Properties

Label 2640.2.t.c.1231.8
Level $2640$
Weight $2$
Character 2640.1231
Analytic conductor $21.081$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2640,2,Mod(1231,2640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2640.1231"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2640, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.t (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,8,0,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0, 0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(33)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.0805061336\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1169858560000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 73x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1231.8
Root \(2.06532 - 2.06532i\) of defining polynomial
Character \(\chi\) \(=\) 2640.1231
Dual form 2640.2.t.c.1231.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +1.00000 q^{5} +4.13065 q^{7} -1.00000 q^{9} +(3.16228 + 1.00000i) q^{11} -0.968371i q^{13} +1.00000i q^{15} +4.13065i q^{17} -5.09902 q^{19} +4.13065i q^{21} +9.06226i q^{23} +1.00000 q^{25} -1.00000i q^{27} +3.16228i q^{29} +(-1.00000 + 3.16228i) q^{33} +4.13065 q^{35} -7.06226 q^{37} +0.968371 q^{39} +1.22554i q^{41} +4.13065 q^{43} -1.00000 q^{45} -8.00000i q^{47} +10.0623 q^{49} -4.13065 q^{51} +13.0623 q^{53} +(3.16228 + 1.00000i) q^{55} -5.09902i q^{57} -13.0623i q^{59} +14.5859i q^{61} -4.13065 q^{63} -0.968371i q^{65} -11.0623i q^{67} -9.06226 q^{69} -7.06226i q^{71} +15.5542i q^{73} +1.00000i q^{75} +(13.0623 + 4.13065i) q^{77} -3.16228 q^{79} +1.00000 q^{81} +7.29293 q^{83} +4.13065i q^{85} -3.16228 q^{87} -2.00000 q^{89} -4.00000i q^{91} -5.09902 q^{95} -7.06226 q^{97} +(-3.16228 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} - 8 q^{9} + 8 q^{25} - 8 q^{33} + 8 q^{37} - 8 q^{45} + 16 q^{49} + 40 q^{53} - 8 q^{69} + 40 q^{77} + 8 q^{81} - 16 q^{89} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.13065 1.56124 0.780619 0.625007i \(-0.214904\pi\)
0.780619 + 0.625007i \(0.214904\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.16228 + 1.00000i 0.953463 + 0.301511i
\(12\) 0 0
\(13\) 0.968371i 0.268578i −0.990942 0.134289i \(-0.957125\pi\)
0.990942 0.134289i \(-0.0428750\pi\)
\(14\) 0 0
\(15\) 1.00000i 0.258199i
\(16\) 0 0
\(17\) 4.13065i 1.00183i 0.865497 + 0.500915i \(0.167003\pi\)
−0.865497 + 0.500915i \(0.832997\pi\)
\(18\) 0 0
\(19\) −5.09902 −1.16980 −0.584898 0.811107i \(-0.698865\pi\)
−0.584898 + 0.811107i \(0.698865\pi\)
\(20\) 0 0
\(21\) 4.13065i 0.901381i
\(22\) 0 0
\(23\) 9.06226i 1.88961i 0.327631 + 0.944806i \(0.393750\pi\)
−0.327631 + 0.944806i \(0.606250\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 3.16228i 0.587220i 0.955925 + 0.293610i \(0.0948567\pi\)
−0.955925 + 0.293610i \(0.905143\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −1.00000 + 3.16228i −0.174078 + 0.550482i
\(34\) 0 0
\(35\) 4.13065 0.698207
\(36\) 0 0
\(37\) −7.06226 −1.16103 −0.580514 0.814250i \(-0.697148\pi\)
−0.580514 + 0.814250i \(0.697148\pi\)
\(38\) 0 0
\(39\) 0.968371 0.155063
\(40\) 0 0
\(41\) 1.22554i 0.191397i 0.995410 + 0.0956983i \(0.0305084\pi\)
−0.995410 + 0.0956983i \(0.969492\pi\)
\(42\) 0 0
\(43\) 4.13065 0.629918 0.314959 0.949105i \(-0.398009\pi\)
0.314959 + 0.949105i \(0.398009\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 10.0623 1.43747
\(50\) 0 0
\(51\) −4.13065 −0.578406
\(52\) 0 0
\(53\) 13.0623 1.79424 0.897120 0.441788i \(-0.145656\pi\)
0.897120 + 0.441788i \(0.145656\pi\)
\(54\) 0 0
\(55\) 3.16228 + 1.00000i 0.426401 + 0.134840i
\(56\) 0 0
\(57\) 5.09902i 0.675382i
\(58\) 0 0
\(59\) 13.0623i 1.70056i −0.526330 0.850281i \(-0.676432\pi\)
0.526330 0.850281i \(-0.323568\pi\)
\(60\) 0 0
\(61\) 14.5859i 1.86753i 0.357891 + 0.933764i \(0.383496\pi\)
−0.357891 + 0.933764i \(0.616504\pi\)
\(62\) 0 0
\(63\) −4.13065 −0.520413
\(64\) 0 0
\(65\) 0.968371i 0.120112i
\(66\) 0 0
\(67\) 11.0623i 1.35147i −0.737145 0.675735i \(-0.763826\pi\)
0.737145 0.675735i \(-0.236174\pi\)
\(68\) 0 0
\(69\) −9.06226 −1.09097
\(70\) 0 0
\(71\) 7.06226i 0.838136i −0.907955 0.419068i \(-0.862357\pi\)
0.907955 0.419068i \(-0.137643\pi\)
