Properties

Label 264.2.k.b.155.21
Level $264$
Weight $2$
Character 264.155
Analytic conductor $2.108$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(155,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 155.21
Character \(\chi\) \(=\) 264.155
Dual form 264.2.k.b.155.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.589301 - 1.28558i) q^{2} +(-1.70660 - 0.295805i) q^{3} +(-1.30545 - 1.51519i) q^{4} -2.62331 q^{5} +(-1.38599 + 2.01966i) q^{6} +2.26615i q^{7} +(-2.71721 + 0.785358i) q^{8} +(2.82500 + 1.00964i) q^{9} +(-1.54592 + 3.37249i) q^{10} +1.00000i q^{11} +(1.77968 + 2.97199i) q^{12} +3.41593i q^{13} +(2.91333 + 1.33545i) q^{14} +(4.47696 + 0.775989i) q^{15} +(-0.591610 + 3.95601i) q^{16} -5.66301i q^{17} +(2.96276 - 3.03679i) q^{18} -6.67620 q^{19} +(3.42460 + 3.97482i) q^{20} +(0.670338 - 3.86742i) q^{21} +(1.28558 + 0.589301i) q^{22} -7.70741 q^{23} +(4.86951 - 0.536534i) q^{24} +1.88177 q^{25} +(4.39146 + 2.01301i) q^{26} +(-4.52250 - 2.55871i) q^{27} +(3.43365 - 2.95834i) q^{28} -1.81910 q^{29} +(3.63587 - 5.29821i) q^{30} +8.63579i q^{31} +(4.73714 + 3.09184i) q^{32} +(0.295805 - 1.70660i) q^{33} +(-7.28027 - 3.33722i) q^{34} -5.94482i q^{35} +(-2.15809 - 5.59845i) q^{36} -7.33832i q^{37} +(-3.93430 + 8.58282i) q^{38} +(1.01045 - 5.82964i) q^{39} +(7.12808 - 2.06024i) q^{40} -0.894785i q^{41} +(-4.57686 - 3.14085i) q^{42} +4.56373 q^{43} +(1.51519 - 1.30545i) q^{44} +(-7.41086 - 2.64861i) q^{45} +(-4.54198 + 9.90851i) q^{46} -7.36576 q^{47} +(2.17985 - 6.57634i) q^{48} +1.86456 q^{49} +(1.10893 - 2.41918i) q^{50} +(-1.67515 + 9.66452i) q^{51} +(5.17579 - 4.45932i) q^{52} +3.49217 q^{53} +(-5.95455 + 4.30620i) q^{54} -2.62331i q^{55} +(-1.77974 - 6.15760i) q^{56} +(11.3936 + 1.97485i) q^{57} +(-1.07200 + 2.33861i) q^{58} +0.962971i q^{59} +(-4.66867 - 7.79646i) q^{60} -0.532187i q^{61} +(11.1020 + 5.08908i) q^{62} +(-2.28800 + 6.40187i) q^{63} +(6.76642 - 4.26796i) q^{64} -8.96105i q^{65} +(-2.01966 - 1.38599i) q^{66} +2.10323 q^{67} +(-8.58054 + 7.39277i) q^{68} +(13.1535 + 2.27989i) q^{69} +(-7.64257 - 3.50329i) q^{70} +2.27093 q^{71} +(-8.46904 - 0.524773i) q^{72} -5.89627 q^{73} +(-9.43402 - 4.32448i) q^{74} +(-3.21144 - 0.556637i) q^{75} +(8.71544 + 10.1157i) q^{76} -2.26615 q^{77} +(-6.89903 - 4.73443i) q^{78} -11.5441i q^{79} +(1.55198 - 10.3778i) q^{80} +(6.96124 + 5.70448i) q^{81} +(-1.15032 - 0.527298i) q^{82} +0.294647i q^{83} +(-6.73498 + 4.03303i) q^{84} +14.8558i q^{85} +(2.68941 - 5.86706i) q^{86} +(3.10449 + 0.538100i) q^{87} +(-0.785358 - 2.71721i) q^{88} +10.7653i q^{89} +(-7.77224 + 7.96644i) q^{90} -7.74101 q^{91} +(10.0616 + 11.6782i) q^{92} +(2.55451 - 14.7379i) q^{93} +(-4.34065 + 9.46930i) q^{94} +17.5138 q^{95} +(-7.16985 - 6.67782i) q^{96} -11.5378 q^{97} +(1.09879 - 2.39705i) q^{98} +(-1.00964 + 2.82500i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{3} + 2 q^{6} + 8 q^{9} + 12 q^{10} - 12 q^{12} + 2 q^{18} - 32 q^{19} + 4 q^{22} + 12 q^{24} - 64 q^{27} + 40 q^{28} - 22 q^{30} - 64 q^{34} - 20 q^{36} + 32 q^{40} + 20 q^{42} - 16 q^{43} - 28 q^{46}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.589301 1.28558i 0.416699 0.909045i
\(3\) −1.70660 0.295805i −0.985309 0.170783i
\(4\) −1.30545 1.51519i −0.652724 0.757596i
\(5\) −2.62331 −1.17318 −0.586591 0.809884i \(-0.699530\pi\)
−0.586591 + 0.809884i \(0.699530\pi\)
\(6\) −1.38599 + 2.01966i −0.565826 + 0.824524i
\(7\) 2.26615i 0.856525i 0.903654 + 0.428262i \(0.140874\pi\)
−0.903654 + 0.428262i \(0.859126\pi\)
\(8\) −2.71721 + 0.785358i −0.960678 + 0.277666i
\(9\) 2.82500 + 1.00964i 0.941666 + 0.336548i
\(10\) −1.54592 + 3.37249i −0.488863 + 1.06647i
\(11\) 1.00000i 0.301511i
\(12\) 1.77968 + 2.97199i 0.513750 + 0.857940i
\(13\) 3.41593i 0.947408i 0.880684 + 0.473704i \(0.157083\pi\)
−0.880684 + 0.473704i \(0.842917\pi\)
\(14\) 2.91333 + 1.33545i 0.778619 + 0.356913i
\(15\) 4.47696 + 0.775989i 1.15595 + 0.200359i
\(16\) −0.591610 + 3.95601i −0.147902 + 0.989002i
\(17\) 5.66301i 1.37348i −0.726902 0.686741i \(-0.759041\pi\)
0.726902 0.686741i \(-0.240959\pi\)
\(18\) 2.96276 3.03679i 0.698328 0.715778i
\(19\) −6.67620 −1.53163 −0.765813 0.643063i \(-0.777663\pi\)
−0.765813 + 0.643063i \(0.777663\pi\)
\(20\) 3.42460 + 3.97482i 0.765764 + 0.888797i
\(21\) 0.670338 3.86742i 0.146280 0.843941i
\(22\) 1.28558 + 0.589301i 0.274087 + 0.125639i
\(23\) −7.70741 −1.60711 −0.803553 0.595234i \(-0.797059\pi\)
−0.803553 + 0.595234i \(0.797059\pi\)
\(24\) 4.86951 0.536534i 0.993985 0.109519i
\(25\) 1.88177 0.376355
\(26\) 4.39146 + 2.01301i 0.861237 + 0.394784i
\(27\) −4.52250 2.55871i −0.870355 0.492424i
\(28\) 3.43365 2.95834i 0.648899 0.559074i
\(29\) −1.81910 −0.337799 −0.168900 0.985633i \(-0.554021\pi\)
−0.168900 + 0.985633i \(0.554021\pi\)
\(30\) 3.63587 5.29821i 0.663817 0.967317i
\(31\) 8.63579i 1.55103i 0.631327 + 0.775517i \(0.282511\pi\)
−0.631327 + 0.775517i \(0.717489\pi\)
\(32\) 4.73714 + 3.09184i 0.837416 + 0.546566i
\(33\) 0.295805 1.70660i 0.0514930 0.297082i
\(34\) −7.28027 3.33722i −1.24856 0.572328i
\(35\) 5.94482i 1.00486i
\(36\) −2.15809 5.59845i −0.359681 0.933075i
\(37\) 7.33832i 1.20641i −0.797585 0.603206i \(-0.793890\pi\)
0.797585 0.603206i \(-0.206110\pi\)
\(38\) −3.93430 + 8.58282i −0.638227 + 1.39232i
\(39\) 1.01045 5.82964i 0.161801 0.933490i
\(40\) 7.12808 2.06024i 1.12705 0.325753i
\(41\) 0.894785i 0.139742i −0.997556 0.0698709i \(-0.977741\pi\)
0.997556 0.0698709i \(-0.0222587\pi\)
\(42\) −4.57686 3.14085i −0.706225 0.484644i
\(43\) 4.56373 0.695963 0.347982 0.937501i \(-0.386867\pi\)
0.347982 + 0.937501i \(0.386867\pi\)
\(44\) 1.51519 1.30545i 0.228424 0.196804i
\(45\) −7.41086 2.64861i −1.10475 0.394832i
\(46\) −4.54198 + 9.90851i −0.669679 + 1.46093i
\(47\) −7.36576 −1.07441 −0.537204 0.843453i \(-0.680519\pi\)
−0.537204 + 0.843453i \(0.680519\pi\)
\(48\) 2.17985 6.57634i 0.314634 0.949213i
\(49\) 1.86456 0.266366
\(50\) 1.10893 2.41918i 0.156827 0.342123i
\(51\) −1.67515 + 9.66452i −0.234567 + 1.35330i
\(52\) 5.17579 4.45932i 0.717753 0.618396i
\(53\) 3.49217 0.479686 0.239843 0.970812i \(-0.422904\pi\)
0.239843 + 0.970812i \(0.422904\pi\)
\(54\) −5.95455 + 4.30620i −0.810312 + 0.585999i
\(55\) 2.62331i 0.353728i
\(56\) −1.77974 6.15760i −0.237828 0.822844i
\(57\) 11.3936 + 1.97485i 1.50912 + 0.261576i
\(58\) −1.07200 + 2.33861i −0.140761 + 0.307075i
\(59\) 0.962971i 0.125368i 0.998033 + 0.0626841i \(0.0199661\pi\)
−0.998033 + 0.0626841i \(0.980034\pi\)
\(60\) −4.66867 7.79646i −0.602722 1.00652i
\(61\) 0.532187i 0.0681396i −0.999419 0.0340698i \(-0.989153\pi\)
0.999419 0.0340698i \(-0.0108469\pi\)
\(62\) 11.1020 + 5.08908i 1.40996 + 0.646314i
\(63\) −2.28800 + 6.40187i −0.288262 + 0.806560i
\(64\) 6.76642 4.26796i 0.845803 0.533495i
