Properties

Label 264.2.q.b.97.1
Level $264$
Weight $2$
Character 264.97
Analytic conductor $2.108$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(25,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.q (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 97.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 264.97
Dual form 264.2.q.b.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{3} +(0.809017 + 2.48990i) q^{5} +(-0.190983 - 0.138757i) q^{7} +(0.309017 - 0.951057i) q^{9} +(-2.54508 + 2.12663i) q^{11} +(-0.690983 + 2.12663i) q^{13} +(-2.11803 - 1.53884i) q^{15} +(1.50000 + 4.61653i) q^{17} +(-2.11803 + 1.53884i) q^{19} +0.236068 q^{21} +1.76393 q^{23} +(-1.50000 + 1.08981i) q^{25} +(0.309017 + 0.951057i) q^{27} +(6.85410 + 4.97980i) q^{29} +(1.97214 - 6.06961i) q^{31} +(0.809017 - 3.21644i) q^{33} +(0.190983 - 0.587785i) q^{35} +(-6.66312 - 4.84104i) q^{37} +(-0.690983 - 2.12663i) q^{39} +(4.04508 - 2.93893i) q^{41} +2.52786 q^{43} +2.61803 q^{45} +(-5.54508 + 4.02874i) q^{47} +(-2.14590 - 6.60440i) q^{49} +(-3.92705 - 2.85317i) q^{51} +(3.26393 - 10.0453i) q^{53} +(-7.35410 - 4.61653i) q^{55} +(0.809017 - 2.48990i) q^{57} +(4.50000 + 3.26944i) q^{59} +(-0.0450850 - 0.138757i) q^{61} +(-0.190983 + 0.138757i) q^{63} -5.85410 q^{65} +15.5623 q^{67} +(-1.42705 + 1.03681i) q^{69} +(-2.33688 - 7.19218i) q^{71} +(7.85410 + 5.70634i) q^{73} +(0.572949 - 1.76336i) q^{75} +(0.781153 - 0.0530006i) q^{77} +(3.01722 - 9.28605i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(4.92705 + 15.1639i) q^{83} +(-10.2812 + 7.46969i) q^{85} -8.47214 q^{87} -5.47214 q^{89} +(0.427051 - 0.310271i) q^{91} +(1.97214 + 6.06961i) q^{93} +(-5.54508 - 4.02874i) q^{95} +(-0.0450850 + 0.138757i) q^{97} +(1.23607 + 3.07768i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + q^{5} - 3 q^{7} - q^{9} + q^{11} - 5 q^{13} - 4 q^{15} + 6 q^{17} - 4 q^{19} - 8 q^{21} + 16 q^{23} - 6 q^{25} - q^{27} + 14 q^{29} - 10 q^{31} + q^{33} + 3 q^{35} - 11 q^{37} - 5 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) 0 0
\(5\) 0.809017 + 2.48990i 0.361803 + 1.11352i 0.951959 + 0.306227i \(0.0990665\pi\)
−0.590155 + 0.807290i \(0.700933\pi\)
\(6\) 0 0
\(7\) −0.190983 0.138757i −0.0721848 0.0524453i 0.551108 0.834434i \(-0.314205\pi\)
−0.623292 + 0.781989i \(0.714205\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) −2.54508 + 2.12663i −0.767372 + 0.641202i
\(12\) 0 0
\(13\) −0.690983 + 2.12663i −0.191644 + 0.589820i 0.808355 + 0.588695i \(0.200358\pi\)
−0.999999 + 0.00112510i \(0.999642\pi\)
\(14\) 0 0
\(15\) −2.11803 1.53884i −0.546874 0.397327i
\(16\) 0 0
\(17\) 1.50000 + 4.61653i 0.363803 + 1.11967i 0.950727 + 0.310029i \(0.100339\pi\)
−0.586924 + 0.809642i \(0.699661\pi\)
\(18\) 0 0
\(19\) −2.11803 + 1.53884i −0.485910 + 0.353035i −0.803609 0.595157i \(-0.797090\pi\)
0.317699 + 0.948192i \(0.397090\pi\)
\(20\) 0 0
\(21\) 0.236068 0.0515143
\(22\) 0 0
\(23\) 1.76393 0.367805 0.183903 0.982944i \(-0.441127\pi\)
0.183903 + 0.982944i \(0.441127\pi\)
\(24\) 0 0
\(25\) −1.50000 + 1.08981i −0.300000 + 0.217963i
\(26\) 0 0
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 0 0
\(29\) 6.85410 + 4.97980i 1.27277 + 0.924725i 0.999309 0.0371569i \(-0.0118301\pi\)
0.273465 + 0.961882i \(0.411830\pi\)
\(30\) 0 0
\(31\) 1.97214 6.06961i 0.354206 1.09013i −0.602262 0.798298i \(-0.705734\pi\)
0.956468 0.291836i \(-0.0942661\pi\)
\(32\) 0 0
\(33\) 0.809017 3.21644i 0.140832 0.559910i
\(34\) 0 0
\(35\) 0.190983 0.587785i 0.0322820 0.0993538i
\(36\) 0 0
\(37\) −6.66312 4.84104i −1.09541 0.795862i −0.115105 0.993353i \(-0.536721\pi\)
−0.980305 + 0.197491i \(0.936721\pi\)
\(38\) 0 0
\(39\) −0.690983 2.12663i −0.110646 0.340533i
\(40\) 0 0
\(41\) 4.04508 2.93893i 0.631736 0.458983i −0.225265 0.974298i \(-0.572325\pi\)
0.857001 + 0.515314i \(0.172325\pi\)
\(42\) 0 0
\(43\) 2.52786 0.385496 0.192748 0.981248i \(-0.438260\pi\)
0.192748 + 0.981248i \(0.438260\pi\)
\(44\) 0 0
\(45\) 2.61803 0.390273
\(46\) 0 0
\(47\) −5.54508 + 4.02874i −0.808834 + 0.587652i −0.913492 0.406856i \(-0.866625\pi\)
0.104658 + 0.994508i \(0.466625\pi\)
\(48\) 0 0
\(49\) −2.14590 6.60440i −0.306557 0.943485i
\(50\) 0 0
\(51\) −3.92705 2.85317i −0.549897 0.399524i
\(52\) 0 0
\(53\) 3.26393 10.0453i 0.448336 1.37983i −0.430448 0.902615i \(-0.641645\pi\)
0.878784 0.477220i \(-0.158355\pi\)
\(54\) 0 0
\(55\) −7.35410 4.61653i −0.991627 0.622492i
\(56\) 0 0
\(57\) 0.809017 2.48990i 0.107157 0.329795i
\(58\) 0 0
\(59\) 4.50000 + 3.26944i 0.585850 + 0.425645i 0.840828 0.541302i \(-0.182068\pi\)
−0.254978 + 0.966947i \(0.582068\pi\)
\(60\) 0 0
\(61\) −0.0450850 0.138757i −0.00577254 0.0177660i 0.948129 0.317887i \(-0.102973\pi\)
−0.953901 + 0.300120i \(0.902973\pi\)
\(62\) 0 0
\(63\) −0.190983 + 0.138757i −0.0240616 + 0.0174818i
\(64\) 0 0
\(65\) −5.85410 −0.726112
\(66\) 0 0
\(67\) 15.5623 1.90124 0.950619 0.310360i \(-0.100450\pi\)
0.950619 + 0.310360i \(0.100450\pi\)
\(68\) 0 0
\(69\) −1.42705 + 1.03681i −0.171797 + 0.124818i
\(70\) 0 0
\(71\) −2.33688 7.19218i −0.277337 0.853555i −0.988592 0.150621i \(-0.951873\pi\)
0.711255 0.702934i \(-0.248127\pi\)
\(72\) 0 0
\(73\) 7.85410 + 5.70634i 0.919253 + 0.667876i 0.943338 0.331833i \(-0.107667\pi\)
−0.0240849 + 0.999710i \(0.507667\pi\)
\(74\) 0 0
\(75\) 0.572949 1.76336i 0.0661585 0.203615i
\(76\) 0 0
\(77\) 0.781153 0.0530006i 0.0890206 0.00603997i