\(72\) 0 0
\(73\) 15.5542i 1.82048i 0.414077 + 0.910242i \(0.364105\pi\)
−0.414077 + 0.910242i \(0.635895\pi\)
\(74\) 0 0
\(75\) 1.00000i 0.115470i
\(76\) 0 0
\(77\) 13.0623 + 4.13065i 1.48858 + 0.470731i
\(78\) 0 0
\(79\) −3.16228 −0.355784 −0.177892 0.984050i \(-0.556928\pi\)
−0.177892 + 0.984050i \(0.556928\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.29293 0.800503 0.400251 0.916405i \(-0.368923\pi\)
0.400251 + 0.916405i \(0.368923\pi\)
\(84\) 0 0
\(85\) 4.13065i 0.448032i
\(86\) 0 0
\(87\) −3.16228 −0.339032
\(88\) 0 0
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 4.00000i 0.419314i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.09902 −0.523148
\(96\) 0 0
\(97\) −7.06226 −0.717064 −0.358532 0.933518i \(-0.616723\pi\)
−0.358532 + 0.933518i \(0.616723\pi\)
\(98\) 0 0
\(99\) −3.16228 1.00000i −0.317821 0.100504i
\(100\) 0 0
\(101\) 7.03576i 0.700084i −0.936734 0.350042i \(-0.886167\pi\)
0.936734 0.350042i \(-0.113833\pi\)
\(102\) 0 0
\(103\) 11.0623i 1.09000i 0.838437 + 0.544998i \(0.183470\pi\)
−0.838437 + 0.544998i \(0.816530\pi\)
\(104\) 0 0
\(105\) 4.13065i 0.403110i
\(106\) 0 0
\(107\) 3.41944 0.330570 0.165285 0.986246i \(-0.447146\pi\)
0.165285 + 0.986246i \(0.447146\pi\)
\(108\) 0 0
\(109\) 10.1980i 0.976795i −0.872621 0.488397i \(-0.837582\pi\)
0.872621 0.488397i \(-0.162418\pi\)
\(110\) 0 0
\(111\) 7.06226i 0.670320i
\(112\) 0 0
\(113\) 2.93774 0.276360 0.138180 0.990407i \(-0.455875\pi\)
0.138180 + 0.990407i \(0.455875\pi\)
\(114\) 0 0
\(115\) 9.06226i 0.845060i
\(116\) 0 0
\(117\) 0.968371i 0.0895259i
\(118\) 0 0
\(119\) 17.0623i 1.56409i
\(120\) 0 0
\(121\) 9.00000 + 6.32456i 0.818182 + 0.574960i
\(122\) 0 0
\(123\) −1.22554 −0.110503
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −14.3287 −1.27147 −0.635733 0.771909i \(-0.719302\pi\)
−0.635733 + 0.771909i \(0.719302\pi\)
\(128\) 0 0
\(129\) 4.13065i 0.363683i
\(130\) 0 0
\(131\) 4.38781 0.383365 0.191683 0.981457i \(-0.438606\pi\)
0.191683 + 0.981457i \(0.438606\pi\)
\(132\) 0 0
\(133\) −21.0623 −1.82633
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 8.97250 0.761038 0.380519 0.924773i \(-0.375745\pi\)
0.380519 + 0.924773i \(0.375745\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) 0.968371 3.06226i 0.0809792 0.256079i
\(144\) 0 0
\(145\) 3.16228i 0.262613i
\(146\) 0 0
\(147\) 10.0623i 0.829921i
\(148\) 0 0
\(149\) 15.2971i 1.25318i 0.779348 + 0.626592i \(0.215551\pi\)
−0.779348 + 0.626592i \(0.784449\pi\)
\(150\) 0 0
\(151\) −7.55009 −0.614418 −0.307209 0.951642i \(-0.599395\pi\)
−0.307209 + 0.951642i \(0.599395\pi\)
\(152\) 0 0
\(153\) 4.13065i 0.333943i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.1245 0.967642 0.483821 0.875167i \(-0.339249\pi\)
0.483821 + 0.875167i \(0.339249\pi\)
\(158\) 0 0
\(159\) 13.0623i 1.03590i
\(160\) 0 0
\(161\) 37.4330i 2.95013i
\(162\) 0 0
\(163\) 0.937742i 0.0734496i 0.999325 + 0.0367248i \(0.0116925\pi\)
−0.999325 + 0.0367248i \(0.988307\pi\)
\(164\) 0 0
\(165\) −1.00000 + 3.16228i −0.0778499 + 0.246183i
\(166\) 0 0
\(167\) 17.4910 1.35349 0.676746 0.736217i \(-0.263390\pi\)
0.676746 + 0.736217i \(0.263390\pi\)
\(168\) 0 0
\(169\) 12.0623 0.927866
\(170\) 0 0
\(171\) 5.09902 0.389932
\(172\) 0 0
\(173\) 6.06739i 0.461295i −0.973037 0.230648i \(-0.925916\pi\)
0.973037 0.230648i \(-0.0740844\pi\)
\(174\) 0 0
\(175\) 4.13065 0.312248
\(176\) 0 0
\(177\) 13.0623 0.981819
\(178\) 0 0
\(179\) 12.0000i 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 0 0
\(181\) −13.0623 −0.970910 −0.485455 0.874262i \(-0.661346\pi\)
−0.485455 + 0.874262i \(0.661346\pi\)
\(182\) 0 0
\(183\) −14.5859 −1.07822
\(184\) 0 0
\(185\) −7.06226 −0.519228
\(186\) 0 0
\(187\) −4.13065 + 13.0623i −0.302063 + 0.955207i
\(188\) 0 0
\(189\) 4.13065i 0.300460i
\(190\) 0 0
\(191\) 8.00000i 0.578860i −0.957199 0.289430i \(-0.906534\pi\)
0.957199 0.289430i \(-0.0934657\pi\)
\(192\) 0 0
\(193\) 13.1032i 0.943186i −0.881816 0.471593i \(-0.843679\pi\)
0.881816 0.471593i \(-0.156321\pi\)
\(194\) 0 0
\(195\) 0.968371 0.0693465
\(196\) 0 0
\(197\) 18.7165i 1.33350i −0.745283 0.666748i \(-0.767686\pi\)
0.745283 0.666748i \(-0.232314\pi\)
\(198\) 0 0