\(65\) 8.96105i 1.11148i
\(66\) −2.01966 1.38599i −0.248603 0.170603i
\(67\) 2.10323 0.256951 0.128475 0.991713i \(-0.458992\pi\)
0.128475 + 0.991713i \(0.458992\pi\)
\(68\) −8.58054 + 7.39277i −1.04054 + 0.896505i
\(69\) 13.1535 + 2.27989i 1.58349 + 0.274466i
\(70\) −7.64257 3.50329i −0.913461 0.418723i
\(71\) 2.27093 0.269510 0.134755 0.990879i \(-0.456975\pi\)
0.134755 + 0.990879i \(0.456975\pi\)
\(72\) −8.46904 0.524773i −0.998086 0.0618451i
\(73\) −5.89627 −0.690106 −0.345053 0.938583i \(-0.612139\pi\)
−0.345053 + 0.938583i \(0.612139\pi\)
\(74\) −9.43402 4.32448i −1.09668 0.502711i
\(75\) −3.21144 0.556637i −0.370825 0.0642750i
\(76\) 8.71544 + 10.1157i 0.999730 + 1.16035i
\(77\) −2.26615 −0.258252
\(78\) −6.89903 4.73443i −0.781161 0.536069i
\(79\) 11.5441i 1.29881i −0.760443 0.649404i \(-0.775018\pi\)
0.760443 0.649404i \(-0.224982\pi\)
\(80\) 1.55198 10.3778i 0.173516 1.16028i
\(81\) 6.96124 + 5.70448i 0.773471 + 0.633832i
\(82\) −1.15032 0.527298i −0.127032 0.0582303i
\(83\) 0.294647i 0.0323417i 0.999869 + 0.0161709i \(0.00514757\pi\)
−0.999869 + 0.0161709i \(0.994852\pi\)
\(84\) −6.73498 + 4.03303i −0.734846 + 0.440040i
\(85\) 14.8558i 1.61134i
\(86\) 2.68941 5.86706i 0.290007 0.632661i
\(87\) 3.10449 + 0.538100i 0.332837 + 0.0576904i
\(88\) −0.785358 2.71721i −0.0837195 0.289655i
\(89\) 10.7653i 1.14112i 0.821254 + 0.570562i \(0.193275\pi\)
−0.821254 + 0.570562i \(0.806725\pi\)
\(90\) −7.77224 + 7.96644i −0.819266 + 0.839737i
\(91\) −7.74101 −0.811479
\(92\) 10.0616 + 11.6782i 1.04900 + 1.21754i
\(93\) 2.55451 14.7379i 0.264890 1.52825i
\(94\) −4.34065 + 9.46930i −0.447704 + 0.976684i
\(95\) 17.5138 1.79688
\(96\) −7.16985 6.67782i −0.731769 0.681552i
\(97\) −11.5378 −1.17149 −0.585743 0.810497i \(-0.699197\pi\)
−0.585743 + 0.810497i \(0.699197\pi\)
\(98\) 1.09879 2.39705i 0.110994 0.242138i
\(99\) −1.00964 + 2.82500i −0.101473 + 0.283923i
\(100\) −2.45656 2.85125i −0.245656 0.285125i
\(101\) −7.28507 −0.724891 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(102\) 11.4374 + 7.84885i 1.13247 + 0.777152i
\(103\) 16.9668i 1.67179i −0.548892 0.835893i \(-0.684950\pi\)
0.548892 0.835893i \(-0.315050\pi\)
\(104\) −2.68273 9.28179i −0.263063 0.910154i
\(105\) −1.75851 + 10.1455i −0.171613 + 0.990096i
\(106\) 2.05794 4.48947i 0.199885 0.436056i
\(107\) 5.97663i 0.577782i −0.957362 0.288891i \(-0.906713\pi\)
0.957362 0.288891i \(-0.0932866\pi\)
\(108\) 2.02695 + 10.1927i 0.195044 + 0.980795i
\(109\) 0.680709i 0.0652001i −0.999468 0.0326000i \(-0.989621\pi\)
0.999468 0.0326000i \(-0.0103788\pi\)
\(110\) −3.37249 1.54592i −0.321554 0.147398i
\(111\) −2.17071 + 12.5236i −0.206035 + 1.18869i
\(112\) −8.96491 1.34068i −0.847105 0.126682i
\(113\) 10.5967i 0.996854i 0.866932 + 0.498427i \(0.166089\pi\)
−0.866932 + 0.498427i \(0.833911\pi\)
\(114\) 9.25312 13.4837i 0.866635 1.26286i
\(115\) 20.2189 1.88543
\(116\) 2.37475 + 2.75629i 0.220490 + 0.255915i
\(117\) −3.44887 + 9.65000i −0.318848 + 0.892143i
\(118\) 1.23798 + 0.567480i 0.113965 + 0.0522408i
\(119\) 12.8332 1.17642
\(120\) −12.7743 + 1.40750i −1.16612 + 0.128486i
\(121\) −1.00000 −0.0909091
\(122\) −0.684171 0.313619i −0.0619419 0.0283937i
\(123\) −0.264682 + 1.52704i −0.0238655 + 0.137689i
\(124\) 13.0849 11.2736i 1.17506 1.01240i
\(125\) 8.18009 0.731649
\(126\) 6.88182 + 6.71405i 0.613081 + 0.598135i
\(127\) 6.12524i 0.543527i 0.962364 + 0.271763i \(0.0876068\pi\)
−0.962364 + 0.271763i \(0.912393\pi\)
\(128\) −1.49936 11.2139i −0.132526 0.991180i
\(129\) −7.78849 1.34997i −0.685738 0.118859i
\(130\) −11.5202 5.28076i −1.01039 0.463153i
\(131\) 21.7962i 1.90434i 0.305563 + 0.952172i \(0.401155\pi\)
−0.305563 + 0.952172i \(0.598845\pi\)
\(132\) −2.97199 + 1.77968i −0.258679 + 0.154902i
\(133\) 15.1293i 1.31188i
\(134\) 1.23944 2.70388i 0.107071 0.233580i
\(135\) 11.8639 + 6.71230i 1.02108 + 0.577703i
\(136\) 4.44749 + 15.3876i 0.381369 + 1.31947i
\(137\) 0.354211i 0.0302623i 0.999886 + 0.0151311i \(0.00481657\pi\)
−0.999886 + 0.0151311i \(0.995183\pi\)
\(138\) 10.6824 15.5664i 0.909342 1.32510i
\(139\) 4.92521 0.417751 0.208875 0.977942i \(-0.433020\pi\)
0.208875 + 0.977942i \(0.433020\pi\)
\(140\) −9.00755 + 7.76066i −0.761277 + 0.655896i
\(141\) 12.5704 + 2.17883i 1.05862 + 0.183490i
\(142\) 1.33826 2.91947i 0.112304 0.244997i
\(143\) −3.41593 −0.285654
\(144\) −5.66545 + 10.5784i −0.472121 + 0.881534i
\(145\) 4.77208 0.396300
\(146\) −3.47468 + 7.58014i −0.287566 + 0.627337i
\(147\) −3.18207 0.551545i −0.262452 0.0454907i
\(148\) −11.1190 + 9.57980i −0.913973 + 0.787455i
\(149\) 8.96175 0.734175 0.367088 0.930186i \(-0.380355\pi\)
0.367088 + 0.930186i \(0.380355\pi\)
\(150\) −2.60811 + 3.80055i −0.212951 + 0.310314i
\(151\) 9.80015i 0.797525i 0.917054 + 0.398762i \(0.130560\pi\)
−0.917054 + 0.398762i \(0.869440\pi\)
\(152\) 18.1406 5.24321i 1.47140 0.425281i
\(153\) 5.71762 15.9980i 0.462242 1.29336i
\(154\) −1.33545 + 2.91333i −0.107613 + 0.234762i
\(155\) 22.6544i 1.81964i
\(156\) −10.1521 + 6.07927i −0.812819 + 0.486731i
\(157\) 20.7120i 1.65300i 0.562936 + 0.826500i \(0.309672\pi\)
−0.562936 + 0.826500i \(0.690328\pi\)
\(158\) −14.8409 6.80293i −1.18068 0.541212i
\(159\) −5.95975 1.03300i −0.472639 0.0819222i
\(160\) −12.4270 8.11087i −0.982441 0.641221i
\(161\) 17.4661i 1.37653i
\(162\) 11.4359 5.58759i 0.898486 0.439003i
\(163\) 0.864559 0.0677175 0.0338588 0.999427i \(-0.489220\pi\)
0.0338588 + 0.999427i \(0.489220\pi\)
\(164\) −1.35577 + 1.16810i −0.105868 + 0.0912129i
\(165\) −0.775989 + 4.47696i −0.0604106 + 0.348531i
\(166\) 0.378794 + 0.173636i 0.0294001 + 0.0134768i
\(167\) −21.6643 −1.67643 −0.838216 0.545338i \(-0.816401\pi\)
−0.838216 + 0.545338i \(0.816401\pi\)
\(168\) 1.21587 + 11.0350i 0.0938061 + 0.851372i
\(169\) 1.33142 0.102417
\(170\) 19.0984 + 8.75457i 1.46478 + 0.671445i
\(171\) −18.8603 6.74059i −1.44228 0.515466i
\(172\) −5.95772 6.91493i −0.454272 0.527259i
\(173\) −21.5677 −1.63976 −0.819882 0.572532i \(-0.805961\pi\)
−0.819882 + 0.572532i \(0.805961\pi\)
\(174\) 2.52125 3.67398i 0.191136 0.278524i
\(175\) 4.26438i 0.322357i
\(176\) −3.95601 0.591610i −0.298195 0.0445942i
\(177\) 0.284852 1.64341i 0.0214108 0.123526i
\(178\) 13.8397 + 6.34403i 1.03733 + 0.475505i
\(179\) 5.21948i 0.390122i 0.980791 + 0.195061i \(0.0624905\pi\)
−0.980791 + 0.195061i \(0.937509\pi\)
\(180\) 5.66134 + 14.6865i 0.421971 + 1.09467i
\(181\) 1.66117i 0.123474i 0.998092 + 0.0617370i \(0.0196640\pi\)
−0.998092 + 0.0617370i \(0.980336\pi\)
\(182\) −4.56179 + 9.95172i −0.338142 + 0.737670i
\(183\) −0.157424 + 0.908233i −0.0116371 + 0.0671385i
\(184\) 20.9426 6.05308i 1.54391 0.446239i
\(185\) 19.2507i 1.41534i
\(186\) −17.4414 11.9691i −1.27887 0.877616i
\(187\) 5.66301 0.414120
\(188\) 9.61562 + 11.1605i 0.701291 + 0.813966i