\(78\) 0 0
\(79\) 3.01722 9.28605i 0.339464 1.04476i −0.625017 0.780611i \(-0.714908\pi\)
0.964481 0.264152i \(-0.0850919\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) 4.92705 + 15.1639i 0.540814 + 1.66445i 0.730740 + 0.682656i \(0.239175\pi\)
−0.189926 + 0.981798i \(0.560825\pi\)
\(84\) 0 0
\(85\) −10.2812 + 7.46969i −1.11515 + 0.810202i
\(86\) 0 0
\(87\) −8.47214 −0.908308
\(88\) 0 0
\(89\) −5.47214 −0.580045 −0.290023 0.957020i \(-0.593663\pi\)
−0.290023 + 0.957020i \(0.593663\pi\)
\(90\) 0 0
\(91\) 0.427051 0.310271i 0.0447671 0.0325252i
\(92\) 0 0
\(93\) 1.97214 + 6.06961i 0.204501 + 0.629389i
\(94\) 0 0
\(95\) −5.54508 4.02874i −0.568914 0.413340i
\(96\) 0 0
\(97\) −0.0450850 + 0.138757i −0.00457769 + 0.0140887i −0.953319 0.301964i \(-0.902358\pi\)
0.948742 + 0.316053i \(0.102358\pi\)
\(98\) 0 0
\(99\) 1.23607 + 3.07768i 0.124230 + 0.309319i
\(100\) 0 0
\(101\) 2.92705 9.00854i 0.291252 0.896383i −0.693202 0.720743i \(-0.743801\pi\)
0.984455 0.175640i \(-0.0561993\pi\)
\(102\) 0 0
\(103\) 10.0902 + 7.33094i 0.994214 + 0.722339i 0.960840 0.277104i \(-0.0893747\pi\)
0.0333741 + 0.999443i \(0.489375\pi\)
\(104\) 0 0
\(105\) 0.190983 + 0.587785i 0.0186380 + 0.0573620i
\(106\) 0 0
\(107\) 4.80902 3.49396i 0.464905 0.337773i −0.330547 0.943789i \(-0.607233\pi\)
0.795452 + 0.606016i \(0.207233\pi\)
\(108\) 0 0
\(109\) −17.8885 −1.71341 −0.856706 0.515805i \(-0.827493\pi\)
−0.856706 + 0.515805i \(0.827493\pi\)
\(110\) 0 0
\(111\) 8.23607 0.781733
\(112\) 0 0
\(113\) −11.1353 + 8.09024i −1.04752 + 0.761065i −0.971739 0.236059i \(-0.924144\pi\)
−0.0757780 + 0.997125i \(0.524144\pi\)
\(114\) 0 0
\(115\) 1.42705 + 4.39201i 0.133073 + 0.409557i
\(116\) 0 0
\(117\) 1.80902 + 1.31433i 0.167244 + 0.121510i
\(118\) 0 0
\(119\) 0.354102 1.08981i 0.0324605 0.0999031i
\(120\) 0 0
\(121\) 1.95492 10.8249i 0.177720 0.984081i
\(122\) 0 0
\(123\) −1.54508 + 4.75528i −0.139316 + 0.428769i
\(124\) 0 0
\(125\) 6.66312 + 4.84104i 0.595967 + 0.432996i
\(126\) 0 0
\(127\) 1.61803 + 4.97980i 0.143577 + 0.441885i 0.996825 0.0796199i \(-0.0253706\pi\)
−0.853248 + 0.521505i \(0.825371\pi\)
\(128\) 0 0
\(129\) −2.04508 + 1.48584i −0.180060 + 0.130821i
\(130\) 0 0
\(131\) −13.3262 −1.16432 −0.582159 0.813075i \(-0.697792\pi\)
−0.582159 + 0.813075i \(0.697792\pi\)
\(132\) 0 0
\(133\) 0.618034 0.0535903
\(134\) 0 0
\(135\) −2.11803 + 1.53884i −0.182291 + 0.132442i
\(136\) 0 0
\(137\) −1.07295 3.30220i −0.0916682 0.282126i 0.894703 0.446662i \(-0.147387\pi\)
−0.986371 + 0.164536i \(0.947387\pi\)
\(138\) 0 0
\(139\) 13.2533 + 9.62908i 1.12413 + 0.816728i 0.984830 0.173523i \(-0.0555150\pi\)
0.139299 + 0.990250i \(0.455515\pi\)
\(140\) 0 0
\(141\) 2.11803 6.51864i 0.178371 0.548968i
\(142\) 0 0
\(143\) −2.76393 6.88191i −0.231132 0.575494i
\(144\) 0 0
\(145\) −6.85410 + 21.0948i −0.569202 + 1.75182i
\(146\) 0 0
\(147\) 5.61803 + 4.08174i 0.463368 + 0.336656i
\(148\) 0 0
\(149\) −0.454915 1.40008i −0.0372681 0.114699i 0.930692 0.365804i \(-0.119206\pi\)
−0.967960 + 0.251105i \(0.919206\pi\)
\(150\) 0 0
\(151\) −10.8541 + 7.88597i −0.883294 + 0.641751i −0.934121 0.356957i \(-0.883814\pi\)
0.0508267 + 0.998707i \(0.483814\pi\)
\(152\) 0 0
\(153\) 4.85410 0.392431
\(154\) 0 0
\(155\) 16.7082 1.34204
\(156\) 0 0
\(157\) 5.00000 3.63271i 0.399043 0.289922i −0.370108 0.928989i \(-0.620679\pi\)
0.769151 + 0.639067i \(0.220679\pi\)
\(158\) 0 0
\(159\) 3.26393 + 10.0453i 0.258847 + 0.796648i
\(160\) 0 0
\(161\) −0.336881 0.244758i −0.0265499 0.0192897i
\(162\) 0 0
\(163\) −5.44427 + 16.7557i −0.426428 + 1.31241i 0.475192 + 0.879882i \(0.342379\pi\)
−0.901620 + 0.432529i \(0.857621\pi\)
\(164\) 0 0
\(165\) 8.66312 0.587785i 0.674423 0.0457590i
\(166\) 0 0
\(167\) 2.37132 7.29818i 0.183498 0.564750i −0.816421 0.577457i \(-0.804045\pi\)
0.999919 + 0.0127072i \(0.00404494\pi\)
\(168\) 0 0
\(169\) 6.47214 + 4.70228i 0.497857 + 0.361714i
\(170\) 0 0
\(171\) 0.809017 + 2.48990i 0.0618671 + 0.190407i
\(172\) 0 0
\(173\) −9.73607 + 7.07367i −0.740220 + 0.537801i −0.892780 0.450493i \(-0.851248\pi\)
0.152560 + 0.988294i \(0.451248\pi\)
\(174\) 0 0
\(175\) 0.437694 0.0330866
\(176\) 0 0
\(177\) −5.56231 −0.418089
\(178\) 0 0
\(179\) −3.57295 + 2.59590i −0.267055 + 0.194027i −0.713251 0.700908i \(-0.752778\pi\)
0.446197 + 0.894935i \(0.352778\pi\)
\(180\) 0 0
\(181\) −6.45492 19.8662i −0.479790 1.47664i −0.839387 0.543534i \(-0.817086\pi\)
0.359597 0.933108i \(-0.382914\pi\)
\(182\) 0 0
\(183\) 0.118034 + 0.0857567i 0.00872532 + 0.00633932i
\(184\) 0 0
\(185\) 6.66312 20.5070i 0.489882 1.50770i
\(186\) 0 0
\(187\) −13.6353 8.55951i −0.997109 0.625933i
\(188\) 0 0
\(189\) 0.0729490 0.224514i 0.00530626 0.0163310i
\(190\) 0 0
\(191\) −8.28115 6.01661i −0.599203 0.435347i 0.246393 0.969170i \(-0.420755\pi\)
−0.845596 + 0.533823i \(0.820755\pi\)
\(192\) 0 0
\(193\) 4.73607 + 14.5761i 0.340910 + 1.04921i 0.963737 + 0.266853i \(0.0859838\pi\)
−0.622828 + 0.782359i \(0.714016\pi\)
\(194\) 0 0
\(195\) 4.73607 3.44095i 0.339157 0.246412i
\(196\) 0 0
\(197\) −14.8541 −1.05831 −0.529155 0.848525i \(-0.677491\pi\)
−0.529155 + 0.848525i \(0.677491\pi\)
\(198\) 0 0
\(199\) 0.527864 0.0374193 0.0187096 0.999825i \(-0.494044\pi\)
0.0187096 + 0.999825i \(0.494044\pi\)
\(200\) 0 0
\(201\) −12.5902 + 9.14729i −0.888042 + 0.645200i
\(202\) 0 0
\(203\) −0.618034 1.90211i −0.0433775 0.133502i