\(199\) 12.0000i 0.850657i 0.905039 + 0.425329i \(0.139842\pi\)
−0.905039 + 0.425329i \(0.860158\pi\)
\(200\) 0 0
\(201\) 11.0623 0.780272
\(202\) 0 0
\(203\) 13.0623i 0.916791i
\(204\) 0 0
\(205\) 1.22554i 0.0855951i
\(206\) 0 0
\(207\) 9.06226i 0.629870i
\(208\) 0 0
\(209\) −16.1245 5.09902i −1.11536 0.352707i
\(210\) 0 0
\(211\) −26.0094 −1.79056 −0.895281 0.445501i \(-0.853026\pi\)
−0.895281 + 0.445501i \(0.853026\pi\)
\(212\) 0 0
\(213\) 7.06226 0.483898
\(214\) 0 0
\(215\) 4.13065 0.281708
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −15.5542 −1.05106
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 19.9420 1.32360 0.661800 0.749681i \(-0.269793\pi\)
0.661800 + 0.749681i \(0.269793\pi\)
\(228\) 0 0
\(229\) 26.1245 1.72636 0.863178 0.504899i \(-0.168470\pi\)
0.863178 + 0.504899i \(0.168470\pi\)
\(230\) 0 0
\(231\) −4.13065 + 13.0623i −0.271777 + 0.859433i
\(232\) 0 0
\(233\) 20.6532i 1.35304i 0.736425 + 0.676519i \(0.236513\pi\)
−0.736425 + 0.676519i \(0.763487\pi\)
\(234\) 0 0
\(235\) 8.00000i 0.521862i
\(236\) 0 0
\(237\) 3.16228i 0.205412i
\(238\) 0 0
\(239\) 8.26130 0.534379 0.267189 0.963644i \(-0.413905\pi\)
0.267189 + 0.963644i \(0.413905\pi\)
\(240\) 0 0
\(241\) 17.0369i 1.09744i 0.836005 + 0.548722i \(0.184886\pi\)
−0.836005 + 0.548722i \(0.815114\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 10.0623 0.642854
\(246\) 0 0
\(247\) 4.93774i 0.314181i
\(248\) 0 0
\(249\) 7.29293i 0.462170i
\(250\) 0 0
\(251\) 3.06226i 0.193288i 0.995319 + 0.0966440i \(0.0308108\pi\)
−0.995319 + 0.0966440i \(0.969189\pi\)
\(252\) 0 0
\(253\) −9.06226 + 28.6574i −0.569739 + 1.80167i
\(254\) 0 0
\(255\) −4.13065 −0.258671
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) −29.1717 −1.81264
\(260\) 0 0
\(261\) 3.16228i 0.195740i
\(262\) 0 0
\(263\) −2.90511 −0.179137 −0.0895685 0.995981i \(-0.528549\pi\)
−0.0895685 + 0.995981i \(0.528549\pi\)
\(264\) 0 0
\(265\) 13.0623 0.802408
\(266\) 0 0
\(267\) 2.00000i 0.122398i
\(268\) 0 0
\(269\) −24.1245 −1.47090 −0.735449 0.677580i \(-0.763029\pi\)
−0.735449 + 0.677580i \(0.763029\pi\)
\(270\) 0 0
\(271\) 7.03576 0.427392 0.213696 0.976900i \(-0.431450\pi\)
0.213696 + 0.976900i \(0.431450\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 0 0
\(275\) 3.16228 + 1.00000i 0.190693 + 0.0603023i
\(276\) 0 0
\(277\) 26.2666i 1.57821i −0.614261 0.789103i \(-0.710546\pi\)
0.614261 0.789103i \(-0.289454\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.1359i 1.32052i 0.751037 + 0.660260i \(0.229554\pi\)
−0.751037 + 0.660260i \(0.770446\pi\)
\(282\) 0 0
\(283\) −20.6532 −1.22771 −0.613854 0.789420i \(-0.710382\pi\)
−0.613854 + 0.789420i \(0.710382\pi\)
\(284\) 0 0
\(285\) 5.09902i 0.302040i
\(286\) 0 0
\(287\) 5.06226i 0.298816i
\(288\) 0 0
\(289\) −0.0622577 −0.00366222
\(290\) 0 0
\(291\) 7.06226i 0.413997i
\(292\) 0 0
\(293\) 14.8430i 0.867138i −0.901120 0.433569i \(-0.857254\pi\)
0.901120 0.433569i \(-0.142746\pi\)
\(294\) 0 0
\(295\) 13.0623i 0.760514i
\(296\) 0 0
\(297\) 1.00000 3.16228i 0.0580259 0.183494i
\(298\) 0 0
\(299\) 8.77563 0.507508
\(300\) 0 0
\(301\) 17.0623 0.983452
\(302\) 0 0
\(303\) 7.03576 0.404194
\(304\) 0 0
\(305\) 14.5859i 0.835183i
\(306\) 0 0
\(307\) 18.2022 1.03885 0.519426 0.854515i \(-0.326146\pi\)
0.519426 + 0.854515i \(0.326146\pi\)
\(308\) 0 0
\(309\) −11.0623 −0.629310
\(310\) 0 0
\(311\) 1.06226i 0.0602351i 0.999546 + 0.0301176i \(0.00958817\pi\)
−0.999546 + 0.0301176i \(0.990412\pi\)
\(312\) 0 0
\(313\) −11.0623 −0.625276 −0.312638 0.949872i \(-0.601213\pi\)
−0.312638 + 0.949872i \(0.601213\pi\)
\(314\) 0 0
\(315\) −4.13065 −0.232736
\(316\) 0 0
\(317\) −31.1868 −1.75162 −0.875812 0.482653i \(-0.839673\pi\)
−0.875812 + 0.482653i \(0.839673\pi\)
\(318\) 0 0
\(319\) −3.16228 + 10.0000i −0.177054 + 0.559893i
\(320\) 0 0
\(321\) 3.41944i 0.190855i
\(322\) 0 0
\(323\) 21.0623i 1.17194i
\(324\) 0 0
\(325\) 0.968371i 0.0537156i
\(326\) 0 0
\(327\) 10.1980 0.563953
\(328\) 0 0
\(329\) 33.0452i 1.82184i
\(330\) 0 0
\(331\) 22.1245i 1.21607i 0.793909 + 0.608037i \(0.208043\pi\)
−0.793909 + 0.608037i \(0.791957\pi\)
\(332\) 0 0
\(333\) 7.06226 0.387009
\(334\) 0 0
\(335\) 11.0623i 0.604396i