\(189\) 5.79842 10.2487i 0.421773 0.745481i
\(190\) 10.3209 22.5154i 0.748756 1.63344i
\(191\) 9.84970 0.712699 0.356350 0.934353i \(-0.384021\pi\)
0.356350 + 0.934353i \(0.384021\pi\)
\(192\) −12.8101 + 5.28218i −0.924489 + 0.381209i
\(193\) −0.840647 −0.0605111 −0.0302556 0.999542i \(-0.509632\pi\)
−0.0302556 + 0.999542i \(0.509632\pi\)
\(194\) −6.79924 + 14.8328i −0.488157 + 1.06493i
\(195\) −2.65072 + 15.2930i −0.189822 + 1.09515i
\(196\) −2.43409 2.82516i −0.173863 0.201797i
\(197\) −13.7168 −0.977283 −0.488641 0.872485i \(-0.662507\pi\)
−0.488641 + 0.872485i \(0.662507\pi\)
\(198\) 3.03679 + 2.96276i 0.215815 + 0.210554i
\(199\) 3.67147i 0.260264i −0.991497 0.130132i \(-0.958460\pi\)
0.991497 0.130132i \(-0.0415401\pi\)
\(200\) −5.11317 + 1.47787i −0.361555 + 0.104501i
\(201\) −3.58938 0.622146i −0.253176 0.0438828i
\(202\) −4.29310 + 9.36556i −0.302061 + 0.658958i
\(203\) 4.12237i 0.289333i
\(204\) 16.8304 10.0784i 1.17836 0.705627i
\(205\) 2.34730i 0.163943i
\(206\) −21.8122 9.99854i −1.51973 0.696632i
\(207\) −21.7734 7.78173i −1.51336 0.540868i
\(208\) −13.5134 2.02090i −0.936989 0.140124i
\(209\) 6.67620i 0.461803i
\(210\) 12.0065 + 8.23944i 0.828531 + 0.568576i
\(211\) 8.35436 0.575138 0.287569 0.957760i \(-0.407153\pi\)
0.287569 + 0.957760i \(0.407153\pi\)
\(212\) −4.55885 5.29130i −0.313103 0.363408i
\(213\) −3.87558 0.671752i −0.265550 0.0460277i
\(214\) −7.68345 3.52203i −0.525230 0.240761i
\(215\) −11.9721 −0.816491
\(216\) 14.2981 + 3.40076i 0.972860 + 0.231393i
\(217\) −19.5700 −1.32850
\(218\) −0.875108 0.401142i −0.0592698 0.0271688i
\(219\) 10.0626 + 1.74414i 0.679967 + 0.117858i
\(220\) −3.97482 + 3.42460i −0.267982 + 0.230886i
\(221\) 19.3444 1.30125
\(222\) 14.8209 + 10.1708i 0.994717 + 0.682620i
\(223\) 15.8569i 1.06186i −0.847417 0.530928i \(-0.821843\pi\)
0.847417 0.530928i \(-0.178157\pi\)
\(224\) −7.00658 + 10.7351i −0.468147 + 0.717268i
\(225\) 5.31601 + 1.89992i 0.354401 + 0.126661i
\(226\) 13.6229 + 6.24465i 0.906185 + 0.415388i
\(227\) 17.0784i 1.13354i 0.823877 + 0.566768i \(0.191806\pi\)
−0.823877 + 0.566768i \(0.808194\pi\)
\(228\) −11.8815 19.8416i −0.786874 1.31404i
\(229\) 13.1246i 0.867300i −0.901081 0.433650i \(-0.857225\pi\)
0.901081 0.433650i \(-0.142775\pi\)
\(230\) 11.9150 25.9931i 0.785655 1.71394i
\(231\) 3.86742 + 0.670338i 0.254458 + 0.0441050i
\(232\) 4.94288 1.42865i 0.324516 0.0937954i
\(233\) 3.19345i 0.209210i 0.994514 + 0.104605i \(0.0333578\pi\)
−0.994514 + 0.104605i \(0.966642\pi\)
\(234\) 10.3735 + 10.1206i 0.678134 + 0.661602i
\(235\) 19.3227 1.26047
\(236\) 1.45909 1.25711i 0.0949784 0.0818309i
\(237\) −3.41479 + 19.7012i −0.221814 + 1.27973i
\(238\) 7.56264 16.4982i 0.490213 1.06942i
\(239\) −4.69875 −0.303937 −0.151968 0.988385i \(-0.548561\pi\)
−0.151968 + 0.988385i \(0.548561\pi\)
\(240\) −5.71843 + 17.2518i −0.369123 + 1.11360i
\(241\) −22.2328 −1.43214 −0.716070 0.698028i \(-0.754061\pi\)
−0.716070 + 0.698028i \(0.754061\pi\)
\(242\) −0.589301 + 1.28558i −0.0378817 + 0.0826404i
\(243\) −10.1927 11.7945i −0.653860 0.756615i
\(244\) −0.806365 + 0.694743i −0.0516223 + 0.0444764i
\(245\) −4.89132 −0.312495
\(246\) 1.80716 + 1.24016i 0.115221 + 0.0790696i
\(247\) 22.8054i 1.45108i
\(248\) −6.78219 23.4652i −0.430669 1.49004i
\(249\) 0.0871581 0.502847i 0.00552342 0.0318666i
\(250\) 4.82053 10.5162i 0.304877 0.665102i
\(251\) 15.5766i 0.983186i −0.870825 0.491593i \(-0.836415\pi\)
0.870825 0.491593i \(-0.163585\pi\)
\(252\) 12.6869 4.89055i 0.799202 0.308076i
\(253\) 7.70741i 0.484560i
\(254\) 7.87450 + 3.60961i 0.494090 + 0.226487i
\(255\) 4.39443 25.3531i 0.275190 1.58767i
\(256\) −15.3000 4.68082i −0.956250 0.292551i
\(257\) 30.2445i 1.88660i −0.331943 0.943299i \(-0.607704\pi\)
0.331943 0.943299i \(-0.392296\pi\)
\(258\) −6.32527 + 9.21721i −0.393794 + 0.573839i
\(259\) 16.6297 1.03332
\(260\) −13.5777 + 11.6982i −0.842054 + 0.725491i
\(261\) −5.13897 1.83665i −0.318094 0.113686i
\(262\) 28.0208 + 12.8445i 1.73113 + 0.793538i
\(263\) 5.14939 0.317525 0.158762 0.987317i \(-0.449250\pi\)
0.158762 + 0.987317i \(0.449250\pi\)
\(264\) 0.536534 + 4.86951i 0.0330214 + 0.299698i
\(265\) −9.16105 −0.562759
\(266\) −19.4500 8.91571i −1.19255 0.546657i
\(267\) 3.18444 18.3722i 0.194885 1.12436i
\(268\) −2.74566 3.18680i −0.167718 0.194665i
\(269\) 15.2250 0.928283 0.464142 0.885761i \(-0.346363\pi\)
0.464142 + 0.885761i \(0.346363\pi\)
\(270\) 15.6206 11.2965i 0.950642 0.687484i
\(271\) 1.73393i 0.105329i 0.998612 + 0.0526645i \(0.0167714\pi\)
−0.998612 + 0.0526645i \(0.983229\pi\)
\(272\) 22.4029 + 3.35029i 1.35838 + 0.203141i
\(273\) 13.2108 + 2.28983i 0.799557 + 0.138587i
\(274\) 0.455367 + 0.208737i 0.0275097 + 0.0126103i
\(275\) 1.88177i 0.113475i
\(276\) −13.7167 22.9063i −0.825651 1.37880i
\(277\) 11.9291i 0.716750i −0.933578 0.358375i \(-0.883331\pi\)
0.933578 0.358375i \(-0.116669\pi\)
\(278\) 2.90243 6.33177i 0.174076 0.379754i
\(279\) −8.71907 + 24.3961i −0.521997 + 1.46056i
\(280\) 4.66882 + 16.1533i 0.279015 + 0.965345i
\(281\) 30.9171i 1.84436i 0.386761 + 0.922180i \(0.373594\pi\)
−0.386761 + 0.922180i \(0.626406\pi\)
\(282\) 10.2088 14.8764i 0.607928 0.885875i
\(283\) −1.86514 −0.110871 −0.0554356 0.998462i \(-0.517655\pi\)
−0.0554356 + 0.998462i \(0.517655\pi\)
\(284\) −2.96458 3.44089i −0.175916 0.204180i
\(285\) −29.8891 5.18066i −1.77048 0.306876i
\(286\) −2.01301 + 4.39146i −0.119032 + 0.259673i
\(287\) 2.02772 0.119692
\(288\) 10.2608 + 13.5173i 0.604621 + 0.796513i
\(289\) −15.0697 −0.886452
\(290\) 2.81219 6.13491i 0.165138 0.360254i
\(291\) 19.6905 + 3.41294i 1.15428 + 0.200070i
\(292\) 7.69727 + 8.93397i 0.450449 + 0.522821i
\(293\) 16.3026 0.952411 0.476205 0.879334i \(-0.342012\pi\)
0.476205 + 0.879334i \(0.342012\pi\)
\(294\) −2.58425 + 3.76578i −0.150717 + 0.219625i
\(295\) 2.52618i 0.147080i
\(296\) 5.76321 + 19.9397i 0.334980 + 1.15897i
\(297\) 2.55871 4.52250i 0.148471 0.262422i
\(298\) 5.28117 11.5211i 0.305930 0.667398i
\(299\) 26.3280i 1.52259i
\(300\) 3.34896 + 5.59261i 0.193352 + 0.322890i
\(301\) 10.3421i 0.596109i
\(302\) 12.5989 + 5.77524i 0.724986 + 0.332328i
\(303\) 12.4327 + 2.15496i 0.714242 + 0.123799i
\(304\) 3.94971 26.4111i 0.226531 1.51478i
\(305\) 1.39609i 0.0799401i
\(306\) −17.1974 16.7781i −0.983107 0.959141i
\(307\) 0.210110 0.0119916 0.00599580 0.999982i \(-0.498091\pi\)
0.00599580 + 0.999982i \(0.498091\pi\)
\(308\) 2.95834 + 3.43365i 0.168567 + 0.195651i
\(309\) −5.01885 + 28.9556i −0.285513 + 1.64723i
\(310\) −29.1241 13.3503i −1.65414 0.758243i
\(311\) 6.71505 0.380776 0.190388 0.981709i \(-0.439025\pi\)
0.190388 + 0.981709i \(0.439025\pi\)
\(312\) 1.83276 + 16.6339i 0.103760 + 0.941709i
\(313\) 16.2816 0.920290 0.460145 0.887844i \(-0.347797\pi\)