\(204\) 0 0
\(205\) 10.5902 + 7.69421i 0.739650 + 0.537387i
\(206\) 0 0
\(207\) 0.545085 1.67760i 0.0378860 0.116601i
\(208\) 0 0
\(209\) 2.11803 8.42075i 0.146507 0.582476i
\(210\) 0 0
\(211\) 1.73607 5.34307i 0.119516 0.367832i −0.873346 0.487100i \(-0.838055\pi\)
0.992862 + 0.119268i \(0.0380548\pi\)
\(212\) 0 0
\(213\) 6.11803 + 4.44501i 0.419201 + 0.304567i
\(214\) 0 0
\(215\) 2.04508 + 6.29412i 0.139474 + 0.429256i
\(216\) 0 0
\(217\) −1.21885 + 0.885544i −0.0827407 + 0.0601147i
\(218\) 0 0
\(219\) −9.70820 −0.656020
\(220\) 0 0
\(221\) −10.8541 −0.730126
\(222\) 0 0
\(223\) 17.3713 12.6210i 1.16327 0.845165i 0.173082 0.984907i \(-0.444627\pi\)
0.990188 + 0.139742i \(0.0446275\pi\)
\(224\) 0 0
\(225\) 0.572949 + 1.76336i 0.0381966 + 0.117557i
\(226\) 0 0
\(227\) −23.1353 16.8087i −1.53554 1.11564i −0.953056 0.302794i \(-0.902081\pi\)
−0.582485 0.812842i \(-0.697919\pi\)
\(228\) 0 0
\(229\) 7.38197 22.7194i 0.487814 1.50134i −0.340049 0.940408i \(-0.610444\pi\)
0.827863 0.560930i \(-0.189556\pi\)
\(230\) 0 0
\(231\) −0.600813 + 0.502029i −0.0395306 + 0.0330311i
\(232\) 0 0
\(233\) −2.75329 + 8.47375i −0.180374 + 0.555134i −0.999838 0.0179966i \(-0.994271\pi\)
0.819464 + 0.573131i \(0.194271\pi\)
\(234\) 0 0
\(235\) −14.5172 10.5474i −0.946999 0.688035i
\(236\) 0 0
\(237\) 3.01722 + 9.28605i 0.195990 + 0.603194i
\(238\) 0 0
\(239\) 12.1631 8.83702i 0.786767 0.571620i −0.120235 0.992745i \(-0.538365\pi\)
0.907002 + 0.421126i \(0.138365\pi\)
\(240\) 0 0
\(241\) 28.0689 1.80808 0.904038 0.427452i \(-0.140589\pi\)
0.904038 + 0.427452i \(0.140589\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 14.7082 10.6861i 0.939673 0.682712i
\(246\) 0 0
\(247\) −1.80902 5.56758i −0.115105 0.354257i
\(248\) 0 0
\(249\) −12.8992 9.37181i −0.817453 0.593914i
\(250\) 0 0
\(251\) 2.73607 8.42075i 0.172699 0.531513i −0.826822 0.562464i \(-0.809854\pi\)
0.999521 + 0.0309508i \(0.00985352\pi\)
\(252\) 0 0
\(253\) −4.48936 + 3.75123i −0.282243 + 0.235838i
\(254\) 0 0
\(255\) 3.92705 12.0862i 0.245921 0.756868i
\(256\) 0 0
\(257\) 5.50000 + 3.99598i 0.343081 + 0.249263i 0.745960 0.665990i \(-0.231991\pi\)
−0.402880 + 0.915253i \(0.631991\pi\)
\(258\) 0 0
\(259\) 0.600813 + 1.84911i 0.0373327 + 0.114898i
\(260\) 0 0
\(261\) 6.85410 4.97980i 0.424258 0.308242i
\(262\) 0 0
\(263\) 4.14590 0.255647 0.127824 0.991797i \(-0.459201\pi\)
0.127824 + 0.991797i \(0.459201\pi\)
\(264\) 0 0
\(265\) 27.6525 1.69868
\(266\) 0 0
\(267\) 4.42705 3.21644i 0.270931 0.196843i
\(268\) 0 0
\(269\) 7.85410 + 24.1724i 0.478873 + 1.47382i 0.840662 + 0.541560i \(0.182166\pi\)
−0.361789 + 0.932260i \(0.617834\pi\)
\(270\) 0 0
\(271\) −12.4443 9.04129i −0.755936 0.549219i 0.141725 0.989906i \(-0.454735\pi\)
−0.897661 + 0.440687i \(0.854735\pi\)
\(272\) 0 0
\(273\) −0.163119 + 0.502029i −0.00987241 + 0.0303841i
\(274\) 0 0
\(275\) 1.50000 5.96361i 0.0904534 0.359619i
\(276\) 0 0
\(277\) −2.73607 + 8.42075i −0.164394 + 0.505954i −0.998991 0.0449075i \(-0.985701\pi\)
0.834597 + 0.550861i \(0.185701\pi\)
\(278\) 0 0
\(279\) −5.16312 3.75123i −0.309108 0.224580i
\(280\) 0 0
\(281\) −9.76393 30.0503i −0.582467 1.79265i −0.609211 0.793008i \(-0.708514\pi\)
0.0267440 0.999642i \(-0.491486\pi\)
\(282\) 0 0
\(283\) 1.85410 1.34708i 0.110215 0.0800758i −0.531313 0.847176i \(-0.678301\pi\)
0.641528 + 0.767100i \(0.278301\pi\)
\(284\) 0 0
\(285\) 6.85410 0.406002
\(286\) 0 0
\(287\) −1.18034 −0.0696733
\(288\) 0 0
\(289\) −5.30902 + 3.85723i −0.312295 + 0.226896i
\(290\) 0 0
\(291\) −0.0450850 0.138757i −0.00264293 0.00813410i
\(292\) 0 0
\(293\) 14.0451 + 10.2044i 0.820523 + 0.596145i 0.916862 0.399204i \(-0.130713\pi\)
−0.0963395 + 0.995349i \(0.530713\pi\)
\(294\) 0 0
\(295\) −4.50000 + 13.8496i −0.262000 + 0.806353i
\(296\) 0 0
\(297\) −2.80902 1.76336i −0.162996 0.102320i
\(298\) 0 0
\(299\) −1.21885 + 3.75123i −0.0704877 + 0.216939i
\(300\) 0 0
\(301\) −0.482779 0.350760i −0.0278269 0.0202174i
\(302\) 0 0
\(303\) 2.92705 + 9.00854i 0.168155 + 0.517527i
\(304\) 0 0
\(305\) 0.309017 0.224514i 0.0176943 0.0128556i
\(306\) 0 0
\(307\) −13.7984 −0.787515 −0.393757 0.919214i \(-0.628825\pi\)
−0.393757 + 0.919214i \(0.628825\pi\)
\(308\) 0 0
\(309\) −12.4721 −0.709515
\(310\) 0 0
\(311\) −7.89919 + 5.73910i −0.447922 + 0.325434i −0.788775 0.614682i \(-0.789284\pi\)
0.340853 + 0.940117i \(0.389284\pi\)
\(312\) 0 0
\(313\) −8.30902 25.5725i −0.469653 1.44544i −0.853035 0.521854i \(-0.825240\pi\)
0.383381 0.923590i \(-0.374760\pi\)
\(314\) 0 0
\(315\) −0.500000 0.363271i −0.0281718 0.0204680i
\(316\) 0 0
\(317\) 4.92705 15.1639i 0.276731 0.851690i −0.712026 0.702154i \(-0.752222\pi\)
0.988756 0.149536i \(-0.0477780\pi\)
\(318\) 0 0
\(319\) −28.0344 + 1.90211i −1.56963 + 0.106498i
\(320\) 0 0
\(321\) −1.83688 + 5.65334i −0.102525 + 0.315539i
\(322\) 0 0
\(323\) −10.2812 7.46969i −0.572059 0.415625i
\(324\) 0 0
\(325\) −1.28115 3.94298i −0.0710656 0.218717i
\(326\) 0 0
\(327\) 14.4721 10.5146i 0.800311 0.581460i
\(328\) 0 0
\(329\) 1.61803 0.0892051
\(330\) 0 0
\(331\) −27.0000 −1.48405 −0.742027 0.670370i \(-0.766135\pi\)
−0.742027 + 0.670370i \(0.766135\pi\)
\(332\) 0 0
\(333\) −6.66312 + 4.84104i −0.365137 + 0.265287i
\(334\) 0 0
\(335\) 12.5902 + 38.7486i 0.687874 + 2.11706i
\(336\) 0 0
\(337\) 19.1803 + 13.9353i 1.04482 + 0.759106i 0.971221 0.238182i \(-0.0765515\pi\)
0.0735991 + 0.997288i \(0.476551\pi\)