\(336\) 0 0
\(337\) 2.90511i 0.158252i 0.996865 + 0.0791258i \(0.0252129\pi\)
−0.996865 + 0.0791258i \(0.974787\pi\)
\(338\) 0 0
\(339\) 2.93774i 0.159556i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 12.6491 0.682988
\(344\) 0 0
\(345\) −9.06226 −0.487896
\(346\) 0 0
\(347\) 34.5279 1.85355 0.926777 0.375612i \(-0.122567\pi\)
0.926777 + 0.375612i \(0.122567\pi\)
\(348\) 0 0
\(349\) 5.81023i 0.311014i 0.987835 + 0.155507i \(0.0497012\pi\)
−0.987835 + 0.155507i \(0.950299\pi\)
\(350\) 0 0
\(351\) −0.968371 −0.0516878
\(352\) 0 0
\(353\) 9.06226 0.482335 0.241168 0.970483i \(-0.422470\pi\)
0.241168 + 0.970483i \(0.422470\pi\)
\(354\) 0 0
\(355\) 7.06226i 0.374826i
\(356\) 0 0
\(357\) −17.0623 −0.903030
\(358\) 0 0
\(359\) −18.4593 −0.974247 −0.487123 0.873333i \(-0.661954\pi\)
−0.487123 + 0.873333i \(0.661954\pi\)
\(360\) 0 0
\(361\) 7.00000 0.368421
\(362\) 0 0
\(363\) −6.32456 + 9.00000i −0.331953 + 0.472377i
\(364\) 0 0
\(365\) 15.5542i 0.814145i
\(366\) 0 0
\(367\) 26.1245i 1.36369i −0.731497 0.681844i \(-0.761178\pi\)
0.731497 0.681844i \(-0.238822\pi\)
\(368\) 0 0
\(369\) 1.22554i 0.0637988i
\(370\) 0 0
\(371\) 53.9556 2.80123
\(372\) 0 0
\(373\) 34.5279i 1.78779i −0.448280 0.893893i \(-0.647963\pi\)
0.448280 0.893893i \(-0.352037\pi\)
\(374\) 0 0
\(375\) 1.00000i 0.0516398i
\(376\) 0 0
\(377\) 3.06226 0.157714
\(378\) 0 0
\(379\) 14.1245i 0.725528i −0.931881 0.362764i \(-0.881833\pi\)
0.931881 0.362764i \(-0.118167\pi\)
\(380\) 0 0
\(381\) 14.3287i 0.734081i
\(382\) 0 0
\(383\) 17.0623i 0.871841i −0.899985 0.435920i \(-0.856423\pi\)
0.899985 0.435920i \(-0.143577\pi\)
\(384\) 0 0
\(385\) 13.0623 + 4.13065i 0.665714 + 0.210517i
\(386\) 0 0
\(387\) −4.13065 −0.209973
\(388\) 0 0
\(389\) −3.87548 −0.196495 −0.0982474 0.995162i \(-0.531324\pi\)
−0.0982474 + 0.995162i \(0.531324\pi\)
\(390\) 0 0
\(391\) −37.4330 −1.89307
\(392\) 0 0
\(393\) 4.38781i 0.221336i
\(394\) 0 0
\(395\) −3.16228 −0.159111
\(396\) 0 0
\(397\) −8.93774 −0.448572 −0.224286 0.974523i \(-0.572005\pi\)
−0.224286 + 0.974523i \(0.572005\pi\)
\(398\) 0 0
\(399\) 21.0623i 1.05443i
\(400\) 0 0
\(401\) 20.1245 1.00497 0.502485 0.864586i \(-0.332419\pi\)
0.502485 + 0.864586i \(0.332419\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −22.3328 7.06226i −1.10700 0.350063i
\(408\) 0 0
\(409\) 2.45107i 0.121198i −0.998162 0.0605988i \(-0.980699\pi\)
0.998162 0.0605988i \(-0.0193010\pi\)
\(410\) 0 0
\(411\) 10.0000i 0.493264i
\(412\) 0 0
\(413\) 53.9556i 2.65498i
\(414\) 0 0
\(415\) 7.29293 0.357996
\(416\) 0 0
\(417\) 8.97250i 0.439385i
\(418\) 0 0
\(419\) 4.00000i 0.195413i −0.995215 0.0977064i \(-0.968849\pi\)
0.995215 0.0977064i \(-0.0311506\pi\)
\(420\) 0 0
\(421\) −27.1868 −1.32500 −0.662501 0.749061i \(-0.730505\pi\)
−0.662501 + 0.749061i \(0.730505\pi\)
\(422\) 0 0
\(423\) 8.00000i 0.388973i
\(424\) 0 0
\(425\) 4.13065i 0.200366i
\(426\) 0 0
\(427\) 60.2490i 2.91565i
\(428\) 0 0
\(429\) 3.06226 + 0.968371i 0.147847 + 0.0467534i
\(430\) 0 0
\(431\) 2.45107 0.118064 0.0590320 0.998256i \(-0.481199\pi\)
0.0590320 + 0.998256i \(0.481199\pi\)
\(432\) 0 0
\(433\) 11.0623 0.531618 0.265809 0.964026i \(-0.414361\pi\)
0.265809 + 0.964026i \(0.414361\pi\)
\(434\) 0 0
\(435\) −3.16228 −0.151620
\(436\) 0 0
\(437\) 46.2086i 2.21046i
\(438\) 0 0
\(439\) −5.09902 −0.243363 −0.121681 0.992569i \(-0.538829\pi\)
−0.121681 + 0.992569i \(0.538829\pi\)
\(440\) 0 0
\(441\) −10.0623 −0.479155
\(442\) 0 0
\(443\) 21.0623i 1.00070i −0.865824 0.500349i \(-0.833205\pi\)
0.865824 0.500349i \(-0.166795\pi\)
\(444\) 0 0
\(445\) −2.00000 −0.0948091
\(446\) 0 0
\(447\) −15.2971 −0.723526
\(448\) 0 0
\(449\) 20.1245 0.949735 0.474867 0.880057i \(-0.342496\pi\)
0.474867 + 0.880057i \(0.342496\pi\)
\(450\) 0 0
\(451\) −1.22554 + 3.87548i −0.0577082 + 0.182489i
\(452\) 0 0
\(453\) 7.55009i 0.354734i
\(454\) 0 0
\(455\) 4.00000i 0.187523i
\(456\) 0 0
\(457\) 26.2666i 1.22870i −0.789034 0.614350i \(-0.789418\pi\)
0.789034 0.614350i \(-0.210582\pi\)
\(458\) 0 0
\(459\) 4.13065 0.192802
\(460\) 0 0
\(461\) 33.7564i 1.57219i 0.618104 + 0.786096i \(0.287901\pi\)
−0.618104 + 0.786096i \(0.712099\pi\)
\(462\) 0 0