0.460145 + 0.887844i \(0.347797\pi\)
\(314\) 26.6270 + 12.2056i 1.50265 + 0.688803i
\(315\) 6.00215 16.7941i 0.338183 0.946242i
\(316\) −17.4915 + 15.0702i −0.983972 + 0.847764i
\(317\) −7.75016 −0.435293 −0.217646 0.976028i \(-0.569838\pi\)
−0.217646 + 0.976028i \(0.569838\pi\)
\(318\) −4.84010 + 7.05301i −0.271419 + 0.395513i
\(319\) 1.81910i 0.101850i
\(320\) −17.7505 + 11.1962i −0.992280 + 0.625887i
\(321\) −1.76792 + 10.1997i −0.0986754 + 0.569294i
\(322\) −22.4542 10.2928i −1.25132 0.573596i
\(323\) 37.8074i 2.10366i
\(324\) −0.444154 17.9945i −0.0246752 0.999696i
\(325\) 6.42801i 0.356562i
\(326\) 0.509486 1.11146i 0.0282178 0.0615582i
\(327\) −0.201357 + 1.16170i −0.0111351 + 0.0642422i
\(328\) 0.702727 + 2.43131i 0.0388016 + 0.134247i
\(329\) 16.6919i 0.920256i
\(330\) 5.29821 + 3.63587i 0.291657 + 0.200148i
\(331\) 1.49433 0.0821356 0.0410678 0.999156i \(-0.486924\pi\)
0.0410678 + 0.999156i \(0.486924\pi\)
\(332\) 0.446447 0.384647i 0.0245020 0.0211102i
\(333\) 7.40909 20.7308i 0.406016 1.13604i
\(334\) −12.7668 + 27.8512i −0.698568 + 1.52395i
\(335\) −5.51743 −0.301450
\(336\) 14.9030 + 4.93987i 0.813024 + 0.269492i
\(337\) −29.8286 −1.62487 −0.812435 0.583052i \(-0.801858\pi\)
−0.812435 + 0.583052i \(0.801858\pi\)
\(338\) 0.784609 1.71166i 0.0426771 0.0931018i
\(339\) 3.13455 18.0844i 0.170246 0.982209i
\(340\) 22.5095 19.3935i 1.22075 1.05176i
\(341\) −8.63579 −0.467654
\(342\) −19.7800 + 20.2742i −1.06958 + 1.09630i
\(343\) 20.0884i 1.08467i
\(344\) −12.4006 + 3.58417i −0.668596 + 0.193245i
\(345\) −34.5057 5.98086i −1.85773 0.321999i
\(346\) −12.7099 + 27.7271i −0.683288 + 1.49062i
\(347\) 15.3786i 0.825569i −0.910829 0.412785i \(-0.864556\pi\)
0.910829 0.412785i \(-0.135444\pi\)
\(348\) −3.23743 5.40636i −0.173544 0.289811i
\(349\) 18.2307i 0.975866i 0.872881 + 0.487933i \(0.162249\pi\)
−0.872881 + 0.487933i \(0.837751\pi\)
\(350\) 5.48222 + 2.51301i 0.293037 + 0.134326i
\(351\) 8.74038 15.4485i 0.466527 0.824582i
\(352\) −3.09184 + 4.73714i −0.164796 + 0.252490i
\(353\) 22.3922i 1.19181i 0.803053 + 0.595907i \(0.203207\pi\)
−0.803053 + 0.595907i \(0.796793\pi\)
\(354\) −1.94488 1.33466i −0.103369 0.0709366i
\(355\) −5.95736 −0.316184
\(356\) 16.3116 14.0536i 0.864511 0.744839i
\(357\) −21.9013 3.79613i −1.15914 0.200913i
\(358\) 6.71007 + 3.07584i 0.354638 + 0.162563i
\(359\) −3.73476 −0.197113 −0.0985566 0.995131i \(-0.531423\pi\)
−0.0985566 + 0.995131i \(0.531423\pi\)
\(360\) 22.2169 + 1.37665i 1.17094 + 0.0725556i
\(361\) 25.5717 1.34588
\(362\) 2.13558 + 0.978931i 0.112243 + 0.0514515i
\(363\) 1.70660 + 0.295805i 0.0895735 + 0.0155257i
\(364\) 10.1055 + 11.7291i 0.529672 + 0.614773i
\(365\) 15.4678 0.809620
\(366\) 1.07484 + 0.737604i 0.0561828 + 0.0385552i
\(367\) 9.68922i 0.505773i −0.967496 0.252887i \(-0.918620\pi\)
0.967496 0.252887i \(-0.0813800\pi\)
\(368\) 4.55977 30.4906i 0.237695 1.58943i
\(369\) 0.903414 2.52777i 0.0470298 0.131590i
\(370\) 24.7484 + 11.3445i 1.28661 + 0.589771i
\(371\) 7.91378i 0.410863i
\(372\) −25.6655 + 15.3690i −1.33069 + 0.796844i
\(373\) 29.1125i 1.50739i 0.657226 + 0.753694i \(0.271730\pi\)
−0.657226 + 0.753694i \(0.728270\pi\)
\(374\) 3.33722 7.28027i 0.172563 0.376454i
\(375\) −13.9602 2.41971i −0.720900 0.124953i
\(376\) 20.0143 5.78476i 1.03216 0.298326i
\(377\) 6.21393i 0.320034i
\(378\) −9.75850 13.4939i −0.501923 0.694052i
\(379\) −19.3350 −0.993170 −0.496585 0.867988i \(-0.665413\pi\)
−0.496585 + 0.867988i \(0.665413\pi\)
\(380\) −22.8633 26.5367i −1.17286 1.36131i
\(381\) 1.81187 10.4534i 0.0928251 0.535542i
\(382\) 5.80444 12.6626i 0.296981 0.647875i
\(383\) 2.48690 0.127075 0.0635374 0.997979i \(-0.479762\pi\)
0.0635374 + 0.997979i \(0.479762\pi\)
\(384\) −0.758317 + 19.5812i −0.0386977 + 0.999251i
\(385\) 5.94482 0.302976
\(386\) −0.495395 + 1.08072i −0.0252149 + 0.0550073i
\(387\) 12.8925 + 4.60775i 0.655365 + 0.234225i
\(388\) 15.0620 + 17.4820i 0.764657 + 0.887513i
\(389\) −23.1594 −1.17423 −0.587113 0.809505i \(-0.699736\pi\)
−0.587113 + 0.809505i \(0.699736\pi\)
\(390\) 18.0983 + 12.4199i 0.916444 + 0.628906i
\(391\) 43.6471i 2.20733i
\(392\) −5.06639 + 1.46435i −0.255891 + 0.0739607i
\(393\) 6.44742 37.1975i 0.325229 1.87637i
\(394\) −8.08334 + 17.6341i −0.407233 + 0.888394i
\(395\) 30.2837i 1.52374i
\(396\) 5.59845 2.15809i 0.281333 0.108448i
\(397\) 16.4907i 0.827645i 0.910358 + 0.413822i \(0.135807\pi\)
−0.910358 + 0.413822i \(0.864193\pi\)
\(398\) −4.71999 2.16360i −0.236592 0.108452i
\(399\) −4.47532 + 25.8197i −0.224046 + 1.29260i
\(400\) −1.11327 + 7.44431i −0.0556637 + 0.372215i
\(401\) 30.0042i 1.49834i 0.662379 + 0.749169i \(0.269547\pi\)
−0.662379 + 0.749169i \(0.730453\pi\)
\(402\) −2.91505 + 4.24782i −0.145389 + 0.211862i
\(403\) −29.4993 −1.46946
\(404\) 9.51028 + 11.0383i 0.473154 + 0.549174i
\(405\) −18.2615 14.9646i −0.907422 0.743599i
\(406\) −5.29964 2.42932i −0.263017 0.120565i
\(407\) 7.33832 0.363747
\(408\) −3.03840 27.5761i −0.150423 1.36522i
\(409\) −3.02003 −0.149331 −0.0746655 0.997209i \(-0.523789\pi\)
−0.0746655 + 0.997209i \(0.523789\pi\)
\(410\) 3.01765 + 1.38327i 0.149031 + 0.0683147i
\(411\) 0.104777 0.604498i 0.00516828 0.0298177i
\(412\) −25.7079 + 22.1493i −1.26654 + 1.09122i
\(413\) −2.18224 −0.107381
\(414\) −22.8352 + 23.4058i −1.12229 + 1.15033i
\(415\) 0.772952i 0.0379427i
\(416\) −10.5615 + 16.1817i −0.517821 + 0.793375i
\(417\) −8.40539 1.45690i −0.411614 0.0713447i
\(418\) −8.58282 3.93430i −0.419799 0.192433i
\(419\) 10.4164i 0.508873i 0.967090 + 0.254436i \(0.0818899\pi\)
−0.967090 + 0.254436i \(0.918110\pi\)
\(420\) 17.6680 10.5799i 0.862108 0.516247i
\(421\) 7.24700i 0.353197i −0.984283 0.176599i \(-0.943491\pi\)
0.984283 0.176599i \(-0.0565094\pi\)
\(422\) 4.92323 10.7402i 0.239659 0.522826i
\(423\) −20.8083 7.43680i −1.01173 0.361589i
\(424\) −9.48894 + 2.74260i −0.460824 + 0.133193i
\(425\) 10.6565i 0.516916i
\(426\) −3.14748 + 4.58652i −0.152496 + 0.222217i
\(427\) 1.20602 0.0583632
\(428\) −9.05574 + 7.80218i −0.437725 + 0.377133i
\(429\) 5.82964 + 1.01045i 0.281458 + 0.0487849i
\(430\) −7.05518 + 15.3911i −0.340231 + 0.742227i
\(431\) −3.50855 −0.169001 −0.0845005 0.996423i \(-0.526929\pi\)
−0.0845005 + 0.996423i \(0.526929\pi\)
\(432\) 12.7978 16.3773i 0.615736 0.787953i
\(433\) 41.2801 1.98380 0.991898 0.127040i \(-0.0405476\pi\)
0.991898 + 0.127040i \(0.0405476\pi\)
\(434\) −11.5326 + 25.1589i −0.553584 + 1.20766i
\(435\) −8.14406 1.41160i −0.390478 0.0676813i
\(436\) −1.03140 + 0.888630i −0.0493953 + 0.0425577i
\(437\) 51.4562 2.46148
\(438\) 8.17214 11.9085i 0.390480 0.569009i
\(439\) 12.2339i 0.583891i −0.956435 0.291945i \(-0.905697\pi\)
0.956435 0.291945i \(-0.0943026\pi\)
\(440\) 2.06024 + 7.12808i 0.0982181 + 0.339818i