\(338\) 0 0
\(339\) 4.25329 13.0903i 0.231007 0.710966i
\(340\) 0 0
\(341\) 7.88854 + 19.6417i 0.427189 + 1.06366i
\(342\) 0 0
\(343\) −1.01722 + 3.13068i −0.0549248 + 0.169041i
\(344\) 0 0
\(345\) −3.73607 2.71441i −0.201143 0.146139i
\(346\) 0 0
\(347\) 4.94427 + 15.2169i 0.265422 + 0.816886i 0.991596 + 0.129375i \(0.0412970\pi\)
−0.726173 + 0.687512i \(0.758703\pi\)
\(348\) 0 0
\(349\) −6.28115 + 4.56352i −0.336222 + 0.244280i −0.743066 0.669218i \(-0.766629\pi\)
0.406844 + 0.913498i \(0.366629\pi\)
\(350\) 0 0
\(351\) −2.23607 −0.119352
\(352\) 0 0
\(353\) 5.52786 0.294219 0.147109 0.989120i \(-0.453003\pi\)
0.147109 + 0.989120i \(0.453003\pi\)
\(354\) 0 0
\(355\) 16.0172 11.6372i 0.850106 0.617638i
\(356\) 0 0
\(357\) 0.354102 + 1.08981i 0.0187411 + 0.0576791i
\(358\) 0 0
\(359\) 4.61803 + 3.35520i 0.243731 + 0.177081i 0.702944 0.711246i \(-0.251869\pi\)
−0.459213 + 0.888326i \(0.651869\pi\)
\(360\) 0 0
\(361\) −3.75329 + 11.5514i −0.197542 + 0.607970i
\(362\) 0 0
\(363\) 4.78115 + 9.90659i 0.250945 + 0.519961i
\(364\) 0 0
\(365\) −7.85410 + 24.1724i −0.411102 + 1.26524i
\(366\) 0 0
\(367\) 4.59017 + 3.33495i 0.239605 + 0.174083i 0.701107 0.713056i \(-0.252689\pi\)
−0.461502 + 0.887139i \(0.652689\pi\)
\(368\) 0 0
\(369\) −1.54508 4.75528i −0.0804339 0.247550i
\(370\) 0 0
\(371\) −2.01722 + 1.46560i −0.104729 + 0.0760900i
\(372\) 0 0
\(373\) 15.9443 0.825563 0.412782 0.910830i \(-0.364557\pi\)
0.412782 + 0.910830i \(0.364557\pi\)
\(374\) 0 0
\(375\) −8.23607 −0.425309
\(376\) 0 0
\(377\) −15.3262 + 11.1352i −0.789341 + 0.573490i
\(378\) 0 0
\(379\) −5.30902 16.3395i −0.272706 0.839302i −0.989817 0.142344i \(-0.954536\pi\)
0.717111 0.696959i \(-0.245464\pi\)
\(380\) 0 0
\(381\) −4.23607 3.07768i −0.217020 0.157675i
\(382\) 0 0
\(383\) −10.1074 + 31.1074i −0.516464 + 1.58951i 0.264140 + 0.964484i \(0.414912\pi\)
−0.780603 + 0.625027i \(0.785088\pi\)
\(384\) 0 0
\(385\) 0.763932 + 1.90211i 0.0389336 + 0.0969407i
\(386\) 0 0
\(387\) 0.781153 2.40414i 0.0397082 0.122209i
\(388\) 0 0
\(389\) −8.25329 5.99637i −0.418458 0.304028i 0.358559 0.933507i \(-0.383268\pi\)
−0.777017 + 0.629479i \(0.783268\pi\)
\(390\) 0 0
\(391\) 2.64590 + 8.14324i 0.133809 + 0.411821i
\(392\) 0 0
\(393\) 10.7812 7.83297i 0.543837 0.395121i
\(394\) 0 0
\(395\) 25.5623 1.28618
\(396\) 0 0
\(397\) −34.7082 −1.74195 −0.870977 0.491323i \(-0.836513\pi\)
−0.870977 + 0.491323i \(0.836513\pi\)
\(398\) 0 0
\(399\) −0.500000 + 0.363271i −0.0250313 + 0.0181863i
\(400\) 0 0
\(401\) 6.93769 + 21.3520i 0.346452 + 1.06627i 0.960802 + 0.277236i \(0.0894183\pi\)
−0.614350 + 0.789034i \(0.710582\pi\)
\(402\) 0 0
\(403\) 11.5451 + 8.38800i 0.575102 + 0.417836i
\(404\) 0 0
\(405\) 0.809017 2.48990i 0.0402004 0.123724i
\(406\) 0 0
\(407\) 27.2533 1.84911i 1.35090 0.0916571i
\(408\) 0 0
\(409\) −0.583592 + 1.79611i −0.0288568 + 0.0888120i −0.964448 0.264274i \(-0.914868\pi\)
0.935591 + 0.353086i \(0.114868\pi\)
\(410\) 0 0
\(411\) 2.80902 + 2.04087i 0.138559 + 0.100669i
\(412\) 0 0
\(413\) −0.405765 1.24882i −0.0199664 0.0614502i
\(414\) 0 0
\(415\) −33.7705 + 24.5357i −1.65773 + 1.20441i
\(416\) 0 0
\(417\) −16.3820 −0.802228
\(418\) 0 0
\(419\) 35.4508 1.73189 0.865944 0.500142i \(-0.166719\pi\)
0.865944 + 0.500142i \(0.166719\pi\)
\(420\) 0 0
\(421\) 15.9721 11.6044i 0.778434 0.565566i −0.126074 0.992021i \(-0.540238\pi\)
0.904509 + 0.426455i \(0.140238\pi\)
\(422\) 0 0
\(423\) 2.11803 + 6.51864i 0.102982 + 0.316947i
\(424\) 0 0
\(425\) −7.28115 5.29007i −0.353188 0.256606i
\(426\) 0 0
\(427\) −0.0106431 + 0.0327561i −0.000515057 + 0.00158518i
\(428\) 0 0
\(429\) 6.28115 + 3.94298i 0.303257 + 0.190369i
\(430\) 0 0
\(431\) 3.70163 11.3924i 0.178301 0.548754i −0.821468 0.570255i \(-0.806844\pi\)
0.999769 + 0.0215007i \(0.00684442\pi\)
\(432\) 0 0
\(433\) 10.5623 + 7.67396i 0.507592 + 0.368787i 0.811909 0.583784i \(-0.198428\pi\)
−0.304317 + 0.952571i \(0.598428\pi\)
\(434\) 0 0
\(435\) −6.85410 21.0948i −0.328629 1.01142i
\(436\) 0 0
\(437\) −3.73607 + 2.71441i −0.178720 + 0.129848i
\(438\) 0 0
\(439\) 20.5279 0.979741 0.489871 0.871795i \(-0.337044\pi\)
0.489871 + 0.871795i \(0.337044\pi\)
\(440\) 0 0
\(441\) −6.94427 −0.330680
\(442\) 0 0
\(443\) −6.32624 + 4.59628i −0.300569 + 0.218376i −0.727839 0.685748i \(-0.759475\pi\)
0.427270 + 0.904124i \(0.359475\pi\)
\(444\) 0 0
\(445\) −4.42705 13.6251i −0.209862 0.645890i
\(446\) 0 0
\(447\) 1.19098 + 0.865300i 0.0563316 + 0.0409273i
\(448\) 0 0
\(449\) −8.43769 + 25.9686i −0.398199 + 1.22553i 0.528242 + 0.849094i \(0.322851\pi\)
−0.926442 + 0.376438i \(0.877149\pi\)
\(450\) 0 0
\(451\) −4.04508 + 16.0822i −0.190476 + 0.757281i
\(452\) 0 0
\(453\) 4.14590 12.7598i 0.194791 0.599506i
\(454\) 0 0
\(455\) 1.11803 + 0.812299i 0.0524142 + 0.0380812i
\(456\) 0 0
\(457\) −12.5902 38.7486i −0.588943 1.81258i −0.582822 0.812600i \(-0.698052\pi\)
−0.00612133 0.999981i \(-0.501948\pi\)
\(458\) 0 0
\(459\) −3.92705 + 2.85317i −0.183299 + 0.133175i
\(460\) 0 0
\(461\) −10.9098 −0.508121 −0.254061 0.967188i \(-0.581766\pi\)
−0.254061 + 0.967188i \(0.581766\pi\)
\(462\) 0 0
\(463\) 24.4508 1.13633 0.568164 0.822916i \(-0.307654\pi\)
0.568164 + 0.822916i \(0.307654\pi\)
\(464\) 0 0
\(465\) −13.5172 + 9.82084i −0.626846 + 0.455430i
\(466\) 0 0
\(467\) −6.30902 19.4172i −0.291946 0.898519i −0.984230 0.176893i \(-0.943395\pi\)