\(463\) 34.1245i 1.58590i −0.609286 0.792950i \(-0.708544\pi\)
0.609286 0.792950i \(-0.291456\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.0623i 0.604449i 0.953237 + 0.302225i \(0.0977293\pi\)
−0.953237 + 0.302225i \(0.902271\pi\)
\(468\) 0 0
\(469\) 45.6943i 2.10997i
\(470\) 0 0
\(471\) 12.1245i 0.558668i
\(472\) 0 0
\(473\) 13.0623 + 4.13065i 0.600603 + 0.189927i
\(474\) 0 0
\(475\) −5.09902 −0.233959
\(476\) 0 0
\(477\) −13.0623 −0.598080
\(478\) 0 0
\(479\) 41.3065 1.88734 0.943671 0.330886i \(-0.107348\pi\)
0.943671 + 0.330886i \(0.107348\pi\)
\(480\) 0 0
\(481\) 6.83889i 0.311826i
\(482\) 0 0
\(483\) −37.4330 −1.70326
\(484\) 0 0
\(485\) −7.06226 −0.320681
\(486\) 0 0
\(487\) 24.9377i 1.13004i −0.825078 0.565018i \(-0.808869\pi\)
0.825078 0.565018i \(-0.191131\pi\)
\(488\) 0 0
\(489\) −0.937742 −0.0424062
\(490\) 0 0
\(491\) 25.2982 1.14169 0.570846 0.821057i \(-0.306615\pi\)
0.570846 + 0.821057i \(0.306615\pi\)
\(492\) 0 0
\(493\) −13.0623 −0.588295
\(494\) 0 0
\(495\) −3.16228 1.00000i −0.142134 0.0449467i
\(496\) 0 0
\(497\) 29.1717i 1.30853i
\(498\) 0 0
\(499\) 9.87548i 0.442087i −0.975264 0.221044i \(-0.929054\pi\)
0.975264 0.221044i \(-0.0709463\pi\)
\(500\) 0 0
\(501\) 17.4910i 0.781439i
\(502\) 0 0
\(503\) 17.4910 0.779884 0.389942 0.920840i \(-0.372495\pi\)
0.389942 + 0.920840i \(0.372495\pi\)
\(504\) 0 0
\(505\) 7.03576i 0.313087i
\(506\) 0 0
\(507\) 12.0623i 0.535704i
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) 64.2490i 2.84221i
\(512\) 0 0
\(513\) 5.09902i 0.225127i
\(514\) 0 0
\(515\) 11.0623i 0.487461i
\(516\) 0 0
\(517\) 8.00000 25.2982i 0.351840 1.11261i
\(518\) 0 0
\(519\) 6.06739 0.266329
\(520\) 0 0
\(521\) −24.1245 −1.05691 −0.528457 0.848960i \(-0.677229\pi\)
−0.528457 + 0.848960i \(0.677229\pi\)
\(522\) 0 0
\(523\) 23.1043 1.01028 0.505141 0.863037i \(-0.331441\pi\)
0.505141 + 0.863037i \(0.331441\pi\)
\(524\) 0 0
\(525\) 4.13065i 0.180276i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −59.1245 −2.57063
\(530\) 0 0
\(531\) 13.0623i 0.566854i
\(532\) 0 0
\(533\) 1.18677 0.0514049
\(534\) 0 0
\(535\) 3.41944 0.147835
\(536\) 0 0
\(537\) 12.0000 0.517838
\(538\) 0 0
\(539\) 31.8197 + 10.0623i 1.37057 + 0.433412i
\(540\) 0 0
\(541\) 6.32456i 0.271914i −0.990715 0.135957i \(-0.956589\pi\)
0.990715 0.135957i \(-0.0434109\pi\)
\(542\) 0 0
\(543\) 13.0623i 0.560555i
\(544\) 0 0
\(545\) 10.1980i 0.436836i
\(546\) 0 0
\(547\) −35.7534 −1.52871 −0.764353 0.644798i \(-0.776941\pi\)
−0.764353 + 0.644798i \(0.776941\pi\)
\(548\) 0 0
\(549\) 14.5859i 0.622509i
\(550\) 0 0
\(551\) 16.1245i 0.686927i
\(552\) 0 0
\(553\) −13.0623 −0.555464
\(554\) 0 0
\(555\) 7.06226i 0.299776i
\(556\) 0 0
\(557\) 29.4289i 1.24694i −0.781847 0.623471i \(-0.785722\pi\)
0.781847 0.623471i \(-0.214278\pi\)
\(558\) 0 0
\(559\) 4.00000i 0.169182i
\(560\) 0 0
\(561\) −13.0623 4.13065i −0.551489 0.174396i
\(562\) 0 0
\(563\) −19.4277 −0.818780 −0.409390 0.912359i \(-0.634258\pi\)
−0.409390 + 0.912359i \(0.634258\pi\)
\(564\) 0 0
\(565\) 2.93774 0.123592
\(566\) 0 0
\(567\) 4.13065 0.173471
\(568\) 0 0
\(569\) 1.73987i 0.0729390i −0.999335 0.0364695i \(-0.988389\pi\)
0.999335 0.0364695i \(-0.0116112\pi\)
\(570\) 0 0
\(571\) 12.8460 0.537588 0.268794 0.963198i \(-0.413375\pi\)
0.268794 + 0.963198i \(0.413375\pi\)
\(572\) 0 0
\(573\) 8.00000 0.334205
\(574\) 0 0
\(575\) 9.06226i 0.377922i
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 0 0
\(579\) 13.1032 0.544548
\(580\) 0 0
\(581\) 30.1245 1.24978
\(582\) 0 0
\(583\) 41.3065 + 13.0623i 1.71074 + 0.540983i
\(584\) 0 0
\(585\) 0.968371i 0.0400372i
\(586\) 0 0
\(587\) 10.9377i 0.451449i −0.974191 0.225724i \(-0.927525\pi\)
0.974191 0.225724i \(-0.0724749\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 18.7165 0.769894
\(592\) 0 0
\(593\) 10.4552i 0.429344i 0.976686 + 0.214672i \(0.0688682\pi\)
−0.976686 + 0.214672i \(0.931132\pi\)
\(594\) 0 0
\(595\) 17.0623i 0.699484i
\(596\) 0 0
\(597\) −12.0000 −0.491127
\(598\) 0 0
\(599\) 18.0000i 0.735460i 0.929933 + 0.367730i \(0.119865\pi\)
−0.929933 + 0.367730i \(0.880135\pi\)
\(600\) 0 0
\(601\) 31.1084i 1.26894i 0.772947 + 0.634470i \(0.218782\pi\)
−0.772947 + 0.634470i \(0.781218\pi\)