\(441\) 5.26738 + 1.88254i 0.250828 + 0.0896448i
\(442\) 11.3997 24.8689i 0.542229 1.18289i
\(443\) 21.5894i 1.02574i −0.858466 0.512871i \(-0.828582\pi\)
0.858466 0.512871i \(-0.171418\pi\)
\(444\) 21.8094 13.0599i 1.03503 0.619795i
\(445\) 28.2409i 1.33875i
\(446\) −20.3854 9.34449i −0.965275 0.442475i
\(447\) −15.2942 2.65093i −0.723389 0.125385i
\(448\) 9.67185 + 15.3337i 0.456952 + 0.724451i
\(449\) 13.9011i 0.656033i −0.944672 0.328017i \(-0.893620\pi\)
0.944672 0.328017i \(-0.106380\pi\)
\(450\) 5.57523 5.71454i 0.262819 0.269386i
\(451\) 0.894785 0.0421338
\(452\) 16.0560 13.8334i 0.755212 0.650671i
\(453\) 2.89893 16.7250i 0.136204 0.785808i
\(454\) 21.9558 + 10.0643i 1.03043 + 0.472343i
\(455\) 20.3071 0.952012
\(456\) −32.5098 + 3.58201i −1.52241 + 0.167743i
\(457\) −17.8607 −0.835489 −0.417744 0.908565i \(-0.637179\pi\)
−0.417744 + 0.908565i \(0.637179\pi\)
\(458\) −16.8728 7.73436i −0.788414 0.361403i
\(459\) −14.4900 + 25.6110i −0.676335 + 1.19542i
\(460\) −26.3948 30.6356i −1.23066 1.42839i
\(461\) 27.2690 1.27004 0.635022 0.772494i \(-0.280991\pi\)
0.635022 + 0.772494i \(0.280991\pi\)
\(462\) 3.14085 4.57686i 0.146126 0.212935i
\(463\) 2.17027i 0.100861i −0.998728 0.0504306i \(-0.983941\pi\)
0.998728 0.0504306i \(-0.0160594\pi\)
\(464\) 1.07620 7.19639i 0.0499613 0.334084i
\(465\) −6.70127 + 38.6621i −0.310764 + 1.79291i
\(466\) 4.10545 + 1.88190i 0.190181 + 0.0871776i
\(467\) 42.7049i 1.97615i −0.153976 0.988075i \(-0.549208\pi\)
0.153976 0.988075i \(-0.450792\pi\)
\(468\) 19.1239 7.37187i 0.884003 0.340765i
\(469\) 4.76624i 0.220084i
\(470\) 11.3869 24.8409i 0.525238 1.14583i
\(471\) 6.12672 35.3473i 0.282304 1.62872i
\(472\) −0.756278 2.61659i −0.0348105 0.120438i
\(473\) 4.56373i 0.209841i
\(474\) 23.3151 + 15.9999i 1.07090 + 0.734900i
\(475\) −12.5631 −0.576435
\(476\) −16.7531 19.4448i −0.767878 0.891251i
\(477\) 9.86537 + 3.52585i 0.451704 + 0.161437i
\(478\) −2.76898 + 6.04063i −0.126650 + 0.276292i
\(479\) −17.2409 −0.787757 −0.393878 0.919163i \(-0.628867\pi\)
−0.393878 + 0.919163i \(0.628867\pi\)
\(480\) 18.8088 + 17.5180i 0.858498 + 0.799585i
\(481\) 25.0672 1.14297
\(482\) −13.1018 + 28.5821i −0.596771 + 1.30188i
\(483\) −5.16657 + 29.8078i −0.235087 + 1.35630i
\(484\) 1.30545 + 1.51519i 0.0593386 + 0.0688723i
\(485\) 30.2673 1.37437
\(486\) −21.1693 + 6.15303i −0.960260 + 0.279107i
\(487\) 31.0591i 1.40742i 0.710485 + 0.703712i \(0.248476\pi\)
−0.710485 + 0.703712i \(0.751524\pi\)
\(488\) 0.417958 + 1.44606i 0.0189201 + 0.0654602i
\(489\) −1.47546 0.255741i −0.0667226 0.0115650i
\(490\) −2.88246 + 6.28820i −0.130216 + 0.284072i
\(491\) 24.5591i 1.10834i 0.832404 + 0.554169i \(0.186964\pi\)
−0.832404 + 0.554169i \(0.813036\pi\)
\(492\) 2.65929 1.59243i 0.119890 0.0717924i
\(493\) 10.3016i 0.463961i
\(494\) −29.3183 13.4393i −1.31909 0.604662i
\(495\) 2.64861 7.41086i 0.119046 0.333093i
\(496\) −34.1633 5.10902i −1.53398 0.229402i
\(497\) 5.14627i 0.230842i
\(498\) −0.595089 0.408377i −0.0266666 0.0182998i
\(499\) 2.12362 0.0950665 0.0475332 0.998870i \(-0.484864\pi\)
0.0475332 + 0.998870i \(0.484864\pi\)
\(500\) −10.6787 12.3944i −0.477565 0.554294i
\(501\) 36.9724 + 6.40840i 1.65180 + 0.286306i
\(502\) −20.0250 9.17930i −0.893760 0.409692i
\(503\) 22.2580 0.992437 0.496218 0.868198i \(-0.334722\pi\)
0.496218 + 0.868198i \(0.334722\pi\)
\(504\) 1.18922 19.1921i 0.0529719 0.854885i
\(505\) 19.1110 0.850429
\(506\) −9.90851 4.54198i −0.440487 0.201916i
\(507\) −2.27221 0.393841i −0.100913 0.0174911i
\(508\) 9.28090 7.99618i 0.411774 0.354773i
\(509\) −29.0384 −1.28711 −0.643553 0.765402i \(-0.722540\pi\)
−0.643553 + 0.765402i \(0.722540\pi\)
\(510\) −30.0038 20.5900i −1.32859 0.911740i
\(511\) 13.3618i 0.591093i
\(512\) −15.0339 + 16.9110i −0.664411 + 0.747368i
\(513\) 30.1931 + 17.0825i 1.33306 + 0.754210i
\(514\) −38.8818 17.8231i −1.71500 0.786144i
\(515\) 44.5092i 1.96131i
\(516\) 8.12200 + 13.5634i 0.357551 + 0.597094i
\(517\) 7.36576i 0.323946i
\(518\) 9.79993 21.3789i 0.430584 0.939336i
\(519\) 36.8076 + 6.37984i 1.61567 + 0.280044i
\(520\) 7.03764 + 24.3490i 0.308621 + 1.06778i
\(521\) 23.1068i 1.01233i −0.862437 0.506164i \(-0.831063\pi\)
0.862437 0.506164i \(-0.168937\pi\)
\(522\) −5.38956 + 5.52423i −0.235895 + 0.241789i
\(523\) −32.3423 −1.41423 −0.707115 0.707099i \(-0.750004\pi\)
−0.707115 + 0.707099i \(0.750004\pi\)
\(524\) 33.0254 28.4538i 1.44272 1.24301i
\(525\) 1.26142 7.27761i 0.0550531 0.317621i
\(526\) 3.03454 6.61996i 0.132312 0.288644i
\(527\) 48.9046 2.13032
\(528\) 6.57634 + 2.17985i 0.286198 + 0.0948658i
\(529\) 36.4041 1.58279
\(530\) −5.39862 + 11.7773i −0.234501 + 0.511573i
\(531\) −0.972258 + 2.72039i −0.0421924 + 0.118055i
\(532\) −22.9238 + 19.7505i −0.993871 + 0.856293i
\(533\) 3.05652 0.132393
\(534\) −21.7424 14.9206i −0.940885 0.645678i
\(535\) 15.6786i 0.677844i
\(536\) −5.71491 + 1.65179i −0.246847 + 0.0713465i
\(537\) 1.54395 8.90759i 0.0666262 0.384391i
\(538\) 8.97210 19.5730i 0.386815 0.843851i
\(539\) 1.86456i 0.0803123i
\(540\) −5.31733 26.7387i −0.228822 1.15065i
\(541\) 13.6061i 0.584972i −0.956270 0.292486i \(-0.905518\pi\)
0.956270 0.292486i \(-0.0944825\pi\)
\(542\) 2.22912 + 1.02181i 0.0957487 + 0.0438905i
\(543\) 0.491383 2.83496i 0.0210873 0.121660i
\(544\) 17.5091 26.8265i 0.750698 1.15018i
\(545\) 1.78571i 0.0764915i
\(546\) 10.7289 15.6342i 0.459156 0.669084i
\(547\) 17.5887 0.752039 0.376019 0.926612i \(-0.377293\pi\)
0.376019 + 0.926612i \(0.377293\pi\)
\(548\) 0.536697 0.462404i 0.0229266 0.0197529i
\(549\) 0.537319 1.50343i 0.0229322 0.0641648i
\(550\) 2.41918 + 1.10893i 0.103154 + 0.0472850i
\(551\) 12.1447 0.517382
\(552\) −37.5313 + 4.13528i −1.59744 + 0.176009i
\(553\) 26.1606 1.11246
\(554\) −15.3358 7.02983i −0.651557 0.298669i
\(555\) 5.69445 32.8534i 0.241716 1.39455i
\(556\) −6.42961 7.46263i −0.272676 0.316486i
\(557\) −45.4801 −1.92705 −0.963527 0.267613i \(-0.913765\pi\)
−0.963527 + 0.267613i \(0.913765\pi\)
\(558\) 26.2251 + 25.5857i 1.11020 + 1.08313i
\(559\) 15.5894i 0.659361i
\(560\) 23.5178 + 3.51701i 0.993807 + 0.148621i
\(561\) −9.66452 1.67515i −0.408036 0.0707247i
\(562\) 39.7465 + 18.2195i 1.67661 + 0.768542i
\(563\) 31.9538i 1.34669i 0.739327 + 0.673346i \(0.235144\pi\)
−0.739327 + 0.673346i \(0.764856\pi\)
\(564\) −13.1087 21.8910i −0.551977 0.921777i
\(565\) 27.7985i 1.16949i
\(566\) −1.09913 + 2.39780i −0.0461999 + 0.100787i
\(567\) −12.9272 + 15.7752i −0.542892 + 0.662497i
\(568\) −6.17059 + 1.78349i −0.258912 + 0.0748338i
\(569\) 22.5764i 0.946450i 0.880942 + 0.473225i \(0.156910\pi\)
−0.880942 + 0.473225i \(0.843090\pi\)
\(570\) −24.2738 + 35.3719i −1.01672 + 1.48157i
\(571\) −37.2738 −1.55986 −0.779930 0.625867i \(-0.784745\pi\)
−0.779930 + 0.625867i \(0.784745\pi\)