0.692284 0.721626i \(-0.256605\pi\)
\(468\) 0 0
\(469\) −2.97214 2.15938i −0.137240 0.0997111i
\(470\) 0 0
\(471\) −1.90983 + 5.87785i −0.0880003 + 0.270837i
\(472\) 0 0
\(473\) −6.43363 + 5.37582i −0.295819 + 0.247181i
\(474\) 0 0
\(475\) 1.50000 4.61653i 0.0688247 0.211821i
\(476\) 0 0
\(477\) −8.54508 6.20837i −0.391253 0.284262i
\(478\) 0 0
\(479\) 2.53444 + 7.80021i 0.115802 + 0.356401i 0.992113 0.125344i \(-0.0400034\pi\)
−0.876312 + 0.481744i \(0.840003\pi\)
\(480\) 0 0
\(481\) 14.8992 10.8249i 0.679344 0.493573i
\(482\) 0 0
\(483\) 0.416408 0.0189472
\(484\) 0 0
\(485\) −0.381966 −0.0173442
\(486\) 0 0
\(487\) 6.51722 4.73504i 0.295323 0.214565i −0.430250 0.902710i \(-0.641575\pi\)
0.725573 + 0.688145i \(0.241575\pi\)
\(488\) 0 0
\(489\) −5.44427 16.7557i −0.246198 0.757721i
\(490\) 0 0
\(491\) −30.8156 22.3888i −1.39069 1.01039i −0.995789 0.0916696i \(-0.970780\pi\)
−0.394899 0.918725i \(-0.629220\pi\)
\(492\) 0 0
\(493\) −12.7082 + 39.1118i −0.572349 + 1.76151i
\(494\) 0 0
\(495\) −6.66312 + 5.56758i −0.299485 + 0.250244i
\(496\) 0 0
\(497\) −0.551663 + 1.69784i −0.0247455 + 0.0761587i
\(498\) 0 0
\(499\) −10.5902 7.69421i −0.474081 0.344440i 0.324949 0.945732i \(-0.394653\pi\)
−0.799030 + 0.601292i \(0.794653\pi\)
\(500\) 0 0
\(501\) 2.37132 + 7.29818i 0.105943 + 0.326059i
\(502\) 0 0
\(503\) 1.00000 0.726543i 0.0445878 0.0323949i −0.565268 0.824907i \(-0.691227\pi\)
0.609856 + 0.792512i \(0.291227\pi\)
\(504\) 0 0
\(505\) 24.7984 1.10351
\(506\) 0 0
\(507\) −8.00000 −0.355292
\(508\) 0 0
\(509\) 7.39919 5.37582i 0.327963 0.238279i −0.411603 0.911363i \(-0.635031\pi\)
0.739566 + 0.673084i \(0.235031\pi\)
\(510\) 0 0
\(511\) −0.708204 2.17963i −0.0313291 0.0964210i
\(512\) 0 0
\(513\) −2.11803 1.53884i −0.0935135 0.0679415i
\(514\) 0 0
\(515\) −10.0902 + 31.0543i −0.444626 + 1.36842i
\(516\) 0 0
\(517\) 5.54508 22.0458i 0.243873 0.969574i
\(518\) 0 0
\(519\) 3.71885 11.4454i 0.163239 0.502399i
\(520\) 0 0
\(521\) 12.9443 + 9.40456i 0.567099 + 0.412021i 0.834050 0.551689i \(-0.186016\pi\)
−0.266951 + 0.963710i \(0.586016\pi\)
\(522\) 0 0
\(523\) −8.20820 25.2623i −0.358920 1.10464i −0.953702 0.300754i \(-0.902762\pi\)
0.594782 0.803887i \(-0.297238\pi\)
\(524\) 0 0
\(525\) −0.354102 + 0.257270i −0.0154543 + 0.0112282i
\(526\) 0 0
\(527\) 30.9787 1.34945
\(528\) 0 0
\(529\) −19.8885 −0.864719
\(530\) 0 0
\(531\) 4.50000 3.26944i 0.195283 0.141882i
\(532\) 0 0
\(533\) 3.45492 + 10.6331i 0.149649 + 0.460572i
\(534\) 0 0
\(535\) 12.5902 + 9.14729i 0.544321 + 0.395472i
\(536\) 0 0
\(537\) 1.36475 4.20025i 0.0588931 0.181254i
\(538\) 0 0
\(539\) 19.5066 + 12.2452i 0.840208 + 0.527439i
\(540\) 0 0
\(541\) 6.80902 20.9560i 0.292743 0.900969i −0.691228 0.722637i \(-0.742930\pi\)
0.983970 0.178332i \(-0.0570701\pi\)
\(542\) 0 0
\(543\) 16.8992 + 12.2780i 0.725214 + 0.526898i
\(544\) 0 0
\(545\) −14.4721 44.5407i −0.619918 1.90791i
\(546\) 0 0
\(547\) 18.4894 13.4333i 0.790548 0.574367i −0.117578 0.993064i \(-0.537513\pi\)
0.908126 + 0.418697i \(0.137513\pi\)
\(548\) 0 0
\(549\) −0.145898 −0.00622678
\(550\) 0 0
\(551\) −22.1803 −0.944914
\(552\) 0 0
\(553\) −1.86475 + 1.35482i −0.0792970 + 0.0576127i
\(554\) 0 0
\(555\) 6.66312 + 20.5070i 0.282834 + 0.870472i
\(556\) 0 0
\(557\) −1.35410 0.983813i −0.0573751 0.0416855i 0.558728 0.829351i \(-0.311290\pi\)
−0.616103 + 0.787665i \(0.711290\pi\)
\(558\) 0 0
\(559\) −1.74671 + 5.37582i −0.0738780 + 0.227373i
\(560\) 0 0
\(561\) 16.0623 1.08981i 0.678151 0.0460120i
\(562\) 0 0
\(563\) 7.96149 24.5030i 0.335537 1.03268i −0.630920 0.775848i \(-0.717322\pi\)
0.966457 0.256829i \(-0.0826776\pi\)
\(564\) 0 0
\(565\) −29.1525 21.1805i −1.22645 0.891071i
\(566\) 0 0
\(567\) 0.0729490 + 0.224514i 0.00306357 + 0.00942870i
\(568\) 0 0
\(569\) 16.4164 11.9272i 0.688212 0.500015i −0.187860 0.982196i \(-0.560155\pi\)
0.876072 + 0.482181i \(0.160155\pi\)
\(570\) 0 0
\(571\) −29.8541 −1.24936 −0.624678 0.780883i \(-0.714770\pi\)
−0.624678 + 0.780883i \(0.714770\pi\)
\(572\) 0 0
\(573\) 10.2361 0.427618
\(574\) 0 0
\(575\) −2.64590 + 1.92236i −0.110342 + 0.0801678i
\(576\) 0 0
\(577\) −1.79837 5.53483i −0.0748673 0.230418i 0.906619 0.421950i \(-0.138654\pi\)
−0.981486 + 0.191532i \(0.938654\pi\)
\(578\) 0 0
\(579\) −12.3992 9.00854i −0.515293 0.374382i
\(580\) 0 0
\(581\) 1.16312 3.57971i 0.0482543 0.148511i
\(582\) 0 0
\(583\) 13.0557 + 32.5074i 0.540713 + 1.34632i
\(584\) 0 0
\(585\) −1.80902 + 5.56758i −0.0747936 + 0.230191i
\(586\) 0 0
\(587\) −0.572949 0.416272i −0.0236481 0.0171814i 0.575898 0.817521i \(-0.304652\pi\)
−0.599547 + 0.800340i \(0.704652\pi\)
\(588\) 0 0
\(589\) 5.16312 + 15.8904i 0.212743 + 0.654754i
\(590\) 0 0
\(591\) 12.0172 8.73102i 0.494322 0.359146i
\(592\) 0 0
\(593\) −18.4377 −0.757145 −0.378573 0.925572i \(-0.623585\pi\)
−0.378573 + 0.925572i \(0.623585\pi\)
\(594\) 0 0
\(595\) 3.00000 0.122988
\(596\) 0 0
\(597\) −0.427051 + 0.310271i −0.0174780 + 0.0126985i
\(598\) 0 0
\(599\) −8.56231 26.3521i −0.349846 1.07672i −0.958938 0.283616i \(-0.908466\pi\)
0.609091 0.793100i \(-0.291534\pi\)
\(600\) 0 0
\(601\) −3.19098 2.31838i −0.130163 0.0945689i 0.520799 0.853679i \(-0.325634\pi\)
−0.650962 + 0.759111i \(0.725634\pi\)
\(602\) 0 0
\(603\) 4.80902 14.8006i 0.195838 0.602728i
\(604\) 0 0
\(605\) 28.5344 3.88998i 1.16009 0.158150i
\(606\) 0 0
\(607\) 3.20820 9.87384i 0.130217 0.400767i −0.864598 0.502463i \(-0.832427\pi\)