\(602\) 0 0
\(603\) 11.0623i 0.450490i
\(604\) 0 0
\(605\) 9.00000 + 6.32456i 0.365902 + 0.257130i
\(606\) 0 0
\(607\) −14.8430 −0.602459 −0.301230 0.953552i \(-0.597397\pi\)
−0.301230 + 0.953552i \(0.597397\pi\)
\(608\) 0 0
\(609\) −13.0623 −0.529309
\(610\) 0 0
\(611\) −7.74697 −0.313409
\(612\) 0 0
\(613\) 14.1318i 0.570778i −0.958412 0.285389i \(-0.907877\pi\)
0.958412 0.285389i \(-0.0921229\pi\)
\(614\) 0 0
\(615\) −1.22554 −0.0494184
\(616\) 0 0
\(617\) 6.93774 0.279303 0.139651 0.990201i \(-0.455402\pi\)
0.139651 + 0.990201i \(0.455402\pi\)
\(618\) 0 0
\(619\) 22.1245i 0.889259i 0.895714 + 0.444630i \(0.146665\pi\)
−0.895714 + 0.444630i \(0.853335\pi\)
\(620\) 0 0
\(621\) 9.06226 0.363656
\(622\) 0 0
\(623\) −8.26130 −0.330982
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 5.09902 16.1245i 0.203635 0.643951i
\(628\) 0 0
\(629\) 29.1717i 1.16315i
\(630\) 0 0
\(631\) 20.0000i 0.796187i −0.917345 0.398094i \(-0.869672\pi\)
0.917345 0.398094i \(-0.130328\pi\)
\(632\) 0 0
\(633\) 26.0094i 1.03378i
\(634\) 0 0
\(635\) −14.3287 −0.568617
\(636\) 0 0
\(637\) 9.74400i 0.386071i
\(638\) 0 0
\(639\) 7.06226i 0.279379i
\(640\) 0 0
\(641\) 38.0000 1.50091 0.750455 0.660922i \(-0.229834\pi\)
0.750455 + 0.660922i \(0.229834\pi\)
\(642\) 0 0
\(643\) 8.93774i 0.352470i 0.984348 + 0.176235i \(0.0563919\pi\)
−0.984348 + 0.176235i \(0.943608\pi\)
\(644\) 0 0
\(645\) 4.13065i 0.162644i
\(646\) 0 0
\(647\) 7.18677i 0.282541i −0.989971 0.141271i \(-0.954881\pi\)
0.989971 0.141271i \(-0.0451188\pi\)
\(648\) 0 0
\(649\) 13.0623 41.3065i 0.512738 1.62142i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −50.2490 −1.96640 −0.983198 0.182541i \(-0.941568\pi\)
−0.983198 + 0.182541i \(0.941568\pi\)
\(654\) 0 0
\(655\) 4.38781 0.171446
\(656\) 0 0
\(657\) 15.5542i 0.606828i
\(658\) 0 0
\(659\) −1.42241 −0.0554093 −0.0277047 0.999616i \(-0.508820\pi\)
−0.0277047 + 0.999616i \(0.508820\pi\)
\(660\) 0 0
\(661\) −7.87548 −0.306321 −0.153160 0.988201i \(-0.548945\pi\)
−0.153160 + 0.988201i \(0.548945\pi\)
\(662\) 0 0
\(663\) 4.00000i 0.155347i
\(664\) 0 0
\(665\) −21.0623 −0.816759
\(666\) 0 0
\(667\) −28.6574 −1.10962
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) −14.5859 + 46.1245i −0.563081 + 1.78062i
\(672\) 0 0
\(673\) 36.4646i 1.40561i 0.711383 + 0.702804i \(0.248069\pi\)
−0.711383 + 0.702804i \(0.751931\pi\)
\(674\) 0 0
\(675\) 1.00000i 0.0384900i
\(676\) 0 0
\(677\) 15.7511i 0.605364i 0.953092 + 0.302682i \(0.0978820\pi\)
−0.953092 + 0.302682i \(0.902118\pi\)
\(678\) 0 0
\(679\) −29.1717 −1.11951
\(680\) 0 0
\(681\) 19.9420i 0.764181i
\(682\) 0 0
\(683\) 26.1245i 0.999627i −0.866133 0.499813i \(-0.833402\pi\)
0.866133 0.499813i \(-0.166598\pi\)
\(684\) 0 0
\(685\) −10.0000 −0.382080
\(686\) 0 0
\(687\) 26.1245i 0.996712i
\(688\) 0 0
\(689\) 12.6491i 0.481893i
\(690\) 0 0
\(691\) 46.3735i 1.76413i −0.471125 0.882066i \(-0.656152\pi\)
0.471125 0.882066i \(-0.343848\pi\)
\(692\) 0 0
\(693\) −13.0623 4.13065i −0.496194 0.156910i
\(694\) 0 0
\(695\) 8.97250 0.340346
\(696\) 0 0
\(697\) −5.06226 −0.191747
\(698\) 0 0
\(699\) −20.6532 −0.781177
\(700\) 0 0
\(701\) 12.8460i 0.485186i −0.970128 0.242593i \(-0.922002\pi\)
0.970128 0.242593i \(-0.0779980\pi\)
\(702\) 0 0
\(703\) 36.0106 1.35817
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0 0
\(707\) 29.0623i 1.09300i
\(708\) 0 0
\(709\) 11.0623 0.415452 0.207726 0.978187i \(-0.433394\pi\)
0.207726 + 0.978187i \(0.433394\pi\)
\(710\) 0 0
\(711\) 3.16228 0.118595
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0.968371 3.06226i 0.0362150 0.114522i
\(716\) 0 0
\(717\) 8.26130i 0.308524i
\(718\) 0 0
\(719\) 12.2490i 0.456812i 0.973566 + 0.228406i \(0.0733513\pi\)
−0.973566 + 0.228406i \(0.926649\pi\)
\(720\) 0 0
\(721\) 45.6943i 1.70174i
\(722\) 0 0
\(723\) −17.0369 −0.633610
\(724\) 0 0
\(725\) 3.16228i 0.117444i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 17.0623i 0.631070i
\(732\) 0 0
\(733\) 34.0136i 1.25632i −0.778084 0.628160i \(-0.783808\pi\)
0.778084 0.628160i \(-0.216192\pi\)
\(734\) 0 0
\(735\) 10.0623i 0.371152i
\(736\) 0 0
\(737\) 11.0623 34.9819i 0.407484 1.28858i
\(738\) 0 0
\(739\) 9.48683 0.348979 0.174489 0.984659i \(-0.444173\pi\)
