.a.89.2 16 63.2 odd 6
882.2.l.b.227.6 16 9.7 even 3
882.2.l.b.509.2 16 21.5 even 6
882.2.m.a.293.4 16 21.17 even 6
882.2.m.a.587.4 16 63.25 even 3
882.2.m.b.293.1 16 21.11 odd 6
882.2.m.b.587.1 16 63.52 odd 6
882.2.t.a.803.7 16 63.61 odd 6
882.2.t.a.815.7 16 3.2 odd 2
1008.2.ca.c.257.3 16 84.23 even 6
1008.2.ca.c.353.3 16 252.223 even 6
1008.2.df.c.689.6 16 84.83 odd 2
1008.2.df.c.929.6 16 252.79 odd 6
1134.2.k.a.647.7 16 63.13 odd 6
1134.2.k.a.971.7 16 63.23 odd 6
1134.2.k.b.647.2 16 63.41 even 6
1134.2.k.b.971.2 16 63.58 even 3
2646.2.l.a.521.3 16 9.2 odd 6
2646.2.l.a.1097.7 16 7.5 odd 6
2646.2.m.a.881.7 16 7.3 odd 6
2646.2.m.a.1763.7 16 63.11 odd 6
2646.2.m.b.881.6 16 7.4 even 3
2646.2.m.b.1763.6 16 63.38 even 6
2646.2.t.b.1979.3 16 63.47 even 6 inner
2646.2.t.b.2285.3 16 1.1 even 1 trivial
3024.2.ca.c.2033.3 16 252.83 odd 6
3024.2.ca.c.2609.3 16 28.23 odd 6
3024.2.df.c.17.3 16 28.27 even 2
3024.2.df.c.1601.3 16 252.191 even 6