\(572\) 4.45932 + 5.17579i 0.186454 + 0.216411i
\(573\) −16.8095 2.91359i −0.702229 0.121717i
\(574\) 1.19494 2.60680i 0.0498757 0.108806i
\(575\) −14.5036 −0.604842
\(576\) 23.4243 5.22531i 0.976011 0.217721i
\(577\) 37.3835 1.55629 0.778147 0.628082i \(-0.216160\pi\)
0.778147 + 0.628082i \(0.216160\pi\)
\(578\) −8.88058 + 19.3733i −0.369383 + 0.805824i
\(579\) 1.43465 + 0.248668i 0.0596221 + 0.0103343i
\(580\) −6.22971 7.23062i −0.258674 0.300235i
\(581\) −0.667715 −0.0277015
\(582\) 15.9912 23.3025i 0.662858 0.965919i
\(583\) 3.49217i 0.144631i
\(584\) 16.0214 4.63068i 0.662969 0.191619i
\(585\) 9.04747 25.3150i 0.374067 1.04665i
\(586\) 9.60717 20.9584i 0.396868 0.865784i
\(587\) 10.6158i 0.438161i 0.975707 + 0.219081i \(0.0703058\pi\)
−0.975707 + 0.219081i \(0.929694\pi\)
\(588\) 3.31833 + 5.54145i 0.136845 + 0.228526i
\(589\) 57.6543i 2.37560i
\(590\) −3.24761 1.48868i −0.133702 0.0612879i
\(591\) 23.4092 + 4.05750i 0.962925 + 0.166903i
\(592\) 29.0305 + 4.34142i 1.19314 + 0.178431i
\(593\) 26.7250i 1.09747i −0.835998 0.548733i \(-0.815110\pi\)
0.835998 0.548733i \(-0.184890\pi\)
\(594\) −4.30620 5.95455i −0.176685 0.244318i
\(595\) −33.6656 −1.38015
\(596\) −11.6991 13.5788i −0.479214 0.556208i
\(597\) −1.08604 + 6.26576i −0.0444486 + 0.256440i
\(598\) −33.8468 15.5151i −1.38410 0.634459i
\(599\) −2.73919 −0.111920 −0.0559601 0.998433i \(-0.517822\pi\)
−0.0559601 + 0.998433i \(0.517822\pi\)
\(600\) 9.16331 1.00963i 0.374091 0.0412182i
\(601\) 9.15738 0.373537 0.186769 0.982404i \(-0.440199\pi\)
0.186769 + 0.982404i \(0.440199\pi\)
\(602\) 13.2956 + 6.09462i 0.541890 + 0.248398i
\(603\) 5.94163 + 2.12351i 0.241962 + 0.0864762i
\(604\) 14.8491 12.7936i 0.604201 0.520564i
\(605\) 2.62331 0.106653
\(606\) 10.0970 14.7134i 0.410162 0.597690i
\(607\) 30.3172i 1.23054i 0.788317 + 0.615269i \(0.210953\pi\)
−0.788317 + 0.615269i \(0.789047\pi\)
\(608\) −31.6261 20.6418i −1.28261 0.837135i
\(609\) −1.21942 + 7.03525i −0.0494132 + 0.285083i
\(610\) 1.79479 + 0.822720i 0.0726691 + 0.0333109i
\(611\) 25.1609i 1.01790i
\(612\) −31.7041 + 12.2213i −1.28156 + 0.494015i
\(613\) 36.6401i 1.47988i −0.672673 0.739940i \(-0.734854\pi\)
0.672673 0.739940i \(-0.265146\pi\)
\(614\) 0.123818 0.270114i 0.00499689 0.0109009i
\(615\) 0.694343 4.00591i 0.0279986 0.161534i
\(616\) 6.15760 1.77974i 0.248097 0.0717078i
\(617\) 32.0784i 1.29143i 0.763580 + 0.645713i \(0.223440\pi\)
−0.763580 + 0.645713i \(0.776560\pi\)
\(618\) 34.2672 + 23.5157i 1.37843 + 0.945941i
\(619\) −2.26988 −0.0912340 −0.0456170 0.998959i \(-0.514525\pi\)
−0.0456170 + 0.998959i \(0.514525\pi\)
\(620\) −34.3257 + 29.5741i −1.37855 + 1.18773i
\(621\) 34.8567 + 19.7210i 1.39875 + 0.791377i
\(622\) 3.95719 8.63276i 0.158669 0.346142i
\(623\) −24.3959 −0.977401
\(624\) 22.4643 + 7.44621i 0.899292 + 0.298087i
\(625\) −30.8678 −1.23471
\(626\) 9.59476 20.9313i 0.383484 0.836585i
\(627\) −1.97485 + 11.3936i −0.0788680 + 0.455018i
\(628\) 31.3827 27.0385i 1.25231 1.07895i
\(629\) −41.5570 −1.65699
\(630\) −18.0532 17.6131i −0.719255 0.701721i
\(631\) 10.6837i 0.425311i −0.977127 0.212655i \(-0.931789\pi\)
0.977127 0.212655i \(-0.0682112\pi\)
\(632\) 9.06623 + 31.3676i 0.360635 + 1.24774i
\(633\) −14.2576 2.47126i −0.566688 0.0982237i
\(634\) −4.56718 + 9.96348i −0.181386 + 0.395700i
\(635\) 16.0684i 0.637656i
\(636\) 6.21495 + 10.3787i 0.246439 + 0.411542i
\(637\) 6.36920i 0.252357i
\(638\) −2.33861 1.07200i −0.0925865 0.0424409i
\(639\) 6.41538 + 2.29283i 0.253788 + 0.0907030i
\(640\) 3.93329 + 29.4176i 0.155477 + 1.16283i
\(641\) 7.85931i 0.310424i −0.987881 0.155212i \(-0.950394\pi\)
0.987881 0.155212i \(-0.0496061\pi\)
\(642\) 12.0708 + 8.28352i 0.476396 + 0.326925i
\(643\) −28.1749 −1.11111 −0.555555 0.831480i \(-0.687494\pi\)
−0.555555 + 0.831480i \(0.687494\pi\)
\(644\) −26.4646 + 22.8012i −1.04285 + 0.898491i
\(645\) 20.4317 + 3.54141i 0.804496 + 0.139443i
\(646\) 48.6046 + 22.2800i 1.91232 + 0.876593i
\(647\) −19.1067 −0.751160 −0.375580 0.926790i \(-0.622556\pi\)
−0.375580 + 0.926790i \(0.622556\pi\)
\(648\) −23.3952 10.0332i −0.919050 0.394141i
\(649\) −0.962971 −0.0377999
\(650\) 8.26374 + 3.78803i 0.324130 + 0.148579i
\(651\) 33.3983 + 5.78890i 1.30898 + 0.226885i
\(652\) −1.12864 1.30997i −0.0442008 0.0513025i
\(653\) −43.6738 −1.70909 −0.854545 0.519378i \(-0.826164\pi\)
−0.854545 + 0.519378i \(0.826164\pi\)
\(654\) 1.37480 + 0.943453i 0.0537591 + 0.0368919i
\(655\) 57.1783i 2.23414i
\(656\) 3.53977 + 0.529363i 0.138205 + 0.0206682i
\(657\) −16.6570 5.95313i −0.649850 0.232254i
\(658\) −21.4589 9.83658i −0.836554 0.383470i
\(659\) 13.2237i 0.515122i −0.966262 0.257561i \(-0.917081\pi\)
0.966262 0.257561i \(-0.0829189\pi\)
\(660\) 7.79646 4.66867i 0.303477 0.181728i
\(661\) 5.14037i 0.199937i −0.994991 0.0999685i \(-0.968126\pi\)
0.994991 0.0999685i \(-0.0318742\pi\)
\(662\) 0.880608 1.92108i 0.0342258 0.0746649i
\(663\) −33.0133 5.72218i −1.28213 0.222231i
\(664\) −0.231404 0.800618i −0.00898021 0.0310700i
\(665\) 39.6889i 1.53907i
\(666\) −22.2849 21.7417i −0.863523 0.842472i
\(667\) 14.0206 0.542879
\(668\) 28.2816 + 32.8255i 1.09425 + 1.27006i
\(669\) −4.69055 + 27.0615i −0.181347 + 1.04626i
\(670\) −3.25143 + 7.09312i −0.125614 + 0.274031i
\(671\) 0.532187 0.0205449
\(672\) 15.1330 16.2480i 0.583766 0.626778i
\(673\) −14.5565 −0.561112 −0.280556 0.959838i \(-0.590519\pi\)
−0.280556 + 0.959838i \(0.590519\pi\)
\(674\) −17.5781 + 38.3472i −0.677081 + 1.47708i
\(675\) −8.51032 4.81491i −0.327562 0.185326i
\(676\) −1.73810 2.01736i −0.0668502 0.0775908i
\(677\) −20.1577 −0.774722 −0.387361 0.921928i \(-0.626613\pi\)
−0.387361 + 0.921928i \(0.626613\pi\)
\(678\) −21.4018 14.6869i −0.821930 0.564046i
\(679\) 26.1464i 1.00341i
\(680\) −11.6672 40.3664i −0.447415 1.54798i
\(681\) 5.05188 29.1461i 0.193589 1.11688i
\(682\) −5.08908 + 11.1020i −0.194871 + 0.425119i
\(683\) 34.0428i 1.30261i −0.758815 0.651306i \(-0.774221\pi\)
0.758815 0.651306i \(-0.225779\pi\)
\(684\) 14.4078 + 37.3764i 0.550897 + 1.42912i
\(685\) 0.929206i 0.0355031i
\(686\) 25.8253 + 11.8381i 0.986016 + 0.451982i
\(687\) −3.88233 + 22.3985i −0.148120 + 0.854558i
\(688\) −2.69995 + 18.0542i −0.102935 + 0.688309i
\(689\) 11.9290i 0.454459i
\(690\) −28.0232 + 40.8355i −1.06682 + 1.55458i
\(691\) −4.45349 −0.169419 −0.0847095 0.996406i \(-0.526996\pi\)
−0.0847095 + 0.996406i \(0.526996\pi\)
\(692\) 28.1556 + 32.6792i 1.07031 + 1.24228i
\(693\) −6.40187 2.28800i −0.243187 0.0869141i
\(694\) −19.7705 9.06266i −0.750479 0.344014i
\(695\) −12.9204 −0.490098
\(696\) −8.85815 + 0.976011i −0.335767 + 0.0369956i
\(697\) −5.06717 −0.191933
\(698\) 23.4371 + 10.7434i 0.887106 + 0.406642i
\(699\) 0.944638 5.44996i 0.0357295 0.206136i
\(700\) 6.46136 5.56693i 0.244216 0.210410i