0.174489 + 0.984659i \(0.444173\pi\)
\(740\) 0 0
\(741\) −4.93774 −0.181392
\(742\) 0 0
\(743\) −18.0053 −0.660550 −0.330275 0.943885i \(-0.607142\pi\)
−0.330275 + 0.943885i \(0.607142\pi\)
\(744\) 0 0
\(745\) 15.2971i 0.560441i
\(746\) 0 0
\(747\) −7.29293 −0.266834
\(748\) 0 0
\(749\) 14.1245 0.516099
\(750\) 0 0
\(751\) 20.2490i 0.738898i −0.929251 0.369449i \(-0.879547\pi\)
0.929251 0.369449i \(-0.120453\pi\)
\(752\) 0 0
\(753\) −3.06226 −0.111595
\(754\) 0 0
\(755\) −7.55009 −0.274776
\(756\) 0 0
\(757\) 4.12452 0.149908 0.0749540 0.997187i \(-0.476119\pi\)
0.0749540 + 0.997187i \(0.476119\pi\)
\(758\) 0 0
\(759\) −28.6574 9.06226i −1.04020 0.328939i
\(760\) 0 0
\(761\) 12.8460i 0.465667i −0.972517 0.232833i \(-0.925200\pi\)
0.972517 0.232833i \(-0.0747997\pi\)
\(762\) 0 0
\(763\) 42.1245i 1.52501i
\(764\) 0 0
\(765\) 4.13065i 0.149344i
\(766\) 0 0
\(767\) −12.6491 −0.456733
\(768\) 0 0
\(769\) 42.7289i 1.54084i 0.637535 + 0.770422i \(0.279954\pi\)
−0.637535 + 0.770422i \(0.720046\pi\)
\(770\) 0 0
\(771\) 6.00000i 0.216085i
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 29.1717i 1.04653i
\(778\) 0 0
\(779\) 6.24903i 0.223895i
\(780\) 0 0
\(781\) 7.06226 22.3328i 0.252707 0.799131i
\(782\) 0 0
\(783\) 3.16228 0.113011
\(784\) 0 0
\(785\) 12.1245 0.432743
\(786\) 0 0
\(787\) −33.8167 −1.20543 −0.602717 0.797955i \(-0.705915\pi\)
−0.602717 + 0.797955i \(0.705915\pi\)
\(788\) 0 0
\(789\) 2.90511i 0.103425i
\(790\) 0 0
\(791\) 12.1348 0.431463
\(792\) 0 0
\(793\) 14.1245 0.501576
\(794\) 0 0
\(795\) 13.0623i 0.463271i
\(796\) 0 0
\(797\) −6.93774 −0.245747 −0.122874 0.992422i \(-0.539211\pi\)
−0.122874 + 0.992422i \(0.539211\pi\)
\(798\) 0 0
\(799\) 33.0452 1.16905
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) −15.5542 + 49.1868i −0.548897 + 1.73576i
\(804\) 0 0
\(805\) 37.4330i 1.31934i
\(806\) 0 0
\(807\) 24.1245i 0.849223i
\(808\) 0 0
\(809\) 28.4605i 1.00062i −0.865847 0.500309i \(-0.833220\pi\)
0.865847 0.500309i \(-0.166780\pi\)
\(810\) 0 0
\(811\) −52.2157 −1.83354 −0.916771 0.399413i \(-0.869214\pi\)
−0.916771 + 0.399413i \(0.869214\pi\)
\(812\) 0 0
\(813\) 7.03576i 0.246755i
\(814\) 0 0
\(815\) 0.937742i 0.0328477i
\(816\) 0 0
\(817\) −21.0623 −0.736875
\(818\) 0 0
\(819\) 4.00000i 0.139771i
\(820\) 0 0
\(821\) 31.8197i 1.11051i −0.831679 0.555257i \(-0.812620\pi\)
0.831679 0.555257i \(-0.187380\pi\)
\(822\) 0 0
\(823\) 39.3113i 1.37031i 0.728399 + 0.685153i \(0.240265\pi\)
−0.728399 + 0.685153i \(0.759735\pi\)
\(824\) 0 0
\(825\) −1.00000 + 3.16228i −0.0348155 + 0.110096i
\(826\) 0 0
\(827\) 29.6257 1.03019 0.515094 0.857134i \(-0.327757\pi\)
0.515094 + 0.857134i \(0.327757\pi\)
\(828\) 0 0
\(829\) −9.18677 −0.319070 −0.159535 0.987192i \(-0.550999\pi\)
−0.159535 + 0.987192i \(0.550999\pi\)
\(830\) 0 0
\(831\) 26.2666 0.911178
\(832\) 0 0
\(833\) 41.5637i 1.44010i
\(834\) 0 0
\(835\) 17.4910 0.605300
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.0623i 1.41763i −0.705396 0.708813i \(-0.749231\pi\)
0.705396 0.708813i \(-0.250769\pi\)
\(840\) 0 0
\(841\) 19.0000 0.655172
\(842\) 0 0
\(843\) −22.1359 −0.762402
\(844\) 0 0
\(845\) 12.0623 0.414954
\(846\) 0 0
\(847\) 37.1758 + 26.1245i 1.27738 + 0.897649i
\(848\) 0 0
\(849\) 20.6532i 0.708817i
\(850\) 0 0
\(851\) 64.0000i 2.19389i
\(852\) 0 0
\(853\) 34.5279i 1.18221i −0.806594 0.591106i \(-0.798691\pi\)
0.806594 0.591106i \(-0.201309\pi\)
\(854\) 0 0
\(855\) 5.09902 0.174383
\(856\) 0 0
\(857\) 32.7880i 1.12002i 0.828487 + 0.560009i \(0.189202\pi\)
−0.828487 + 0.560009i \(0.810798\pi\)
\(858\) 0 0
\(859\) 34.1245i 1.16431i −0.813077 0.582157i \(-0.802209\pi\)
0.813077 0.582157i \(-0.197791\pi\)
\(860\) 0 0
\(861\) −5.06226 −0.172521
\(862\) 0 0
\(863\) 38.9377i 1.32546i 0.748860 + 0.662728i \(0.230601\pi\)
−0.748860 + 0.662728i \(0.769399\pi\)
\(864\) 0 0
\(865\) 6.06739i 0.206297i
\(866\) 0 0
\(867\) 0.0622577i 0.00211438i
\(868\) 0 0
\(869\) −10.0000 3.16228i −0.339227 0.107273i
\(870\) 0 0
\(871\) −10.7124 −0.362975
\(872\) 0 0
\(873\) 7.06226 0.239021
\(874\) 0 0
\(875\) 4.13065 0.139641
\(876\) 0 0
\(877\) 46.1483i 1.55832i −0.626826 0.779159i \(-0.715646\pi\)