0.994815 + 0.101697i \(0.0324271\pi\)
\(608\) 0 0
\(609\) 1.61803 + 1.17557i 0.0655660 + 0.0476365i
\(610\) 0 0
\(611\) −4.73607 14.5761i −0.191601 0.589687i
\(612\) 0 0
\(613\) −22.7984 + 16.5640i −0.920818 + 0.669013i −0.943727 0.330724i \(-0.892707\pi\)
0.0229097 + 0.999738i \(0.492707\pi\)
\(614\) 0 0
\(615\) −13.0902 −0.527847
\(616\) 0 0
\(617\) −21.4721 −0.864436 −0.432218 0.901769i \(-0.642269\pi\)
−0.432218 + 0.901769i \(0.642269\pi\)
\(618\) 0 0
\(619\) 20.6074 14.9721i 0.828281 0.601781i −0.0907915 0.995870i \(-0.528940\pi\)
0.919072 + 0.394089i \(0.128940\pi\)
\(620\) 0 0
\(621\) 0.545085 + 1.67760i 0.0218735 + 0.0673197i
\(622\) 0 0
\(623\) 1.04508 + 0.759299i 0.0418704 + 0.0304207i
\(624\) 0 0
\(625\) −9.52786 + 29.3238i −0.381115 + 1.17295i
\(626\) 0 0
\(627\) 3.23607 + 8.05748i 0.129236 + 0.321785i
\(628\) 0 0
\(629\) 12.3541 38.0220i 0.492590 1.51604i
\(630\) 0 0
\(631\) 9.30902 + 6.76340i 0.370586 + 0.269247i 0.757454 0.652889i \(-0.226443\pi\)
−0.386868 + 0.922135i \(0.626443\pi\)
\(632\) 0 0
\(633\) 1.73607 + 5.34307i 0.0690025 + 0.212368i
\(634\) 0 0
\(635\) −11.0902 + 8.05748i −0.440100 + 0.319751i
\(636\) 0 0
\(637\) 15.5279 0.615236
\(638\) 0 0
\(639\) −7.56231 −0.299160
\(640\) 0 0
\(641\) 5.50000 3.99598i 0.217237 0.157832i −0.473845 0.880608i \(-0.657134\pi\)
0.691082 + 0.722776i \(0.257134\pi\)
\(642\) 0 0
\(643\) −8.06231 24.8132i −0.317946 0.978538i −0.974525 0.224280i \(-0.927997\pi\)
0.656578 0.754258i \(-0.272003\pi\)
\(644\) 0 0
\(645\) −5.35410 3.88998i −0.210818 0.153168i
\(646\) 0 0
\(647\) 10.3197 31.7606i 0.405708 1.24864i −0.514595 0.857433i \(-0.672058\pi\)
0.920303 0.391207i \(-0.127942\pi\)
\(648\) 0 0
\(649\) −18.4058 + 1.24882i −0.722489 + 0.0490203i
\(650\) 0 0
\(651\) 0.465558 1.43284i 0.0182467 0.0561575i
\(652\) 0 0
\(653\) −20.0172 14.5434i −0.783334 0.569126i 0.122643 0.992451i \(-0.460863\pi\)
−0.905978 + 0.423325i \(0.860863\pi\)
\(654\) 0 0
\(655\) −10.7812 33.1810i −0.421255 1.29649i
\(656\) 0 0
\(657\) 7.85410 5.70634i 0.306418 0.222625i
\(658\) 0 0
\(659\) 21.1246 0.822898 0.411449 0.911433i \(-0.365023\pi\)
0.411449 + 0.911433i \(0.365023\pi\)
\(660\) 0 0
\(661\) −14.8541 −0.577758 −0.288879 0.957366i \(-0.593282\pi\)
−0.288879 + 0.957366i \(0.593282\pi\)
\(662\) 0 0
\(663\) 8.78115 6.37988i 0.341032 0.247774i
\(664\) 0 0
\(665\) 0.500000 + 1.53884i 0.0193892 + 0.0596737i
\(666\) 0 0
\(667\) 12.0902 + 8.78402i 0.468133 + 0.340119i
\(668\) 0 0
\(669\) −6.63525 + 20.4212i −0.256534 + 0.789530i
\(670\) 0 0
\(671\) 0.409830 + 0.257270i 0.0158213 + 0.00993180i
\(672\) 0 0
\(673\) −5.39919 + 16.6170i −0.208123 + 0.640538i 0.791447 + 0.611237i \(0.209328\pi\)
−0.999571 + 0.0293004i \(0.990672\pi\)
\(674\) 0 0
\(675\) −1.50000 1.08981i −0.0577350 0.0419470i
\(676\) 0 0
\(677\) −4.76393 14.6619i −0.183093 0.563502i 0.816818 0.576896i \(-0.195736\pi\)
−0.999910 + 0.0133945i \(0.995736\pi\)
\(678\) 0 0
\(679\) 0.0278640 0.0202444i 0.00106932 0.000776909i
\(680\) 0 0
\(681\) 28.5967 1.09583
\(682\) 0 0
\(683\) −50.4853 −1.93177 −0.965883 0.258979i \(-0.916614\pi\)
−0.965883 + 0.258979i \(0.916614\pi\)
\(684\) 0 0
\(685\) 7.35410 5.34307i 0.280986 0.204148i
\(686\) 0 0
\(687\) 7.38197 + 22.7194i 0.281640 + 0.866797i
\(688\) 0 0
\(689\) 19.1074 + 13.8823i 0.727934 + 0.528875i
\(690\) 0 0
\(691\) −11.0000 + 33.8545i −0.418460 + 1.28789i 0.490660 + 0.871351i \(0.336756\pi\)
−0.909120 + 0.416535i \(0.863244\pi\)
\(692\) 0 0
\(693\) 0.190983 0.759299i 0.00725484 0.0288434i
\(694\) 0 0
\(695\) −13.2533 + 40.7894i −0.502726 + 1.54723i
\(696\) 0 0
\(697\) 19.6353 + 14.2658i 0.743738 + 0.540358i
\(698\) 0 0
\(699\) −2.75329 8.47375i −0.104139 0.320507i
\(700\) 0 0
\(701\) 25.8262 18.7639i 0.975444 0.708701i 0.0187579 0.999824i \(-0.494029\pi\)
0.956686 + 0.291123i \(0.0940288\pi\)
\(702\) 0 0
\(703\) 21.5623 0.813238
\(704\) 0 0
\(705\) 17.9443 0.675820
\(706\) 0 0
\(707\) −1.80902 + 1.31433i −0.0680351 + 0.0494304i
\(708\) 0 0
\(709\) 1.64590 + 5.06555i 0.0618130 + 0.190241i 0.977194 0.212347i \(-0.0681108\pi\)
−0.915381 + 0.402588i \(0.868111\pi\)
\(710\) 0 0
\(711\) −7.89919 5.73910i −0.296243 0.215233i
\(712\) 0 0
\(713\) 3.47871 10.7064i 0.130279 0.400957i
\(714\) 0 0
\(715\) 14.8992 12.4495i 0.557198 0.465585i
\(716\) 0 0
\(717\) −4.64590 + 14.2986i −0.173504 + 0.533991i
\(718\) 0 0
\(719\) 7.13525 + 5.18407i 0.266100 + 0.193333i 0.712832 0.701335i \(-0.247412\pi\)
−0.446732 + 0.894668i \(0.647412\pi\)
\(720\) 0 0
\(721\) −0.909830 2.80017i −0.0338838 0.104284i
\(722\) 0 0
\(723\) −22.7082 + 16.4985i −0.844527 + 0.613585i
\(724\) 0 0
\(725\) −15.7082 −0.583388
\(726\) 0 0
\(727\) 10.7426 0.398423 0.199211 0.979957i \(-0.436162\pi\)
0.199211 + 0.979957i \(0.436162\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) 3.79180 + 11.6699i 0.140245 + 0.431629i
\(732\) 0 0
\(733\) 17.8541 + 12.9718i 0.659456 + 0.479123i 0.866479 0.499213i \(-0.166377\pi\)
−0.207023 + 0.978336i \(0.566377\pi\)
\(734\) 0 0
\(735\) −5.61803 + 17.2905i −0.207224 + 0.637771i
\(736\) 0 0
\(737\) −39.6074 + 33.0952i −1.45896 + 1.21908i
\(738\) 0 0
\(739\) −15.1631 + 46.6673i −0.557784 + 1.71668i 0.130690 + 0.991423i \(0.458281\pi\)
−0.688475 + 0.725260i \(0.741719\pi\)
\(740\) 0 0
\(741\) 4.73607 + 3.44095i 0.173984 + 0.126407i
\(742\) 0 0