\(701\) −21.6957 −0.819436 −0.409718 0.912212i \(-0.634373\pi\)
−0.409718 + 0.912212i \(0.634373\pi\)
\(702\) −14.7097 20.3403i −0.555181 0.767696i
\(703\) 48.9921i 1.84777i
\(704\) 4.26796 + 6.76642i 0.160855 + 0.255019i
\(705\) −32.9762 5.71575i −1.24196 0.215268i
\(706\) 28.7870 + 13.1957i 1.08341 + 0.496628i
\(707\) 16.5091i 0.620887i
\(708\) −2.86194 + 1.71378i −0.107558 + 0.0644080i
\(709\) 16.8944i 0.634482i 0.948345 + 0.317241i \(0.102756\pi\)
−0.948345 + 0.317241i \(0.897244\pi\)
\(710\) −3.51068 + 7.65869i −0.131754 + 0.287425i
\(711\) 11.6554 32.6120i 0.437111 1.22304i
\(712\) −8.45465 29.2517i −0.316852 1.09625i
\(713\) 66.5595i 2.49267i
\(714\) −17.7867 + 25.9188i −0.665650 + 0.969988i
\(715\) 8.96105 0.335124
\(716\) 7.90851 6.81376i 0.295555 0.254642i
\(717\) 8.01890 + 1.38991i 0.299471 + 0.0519072i
\(718\) −2.20090 + 4.80135i −0.0821369 + 0.179185i
\(719\) −28.8671 −1.07656 −0.538281 0.842765i \(-0.680926\pi\)
−0.538281 + 0.842765i \(0.680926\pi\)
\(720\) 14.8623 27.7505i 0.553884 1.03420i
\(721\) 38.4493 1.43193
\(722\) 15.0694 32.8746i 0.560826 1.22346i
\(723\) 37.9426 + 6.57657i 1.41110 + 0.244585i
\(724\) 2.51699 2.16857i 0.0935433 0.0805944i
\(725\) −3.42314 −0.127132
\(726\) 1.38599 2.01966i 0.0514388 0.0749568i
\(727\) 25.4333i 0.943267i −0.881795 0.471634i \(-0.843664\pi\)
0.881795 0.471634i \(-0.156336\pi\)
\(728\) 21.0339 6.07947i 0.779569 0.225320i
\(729\) 13.9060 + 23.1435i 0.515037 + 0.857168i
\(730\) 9.11517 19.8851i 0.337368 0.735980i
\(731\) 25.8445i 0.955892i
\(732\) 1.58166 0.947125i 0.0584597 0.0350067i
\(733\) 16.9853i 0.627365i 0.949528 + 0.313682i \(0.101563\pi\)
−0.949528 + 0.313682i \(0.898437\pi\)
\(734\) −12.4563 5.70987i −0.459771 0.210755i
\(735\) 8.34755 + 1.44688i 0.307904 + 0.0533688i
\(736\) −36.5111 23.8301i −1.34582 0.878389i
\(737\) 2.10323i 0.0774735i
\(738\) −2.71727 2.65103i −0.100024 0.0975857i
\(739\) −31.4425 −1.15663 −0.578316 0.815813i \(-0.696290\pi\)
−0.578316 + 0.815813i \(0.696290\pi\)
\(740\) 29.1685 25.1308i 1.07226 0.923827i
\(741\) −6.74596 + 38.9199i −0.247819 + 1.42976i
\(742\) 10.1738 + 4.66360i 0.373493 + 0.171206i
\(743\) 29.5341 1.08350 0.541750 0.840540i \(-0.317762\pi\)
0.541750 + 0.840540i \(0.317762\pi\)
\(744\) 4.63339 + 42.0521i 0.169868 + 1.54170i
\(745\) −23.5095 −0.861321
\(746\) 37.4265 + 17.1560i 1.37028 + 0.628126i
\(747\) −0.297489 + 0.832379i −0.0108845 + 0.0304551i
\(748\) −7.39277 8.58054i −0.270306 0.313736i
\(749\) 13.5439 0.494885
\(750\) −11.3375 + 16.5210i −0.413986 + 0.603263i
\(751\) 6.19019i 0.225883i −0.993602 0.112942i \(-0.963973\pi\)
0.993602 0.112942i \(-0.0360273\pi\)
\(752\) 4.35766 29.1390i 0.158907 1.06259i
\(753\) −4.60763 + 26.5831i −0.167911 + 0.968741i
\(754\) −7.98853 3.66188i −0.290925 0.133358i
\(755\) 25.7089i 0.935641i
\(756\) −23.0982 + 4.59338i −0.840075 + 0.167060i
\(757\) 30.8328i 1.12064i 0.828277 + 0.560319i \(0.189321\pi\)
−0.828277 + 0.560319i \(0.810679\pi\)
\(758\) −11.3941 + 24.8567i −0.413853 + 0.902836i
\(759\) −2.27989 + 13.1535i −0.0827547 + 0.477442i
\(760\) −47.5886 + 13.7546i −1.72622 + 0.498931i
\(761\) 11.8303i 0.428847i 0.976741 + 0.214424i \(0.0687873\pi\)
−0.976741 + 0.214424i \(0.931213\pi\)
\(762\) −12.3709 8.48949i −0.448151 0.307542i
\(763\) 1.54259 0.0558455
\(764\) −12.8583 14.9242i −0.465196 0.539938i
\(765\) −14.9991 + 41.9678i −0.542294 + 1.51735i
\(766\) 1.46554 3.19712i 0.0529519 0.115517i
\(767\) −3.28944 −0.118775
\(768\) 24.7264 + 12.5141i 0.892238 + 0.451565i
\(769\) 0.159860 0.00576471 0.00288235 0.999996i \(-0.499083\pi\)
0.00288235 + 0.999996i \(0.499083\pi\)
\(770\) 3.50329 7.64257i 0.126250 0.275419i
\(771\) −8.94646 + 51.6154i −0.322199 + 1.85888i
\(772\) 1.09742 + 1.27374i 0.0394971 + 0.0458430i
\(773\) 40.5052 1.45687 0.728435 0.685115i \(-0.240248\pi\)
0.728435 + 0.685115i \(0.240248\pi\)
\(774\) 13.5212 13.8591i 0.486011 0.498155i
\(775\) 16.2506i 0.583739i
\(776\) 31.3506 9.06131i 1.12542 0.325282i
\(777\) −28.3804 4.91916i −1.01814 0.176474i
\(778\) −13.6478 + 29.7733i −0.489299 + 1.06742i
\(779\) 5.97377i 0.214032i
\(780\) 26.6322 15.9478i 0.953585 0.571024i
\(781\) 2.27093i 0.0812603i
\(782\) 56.1120 + 25.7213i 2.00656 + 0.919792i
\(783\) 8.22690 + 4.65456i 0.294005 + 0.166340i
\(784\) −1.10309 + 7.37621i −0.0393961 + 0.263436i
\(785\) 54.3342i 1.93927i
\(786\) −44.0210 30.2092i −1.57018 1.07753i
\(787\) 49.5411 1.76595 0.882975 0.469420i \(-0.155537\pi\)
0.882975 + 0.469420i \(0.155537\pi\)
\(788\) 17.9066 + 20.7836i 0.637896 + 0.740385i
\(789\) −8.78797 1.52321i −0.312860 0.0542278i
\(790\) 38.9322 + 17.8462i 1.38515 + 0.634940i
\(791\) −24.0137 −0.853830
\(792\) 0.524773 8.46904i 0.0186470 0.300934i
\(793\) 1.81791 0.0645560
\(794\) 21.2002 + 9.71799i 0.752366 + 0.344879i
\(795\) 15.6343 + 2.70988i 0.554491 + 0.0961096i
\(796\) −5.56299 + 4.79292i −0.197175 + 0.169881i
\(797\) 48.1713 1.70632 0.853158 0.521653i \(-0.174685\pi\)
0.853158 + 0.521653i \(0.174685\pi\)
\(798\) 30.5561 + 20.9690i 1.08167 + 0.742294i
\(799\) 41.7124i 1.47568i
\(800\) 8.91423 + 5.81815i 0.315165 + 0.205703i
\(801\) −10.8692 + 30.4121i −0.384043 + 1.07456i
\(802\) 38.5729 + 17.6815i 1.36206 + 0.624355i
\(803\) 5.89627i 0.208075i
\(804\) 3.74309 + 6.25078i 0.132008 + 0.220448i
\(805\) 45.8192i 1.61491i
\(806\) −17.3839 + 37.9237i −0.612323 + 1.33581i
\(807\) −25.9830 4.50362i −0.914646 0.158535i
\(808\) 19.7950 5.72139i 0.696387 0.201278i
\(809\) 18.5277i 0.651398i −0.945474 0.325699i \(-0.894400\pi\)
0.945474 0.325699i \(-0.105600\pi\)
\(810\) −29.9998 + 14.6580i −1.05409 + 0.515030i
\(811\) −33.4335 −1.17401 −0.587004 0.809584i \(-0.699693\pi\)
−0.587004 + 0.809584i \(0.699693\pi\)
\(812\) −6.24617 + 5.38154i −0.219198 + 0.188855i
\(813\) 0.512906 2.95914i 0.0179884 0.103782i
\(814\) 4.32448 9.43402i 0.151573 0.330662i
\(815\) −2.26801 −0.0794449
\(816\) −37.2419 12.3445i −1.30373 0.432144i
\(817\) −30.4684 −1.06596
\(818\) −1.77971 + 3.88250i −0.0622260 + 0.135749i
\(819\) −21.8684 7.81566i −0.764142 0.273101i
\(820\) 3.55661 3.06428i 0.124202 0.107009i
\(821\) −7.23244 −0.252414 −0.126207 0.992004i \(-0.540280\pi\)
−0.126207 + 0.992004i \(0.540280\pi\)
\(822\) −0.715387 0.490931i −0.0249520 0.0171232i
\(823\) 1.91133i 0.0666247i 0.999445 + 0.0333123i \(0.0106056\pi\)
−0.999445 + 0.0333123i \(0.989394\pi\)
\(824\) 13.3250 + 46.1022i 0.464198 + 1.60605i
\(825\) 0.556637 3.21144i 0.0193796 0.111808i
\(826\) −1.28600 + 2.80545i −0.0447455 + 0.0976141i
\(827\) 11.1784i 0.388713i −0.980931 0.194356i \(-0.937738\pi\)
0.980931 0.194356i \(-0.0622618\pi\)
\(828\) 16.6333 + 43.1495i 0.578046 + 1.49955i
\(829\) 30.1331i 1.04657i −0.852159 0.523283i \(-0.824707\pi\)
0.852159 0.523283i \(-0.175293\pi\)