0.626826 0.779159i \(-0.284354\pi\)
\(878\) 0 0
\(879\) 14.8430 0.500643
\(880\) 0 0
\(881\) −4.12452 −0.138958 −0.0694792 0.997583i \(-0.522134\pi\)
−0.0694792 + 0.997583i \(0.522134\pi\)
\(882\) 0 0
\(883\) 9.87548i 0.332337i −0.986097 0.166168i \(-0.946861\pi\)
0.986097 0.166168i \(-0.0531395\pi\)
\(884\) 0 0
\(885\) 13.0623 0.439083
\(886\) 0 0
\(887\) 15.0399 0.504990 0.252495 0.967598i \(-0.418749\pi\)
0.252495 + 0.967598i \(0.418749\pi\)
\(888\) 0 0
\(889\) −59.1868 −1.98506
\(890\) 0 0
\(891\) 3.16228 + 1.00000i 0.105940 + 0.0335013i
\(892\) 0 0
\(893\) 40.7922i 1.36506i
\(894\) 0 0
\(895\) 12.0000i 0.401116i
\(896\) 0 0
\(897\) 8.77563i 0.293010i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 53.9556i 1.79752i
\(902\) 0 0
\(903\) 17.0623i 0.567796i
\(904\) 0 0
\(905\) −13.0623 −0.434204
\(906\) 0 0
\(907\) 16.2490i 0.539540i −0.962925 0.269770i \(-0.913052\pi\)
0.962925 0.269770i \(-0.0869477\pi\)
\(908\) 0 0
\(909\) 7.03576i 0.233361i
\(910\) 0 0
\(911\) 32.0000i 1.06021i −0.847933 0.530104i \(-0.822153\pi\)
0.847933 0.530104i \(-0.177847\pi\)
\(912\) 0 0
\(913\) 23.0623 + 7.29293i 0.763249 + 0.241361i
\(914\) 0 0
\(915\) −14.5859 −0.482193
\(916\) 0 0
\(917\) 18.1245 0.598524
\(918\) 0 0
\(919\) 9.48683 0.312942 0.156471 0.987683i \(-0.449988\pi\)
0.156471 + 0.987683i \(0.449988\pi\)
\(920\) 0 0
\(921\) 18.2022i 0.599782i
\(922\) 0 0
\(923\) −6.83889 −0.225105
\(924\) 0 0
\(925\) −7.06226 −0.232206
\(926\) 0 0
\(927\) 11.0623i 0.363332i
\(928\) 0 0
\(929\) −4.12452 −0.135321 −0.0676605 0.997708i \(-0.521553\pi\)
−0.0676605 + 0.997708i \(0.521553\pi\)
\(930\) 0 0
\(931\) −51.3076 −1.68154
\(932\) 0 0
\(933\) −1.06226 −0.0347768
\(934\) 0 0
\(935\) −4.13065 + 13.0623i −0.135087 + 0.427182i
\(936\) 0 0
\(937\) 19.9420i 0.651478i −0.945460 0.325739i \(-0.894387\pi\)
0.945460 0.325739i \(-0.105613\pi\)
\(938\) 0 0
\(939\) 11.0623i 0.361003i
\(940\) 0 0
\(941\) 32.3340i 1.05406i 0.849847 + 0.527029i \(0.176694\pi\)
−0.849847 + 0.527029i \(0.823306\pi\)
\(942\) 0 0
\(943\) −11.1061 −0.361665
\(944\) 0 0
\(945\) 4.13065i 0.134370i
\(946\) 0 0
\(947\) 20.0000i 0.649913i −0.945729 0.324956i \(-0.894650\pi\)
0.945729 0.324956i \(-0.105350\pi\)
\(948\) 0 0
\(949\) 15.0623 0.488942
\(950\) 0 0
\(951\) 31.1868i 1.01130i
\(952\) 0 0
\(953\) 13.8144i 0.447491i −0.974648 0.223745i \(-0.928172\pi\)
0.974648 0.223745i \(-0.0718284\pi\)
\(954\) 0 0
\(955\) 8.00000i 0.258874i
\(956\) 0 0
\(957\) −10.0000 3.16228i −0.323254 0.102222i
\(958\) 0 0
\(959\) −41.3065 −1.33386
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) −3.41944 −0.110190
\(964\) 0 0
\(965\) 13.1032i 0.421805i
\(966\) 0 0
\(967\) −23.1043 −0.742985 −0.371492 0.928436i \(-0.621154\pi\)
−0.371492 + 0.928436i \(0.621154\pi\)
\(968\) 0 0
\(969\) 21.0623 0.676617
\(970\) 0 0
\(971\) 8.12452i 0.260728i −0.991466 0.130364i \(-0.958385\pi\)
0.991466 0.130364i \(-0.0416146\pi\)
\(972\) 0 0
\(973\) 37.0623 1.18816
\(974\) 0 0
\(975\) 0.968371 0.0310127
\(976\) 0 0
\(977\) 22.2490 0.711810 0.355905 0.934522i \(-0.384173\pi\)
0.355905 + 0.934522i \(0.384173\pi\)
\(978\) 0 0
\(979\) −6.32456 2.00000i −0.202134 0.0639203i
\(980\) 0 0
\(981\) 10.1980i 0.325598i
\(982\) 0 0
\(983\) 15.1868i 0.484383i 0.970228 + 0.242191i \(0.0778662\pi\)
−0.970228 + 0.242191i \(0.922134\pi\)
\(984\) 0 0
\(985\) 18.7165i 0.596357i
\(986\) 0 0
\(987\) 33.0452 1.05184
\(988\) 0 0
\(989\) 37.4330i 1.19030i
\(990\) 0 0
\(991\) 40.2490i 1.27855i 0.768977 + 0.639276i \(0.220766\pi\)
−0.768977 + 0.639276i \(0.779234\pi\)
\(992\) 0 0
\(993\) −22.1245 −0.702100
\(994\) 0 0
\(995\) 12.0000i 0.380426i
\(996\) 0 0
\(997\) 3.41944i 0.108295i −0.998533 0.0541474i \(-0.982756\pi\)
0.998533 0.0541474i \(-0.0172441\pi\)
\(998\) 0 0
\(999\) 7.06226i 0.223440i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2640.2.t.c.1231.8 yes 8
4.3 odd 2 inner 2640.2.t.c.1231.1 8
11.10 odd 2 inner 2640.2.t.c.1231.5 yes 8
44.43 even 2 inner 2640.2.t.c.1231.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2640.2.t.c.1231.1 8 4.3 odd 2 inner
2640.2.t.c.1231.4 yes 8 44.43 even 2 inner
2640.2.t.c.1231.5 yes 8 11.10 odd 2 inner
2640.2.t.c.1231.8 yes 8 1.1 even 1 trivial