\(743\) −3.07295 9.45756i −0.112736 0.346964i 0.878732 0.477315i \(-0.158390\pi\)
−0.991468 + 0.130350i \(0.958390\pi\)
\(744\) 0 0
\(745\) 3.11803 2.26538i 0.114236 0.0829973i
\(746\) 0 0
\(747\) 15.9443 0.583370
\(748\) 0 0
\(749\) −1.40325 −0.0512737
\(750\) 0 0
\(751\) 5.73607 4.16750i 0.209312 0.152074i −0.478190 0.878256i \(-0.658707\pi\)
0.687502 + 0.726182i \(0.258707\pi\)
\(752\) 0 0
\(753\) 2.73607 + 8.42075i 0.0997079 + 0.306869i
\(754\) 0 0
\(755\) −28.4164 20.6457i −1.03418 0.751375i
\(756\) 0 0
\(757\) −5.39919 + 16.6170i −0.196237 + 0.603955i 0.803723 + 0.595003i \(0.202849\pi\)
−0.999960 + 0.00895128i \(0.997151\pi\)
\(758\) 0 0
\(759\) 1.42705 5.67358i 0.0517987 0.205938i
\(760\) 0 0
\(761\) −2.45492 + 7.55545i −0.0889906 + 0.273885i −0.985641 0.168854i \(-0.945993\pi\)
0.896650 + 0.442739i \(0.145993\pi\)
\(762\) 0 0
\(763\) 3.41641 + 2.48217i 0.123682 + 0.0898604i
\(764\) 0 0
\(765\) 3.92705 + 12.0862i 0.141983 + 0.436978i
\(766\) 0 0
\(767\) −10.0623 + 7.31069i −0.363329 + 0.263974i
\(768\) 0 0
\(769\) 6.43769 0.232149 0.116075 0.993240i \(-0.462969\pi\)
0.116075 + 0.993240i \(0.462969\pi\)
\(770\) 0 0
\(771\) −6.79837 −0.244837
\(772\) 0 0
\(773\) 37.0795 26.9399i 1.33366 0.968959i 0.334006 0.942571i \(-0.391599\pi\)
0.999652 0.0263883i \(-0.00840062\pi\)
\(774\) 0 0
\(775\) 3.65654 + 11.2537i 0.131347 + 0.404244i
\(776\) 0 0
\(777\) −1.57295 1.14281i −0.0564292 0.0409982i
\(778\) 0 0
\(779\) −4.04508 + 12.4495i −0.144930 + 0.446049i
\(780\) 0 0
\(781\) 21.2426 + 13.3350i 0.760122 + 0.477165i
\(782\) 0 0
\(783\) −2.61803 + 8.05748i −0.0935609 + 0.287951i
\(784\) 0 0
\(785\) 13.0902 + 9.51057i 0.467208 + 0.339447i
\(786\) 0 0
\(787\) 9.58359 + 29.4953i 0.341618 + 1.05139i 0.963369 + 0.268178i \(0.0864215\pi\)
−0.621751 + 0.783215i \(0.713579\pi\)
\(788\) 0 0
\(789\) −3.35410 + 2.43690i −0.119409 + 0.0867559i
\(790\) 0 0
\(791\) 3.24922 0.115529
\(792\) 0 0
\(793\) 0.326238 0.0115850
\(794\) 0 0
\(795\) −22.3713 + 16.2537i −0.793429 + 0.576460i
\(796\) 0 0
\(797\) 2.38197 + 7.33094i 0.0843736 + 0.259675i 0.984339 0.176286i \(-0.0564084\pi\)
−0.899965 + 0.435961i \(0.856408\pi\)
\(798\) 0 0
\(799\) −26.9164 19.5559i −0.952234 0.691839i
\(800\) 0 0
\(801\) −1.69098 + 5.20431i −0.0597479 + 0.183885i
\(802\) 0 0
\(803\) −32.1246 + 2.17963i −1.13365 + 0.0769174i
\(804\) 0 0
\(805\) 0.336881 1.03681i 0.0118735 0.0365429i
\(806\) 0 0
\(807\) −20.5623 14.9394i −0.723827 0.525891i
\(808\) 0 0
\(809\) 7.19098 + 22.1316i 0.252821 + 0.778105i 0.994251 + 0.107074i \(0.0341481\pi\)
−0.741430 + 0.671031i \(0.765852\pi\)
\(810\) 0 0
\(811\) 12.3992 9.00854i 0.435394 0.316333i −0.348408 0.937343i \(-0.613278\pi\)
0.783802 + 0.621011i \(0.213278\pi\)
\(812\) 0 0
\(813\) 15.3820 0.539469
\(814\) 0 0
\(815\) −46.1246 −1.61567
\(816\) 0 0
\(817\) −5.35410 + 3.88998i −0.187316 + 0.136093i
\(818\) 0 0
\(819\) −0.163119 0.502029i −0.00569984 0.0175423i
\(820\) 0 0
\(821\) −25.0795 18.2213i −0.875282 0.635929i 0.0567174 0.998390i \(-0.481937\pi\)
−0.931999 + 0.362461i \(0.881937\pi\)
\(822\) 0 0
\(823\) 7.89261 24.2910i 0.275119 0.846729i −0.714069 0.700076i \(-0.753150\pi\)
0.989188 0.146654i \(-0.0468504\pi\)
\(824\) 0 0
\(825\) 2.29180 + 5.70634i 0.0797901 + 0.198669i
\(826\) 0 0
\(827\) 3.18034 9.78808i 0.110591 0.340365i −0.880411 0.474212i \(-0.842733\pi\)
0.991002 + 0.133847i \(0.0427331\pi\)
\(828\) 0 0
\(829\) −22.0172 15.9964i −0.764690 0.555580i 0.135655 0.990756i \(-0.456686\pi\)
−0.900345 + 0.435176i \(0.856686\pi\)
\(830\) 0 0
\(831\) −2.73607 8.42075i −0.0949131 0.292113i
\(832\) 0 0
\(833\) 27.2705 19.8132i 0.944867 0.686486i
\(834\) 0 0
\(835\) 20.0902 0.695249
\(836\) 0 0
\(837\) 6.38197 0.220593
\(838\) 0 0
\(839\) −27.9336 + 20.2950i −0.964376 + 0.700660i −0.954163 0.299288i \(-0.903251\pi\)
−0.0102130 + 0.999948i \(0.503251\pi\)
\(840\) 0 0
\(841\) 13.2188 + 40.6834i 0.455822 + 1.40288i
\(842\) 0 0
\(843\) 25.5623 + 18.5721i 0.880413 + 0.639657i
\(844\) 0 0
\(845\) −6.47214 + 19.9192i −0.222648 + 0.685241i
\(846\) 0 0
\(847\) −1.87539 + 1.79611i −0.0644391 + 0.0617151i
\(848\) 0 0
\(849\) −0.708204 + 2.17963i −0.0243055 + 0.0748046i
\(850\) 0 0
\(851\) −11.7533 8.53926i −0.402898 0.292722i
\(852\) 0 0
\(853\) 11.5795 + 35.6381i 0.396475 + 1.22023i 0.927807 + 0.373062i \(0.121692\pi\)
−0.531331 + 0.847164i \(0.678308\pi\)
\(854\) 0 0
\(855\) −5.54508 + 4.02874i −0.189638 + 0.137780i
\(856\) 0 0
\(857\) −12.8885 −0.440264 −0.220132 0.975470i \(-0.570649\pi\)
−0.220132 + 0.975470i \(0.570649\pi\)
\(858\) 0 0
\(859\) −11.6525 −0.397577 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(860\) 0 0
\(861\) 0.954915 0.693786i 0.0325434 0.0236442i
\(862\) 0 0
\(863\) −14.6180 44.9897i −0.497604 1.53147i −0.812859 0.582460i \(-0.802090\pi\)
0.315256 0.949007i \(-0.397910\pi\)
\(864\) 0 0
\(865\) −25.4894 18.5191i −0.866664 0.629668i
\(866\) 0 0
\(867\) 2.02786 6.24112i 0.0688699 0.211960i
\(868\) 0 0
\(869\) 12.0689 + 30.0503i 0.409409 + 1.01939i
\(870\) 0 0
\(871\) −10.7533 + 33.0952i −0.364361 + 1.12139i
\(872\) 0 0
\(873\) 0.118034 + 0.0857567i 0.00399485 + 0.00290242i
\(874\) 0 0
\(875\) −0.600813 1.84911i −0.0203112 0.0625114i
\(876\) 0 0
\(877\) −33.8435 + 24.5887i −1.14281 + 0.830302i −0.987509 0.157565i \(-0.949636\pi\)
−0.155304 + 0.987867i \(0.549636\pi\)
\(878\) 0 0
\(879\) −17.3607 −0.585561
\(880\) 0 0
\(881\) 1.14590 0.0386063 0.0193031 0.999814i \(-0.493855\pi\)
0.0193031 + 0.999814i \(0.493855\pi\)
\(882\) 0 0
\(883\) 30.5623 22.2048i 1.02850 0.747252i 0.0604949 0.998169i \(-0.480732\pi\)
0.968009 + 0.250917i \(0.0807321\pi\)
\(884\) 0 0
\(885\) −4.50000 13.8496i −0.151266 0.465548i
\(886\) 0 0
\(887\) 4.19098 + 3.04493i 0.140719 + 0.102239i 0.655918 0.754832i \(-0.272282\pi\)
−0.515198 + 0.857071i \(0.672282\pi\)
\(888\) 0 0
\(889\) 0.381966 1.17557i 0.0128107 0.0394274i
\(890\) 0 0
\(891\) 3.30902 0.224514i 0.110856 0.00752150i
\(892\) 0 0
\(893\) 5.54508 17.0660i 0.185559 0.571092i
\(894\) 0 0
\(895\) −9.35410 6.79615i −0.312673 0.227170i
\(896\) 0 0
\(897\) −1.21885 3.75123i −0.0406961 0.125250i
\(898\) 0 0
\(899\) 43.7426 31.7809i 1.45890 1.05995i
\(900\) 0 0
\(901\) 51.2705 1.70807
\(902\) 0 0
\(903\) 0.596748 0.0198585
\(904\) 0 0
\(905\) 44.2426 32.1442i 1.47068 1.06851i
\(906\) 0 0
\(907\) 7.89919 + 24.3112i 0.262288 + 0.807240i 0.992306 + 0.123812i \(0.0395119\pi\)
−0.730018 + 0.683428i \(0.760488\pi\)
\(908\) 0 0
\(909\) −7.66312 5.56758i −0.254170 0.184665i
\(910\) 0 0
\(911\) 0.218847 0.673542i 0.00725073 0.0223154i −0.947366 0.320153i \(-0.896266\pi\)
0.954616 + 0.297838i \(0.0962655\pi\)
\(912\) 0 0
\(913\) −44.7877 28.1154i −1.48226 0.930485i
\(914\) 0 0
\(915\) −0.118034 + 0.363271i −0.00390208 + 0.0120094i
\(916\) 0 0
\(917\) 2.54508 + 1.84911i 0.0840461 + 0.0610631i
\(918\) 0 0
\(919\) −10.1631 31.2789i −0.335250 1.03179i −0.966599 0.256295i \(-0.917498\pi\)
0.631348 0.775499i \(-0.282502\pi\)
\(920\) 0 0
\(921\) 11.1631 8.11048i 0.367837 0.267249i
\(922\) 0 0
\(923\) 16.9098 0.556594
\(924\) 0 0
\(925\) 15.2705 0.502091
\(926\) 0 0
\(927\) 10.0902 7.33094i 0.331405 0.240780i
\(928\) 0 0
\(929\) 6.16312 + 18.9681i 0.202205 + 0.622324i 0.999817 + 0.0191522i \(0.00609672\pi\)
−0.797611 + 0.603172i \(0.793903\pi\)
\(930\) 0 0
\(931\) 14.7082 + 10.6861i 0.482042 + 0.350224i
\(932\) 0 0
\(933\) 3.01722 9.28605i 0.0987794 0.304012i
\(934\) 0 0
\(935\) 10.2812 40.8752i 0.336230 1.33676i
\(936\) 0 0
\(937\) 2.69098 8.28199i 0.0879106 0.270561i −0.897431 0.441155i \(-0.854569\pi\)
0.985341 + 0.170594i \(0.0545688\pi\)
\(938\) 0 0
\(939\) 21.7533 + 15.8047i 0.709892 + 0.515767i
\(940\) 0 0
\(941\) 13.9721 + 43.0018i 0.455479 + 1.40182i 0.870572 + 0.492040i \(0.163749\pi\)
−0.415094 + 0.909779i \(0.636251\pi\)
\(942\) 0 0
\(943\) 7.13525 5.18407i 0.232356 0.168816i
\(944\) 0 0
\(945\) 0.618034 0.0201046
\(946\) 0 0
\(947\) 41.2705 1.34111 0.670556 0.741859i \(-0.266056\pi\)
0.670556 + 0.741859i \(0.266056\pi\)
\(948\) 0 0
\(949\) −17.5623 + 12.7598i −0.570097 + 0.414199i
\(950\) 0 0
\(951\) 4.92705 + 15.1639i 0.159771 + 0.491723i
\(952\) 0 0
\(953\) −10.2361 7.43694i −0.331579 0.240906i 0.409521 0.912300i \(-0.365696\pi\)
−0.741100 + 0.671394i \(0.765696\pi\)
\(954\) 0 0
\(955\) 8.28115 25.4868i 0.267972 0.824732i
\(956\) 0 0
\(957\) 21.5623 18.0171i 0.697010 0.582409i
\(958\) 0 0
\(959\) −0.253289 + 0.779543i −0.00817913 + 0.0251728i
\(960\) 0 0
\(961\) −7.87132 5.71885i −0.253914 0.184479i
\(962\) 0 0
\(963\) −1.83688 5.65334i −0.0591927 0.182176i
\(964\) 0 0
\(965\) −32.4615 + 23.5847i −1.04497 + 0.759217i
\(966\) 0 0
\(967\) −24.6180 −0.791663 −0.395831 0.918323i \(-0.629544\pi\)
−0.395831 + 0.918323i \(0.629544\pi\)
\(968\) 0 0
\(969\) 12.7082 0.408246
\(970\) 0 0
\(971\) −22.0902 + 16.0494i −0.708907 + 0.515051i −0.882821 0.469710i \(-0.844359\pi\)
0.173914 + 0.984761i \(0.444359\pi\)
\(972\) 0 0
\(973\) −1.19505 3.67798i −0.0383115 0.117911i
\(974\) 0 0
\(975\) 3.35410 + 2.43690i 0.107417 + 0.0780432i
\(976\) 0 0
\(977\) 6.30902 19.4172i 0.201843 0.621210i −0.797985 0.602677i \(-0.794101\pi\)
0.999828 0.0185325i \(-0.00589942\pi\)
\(978\) 0 0
\(979\) 13.9271 11.6372i 0.445110 0.371926i
\(980\) 0 0
\(981\) −5.52786 + 17.0130i −0.176491 + 0.543184i
\(982\) 0 0
\(983\) −27.3262 19.8537i −0.871572 0.633234i 0.0594366 0.998232i \(-0.481070\pi\)
−0.931008 + 0.364998i \(0.881070\pi\)
\(984\) 0 0
\(985\) −12.0172 36.9852i −0.382900 1.17845i
\(986\) 0 0
\(987\) −1.30902 + 0.951057i −0.0416665 + 0.0302725i
\(988\) 0 0
\(989\) 4.45898 0.141787
\(990\) 0 0
\(991\) −14.3262 −0.455088 −0.227544 0.973768i \(-0.573070\pi\)
−0.227544 + 0.973768i \(0.573070\pi\)
\(992\) 0 0
\(993\) 21.8435 15.8702i 0.693181 0.503626i
\(994\) 0 0
\(995\) 0.427051 + 1.31433i 0.0135384 + 0.0416670i
\(996\) 0 0
\(997\) −41.0967 29.8585i −1.30155 0.945629i −0.301578 0.953442i \(-0.597513\pi\)
−0.999969 + 0.00781235i \(0.997513\pi\)
\(998\) 0 0
\(999\) 2.54508 7.83297i 0.0805229 0.247824i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 264.2.q.b.97.1 yes 4
3.2 odd 2 792.2.r.d.361.1 4
4.3 odd 2 528.2.y.h.97.1 4
11.4 even 5 2904.2.a.z.1.2 2
11.5 even 5 inner 264.2.q.b.49.1 4
11.7 odd 10 2904.2.a.ba.1.2 2
33.5 odd 10 792.2.r.d.577.1 4
33.26 odd 10 8712.2.a.ba.1.1 2
33.29 even 10 8712.2.a.bc.1.1 2
44.7 even 10 5808.2.a.bv.1.2 2
44.15 odd 10 5808.2.a.bw.1.2 2
44.27 odd 10 528.2.y.h.49.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.q.b.49.1 4 11.5 even 5 inner
264.2.q.b.97.1 yes 4 1.1 even 1 trivial
528.2.y.h.49.1 4 44.27 odd 10
528.2.y.h.97.1 4 4.3 odd 2
792.2.r.d.361.1 4 3.2 odd 2
792.2.r.d.577.1 4 33.5 odd 10
2904.2.a.z.1.2 2 11.4 even 5
2904.2.a.ba.1.2 2 11.7 odd 10
5808.2.a.bv.1.2 2 44.7 even 10
5808.2.a.bw.1.2 2 44.15 odd 10
8712.2.a.ba.1.1 2 33.26 odd 10
8712.2.a.bc.1.1 2 33.29 even 10