\(830\) −0.993695 0.455502i −0.0344916 0.0158107i
\(831\) −3.52868 + 20.3582i −0.122409 + 0.706220i
\(832\) 14.5791 + 23.1136i 0.505438 + 0.801321i
\(833\) 10.5590i 0.365848i
\(834\) −6.82627 + 9.94727i −0.236374 + 0.344446i
\(835\) 56.8322 1.96676
\(836\) −10.1157 + 8.71544i −0.349860 + 0.301430i
\(837\) 22.0965 39.0554i 0.763766 1.34995i
\(838\) 13.3911 + 6.13837i 0.462588 + 0.212047i
\(839\) −41.2510 −1.42414 −0.712072 0.702107i \(-0.752243\pi\)
−0.712072 + 0.702107i \(0.752243\pi\)
\(840\) −3.18960 28.9484i −0.110052 0.998814i
\(841\) −25.6909 −0.885892
\(842\) −9.31662 4.27067i −0.321072 0.147177i
\(843\) 9.14543 52.7633i 0.314985 1.81726i
\(844\) −10.9062 12.6585i −0.375406 0.435722i
\(845\) −3.49274 −0.120154
\(846\) −21.8230 + 22.3683i −0.750289 + 0.769037i
\(847\) 2.26615i 0.0778659i
\(848\) −2.06600 + 13.8150i −0.0709467 + 0.474411i
\(849\) 3.18306 + 0.551718i 0.109242 + 0.0189349i
\(850\) −13.6998 6.27989i −0.469900 0.215398i
\(851\) 56.5594i 1.93883i
\(852\) 4.04154 + 6.74918i 0.138461 + 0.231223i
\(853\) 18.2920i 0.626306i −0.949703 0.313153i \(-0.898615\pi\)
0.949703 0.313153i \(-0.101385\pi\)
\(854\) 0.710707 1.55043i 0.0243199 0.0530548i
\(855\) 49.4764 + 17.6827i 1.69206 + 0.604735i
\(856\) 4.69380 + 16.2397i 0.160431 + 0.555063i
\(857\) 4.23009i 0.144497i −0.997387 0.0722486i \(-0.976982\pi\)
0.997387 0.0722486i \(-0.0230175\pi\)
\(858\) 4.73443 6.89903i 0.161631 0.235529i
\(859\) 54.2336 1.85043 0.925213 0.379449i \(-0.123886\pi\)
0.925213 + 0.379449i \(0.123886\pi\)
\(860\) 15.6290 + 18.1400i 0.532943 + 0.618570i
\(861\) −3.46051 0.599808i −0.117934 0.0204414i
\(862\) −2.06759 + 4.51054i −0.0704226 + 0.153630i
\(863\) −23.9858 −0.816488 −0.408244 0.912873i \(-0.633859\pi\)
−0.408244 + 0.912873i \(0.633859\pi\)
\(864\) −13.5126 26.1038i −0.459707 0.888070i
\(865\) 56.5789 1.92374
\(866\) 24.3264 53.0690i 0.826645 1.80336i
\(867\) 25.7180 + 4.45768i 0.873428 + 0.151391i
\(868\) 25.5476 + 29.6523i 0.867143 + 1.00646i
\(869\) 11.5441 0.391606
\(870\) −6.61404 + 9.63800i −0.224237 + 0.326759i
\(871\) 7.18449i 0.243437i
\(872\) 0.534600 + 1.84963i 0.0181039 + 0.0626362i
\(873\) −32.5943 11.6491i −1.10315 0.394261i
\(874\) 30.3232 66.1513i 1.02570 2.23760i
\(875\) 18.5373i 0.626675i
\(876\) −10.4935 17.5237i −0.354542 0.592069i
\(877\) 12.4093i 0.419033i 0.977805 + 0.209516i \(0.0671890\pi\)
−0.977805 + 0.209516i \(0.932811\pi\)
\(878\) −15.7277 7.20943i −0.530783 0.243307i
\(879\) −27.8222 4.82240i −0.938418 0.162655i
\(880\) 10.3778 + 1.55198i 0.349837 + 0.0523171i
\(881\) 4.72245i 0.159103i 0.996831 + 0.0795516i \(0.0253489\pi\)
−0.996831 + 0.0795516i \(0.974651\pi\)
\(882\) 5.52423 5.66227i 0.186011 0.190659i
\(883\) −30.2745 −1.01882 −0.509409 0.860525i \(-0.670136\pi\)
−0.509409 + 0.860525i \(0.670136\pi\)
\(884\) −25.2532 29.3105i −0.849356 0.985820i
\(885\) −0.747255 + 4.31118i −0.0251187 + 0.144919i
\(886\) −27.7549 12.7226i −0.932444 0.427425i
\(887\) −1.86952 −0.0627723 −0.0313862 0.999507i \(-0.509992\pi\)
−0.0313862 + 0.999507i \(0.509992\pi\)
\(888\) −3.93726 35.7340i −0.132126 1.19916i
\(889\) −13.8807 −0.465544
\(890\) −36.3060 16.6424i −1.21698 0.557854i
\(891\) −5.70448 + 6.96124i −0.191107 + 0.233210i
\(892\) −24.0262 + 20.7004i −0.804458 + 0.693100i
\(893\) 49.1753 1.64559
\(894\) −12.4209 + 18.0997i −0.415416 + 0.605345i
\(895\) 13.6923i 0.457684i
\(896\) 25.4124 3.39777i 0.848970 0.113512i
\(897\) −7.78794 + 44.9314i −0.260032 + 1.50022i
\(898\) −17.8710 8.19193i −0.596364 0.273368i
\(899\) 15.7094i 0.523938i
\(900\) −4.06103 10.5350i −0.135368 0.351167i
\(901\) 19.7762i 0.658840i
\(902\) 0.527298 1.15032i 0.0175571 0.0383015i
\(903\) 3.05925 17.6499i 0.101805 0.587352i
\(904\) −8.32221 28.7934i −0.276793 0.957655i
\(905\) 4.35778i 0.144857i
\(906\) −19.7930 13.5829i −0.657579 0.451261i
\(907\) 11.2376 0.373138 0.186569 0.982442i \(-0.440263\pi\)
0.186569 + 0.982442i \(0.440263\pi\)
\(908\) 25.8771 22.2950i 0.858762 0.739886i
\(909\) −20.5803 7.35532i −0.682606 0.243961i
\(910\) 11.9670 26.1065i 0.396702 0.865421i
\(911\) 35.7926 1.18586 0.592930 0.805254i \(-0.297971\pi\)
0.592930 + 0.805254i \(0.297971\pi\)
\(912\) −14.5531 + 43.9050i −0.481902 + 1.45384i
\(913\) −0.294647 −0.00975140
\(914\) −10.5253 + 22.9614i −0.348147 + 0.759497i
\(915\) 0.412971 2.38258i 0.0136524 0.0787657i
\(916\) −19.8863 + 17.1335i −0.657063 + 0.566107i
\(917\) −49.3935 −1.63112
\(918\) 24.3860 + 33.7207i 0.804859 + 1.11295i
\(919\) 56.2605i 1.85586i −0.372750 0.927932i \(-0.621585\pi\)
0.372750 0.927932i \(-0.378415\pi\)
\(920\) −54.9390 + 15.8791i −1.81129 + 0.523519i
\(921\) −0.358575 0.0621515i −0.0118154 0.00204796i
\(922\) 16.0696 35.0566i 0.529226 1.15453i
\(923\) 7.75734i 0.255336i
\(924\) −4.03303 6.73498i −0.132677 0.221565i
\(925\) 13.8091i 0.454039i
\(926\) −2.79007 1.27894i −0.0916873 0.0420287i
\(927\) 17.1304 47.9311i 0.562636 1.57427i
\(928\) −8.61736 5.62439i −0.282879 0.184630i
\(929\) 8.63508i 0.283308i −0.989916 0.141654i \(-0.954758\pi\)
0.989916 0.141654i \(-0.0452420\pi\)
\(930\) 45.7542 + 31.3987i 1.50034 + 1.02960i
\(931\) −12.4482 −0.407973
\(932\) 4.83869 4.16889i 0.158497 0.136556i
\(933\) −11.4599 1.98634i −0.375182 0.0650300i
\(934\) −54.9008 25.1661i −1.79641 0.823459i
\(935\) −14.8558 −0.485838
\(936\) 1.79259 28.9296i 0.0585926 0.945595i
\(937\) −33.8018 −1.10426 −0.552128 0.833759i \(-0.686184\pi\)
−0.552128 + 0.833759i \(0.686184\pi\)
\(938\) 6.12740 + 2.80875i 0.200067 + 0.0917090i
\(939\) −27.7862 4.81617i −0.906770 0.157170i
\(940\) −25.2248 29.2776i −0.822742 0.954930i
\(941\) −9.13576 −0.297817 −0.148909 0.988851i \(-0.547576\pi\)
−0.148909 + 0.988851i \(0.547576\pi\)
\(942\) −41.8314 28.7066i −1.36294 0.935311i
\(943\) 6.89647i 0.224580i
\(944\) −3.80952 0.569703i −0.123989 0.0185423i
\(945\) −15.2111 + 26.8855i −0.494817 + 0.874584i
\(946\) 5.86706 + 2.68941i 0.190755 + 0.0874404i
\(947\) 28.9161i 0.939647i −0.882760 0.469823i \(-0.844318\pi\)
0.882760 0.469823i \(-0.155682\pi\)
\(948\) 34.3089 20.5448i 1.11430 0.667263i
\(949\) 20.1412i 0.653812i
\(950\) −7.40345 + 16.1509i −0.240200 + 0.524005i
\(951\) 13.2265 + 2.29254i 0.428898 + 0.0743405i
\(952\) −34.8706 + 10.0787i −1.13016 + 0.326652i
\(953\) 34.6544i 1.12257i 0.827624 + 0.561284i \(0.189692\pi\)
−0.827624 + 0.561284i \(0.810308\pi\)
\(954\) 10.3464 10.6050i 0.334978 0.343349i
\(955\) −25.8388 −0.836125
\(956\) 6.13397 + 7.11950i 0.198387 + 0.230261i
\(957\) −0.538100 + 3.10449i −0.0173943 + 0.100354i
\(958\) −10.1601 + 22.1646i −0.328257 + 0.716106i
\(959\) −0.802695 −0.0259204
\(960\) 33.6049 13.8568i 1.08459 0.447227i
\(961\) −43.5769 −1.40571
\(962\) 14.7721 32.2260i 0.476272 1.03901i
\(963\) 6.03426 16.8840i 0.194451 0.544078i
\(964\) 29.0238 + 33.6869i 0.934793 + 1.08498i
\(965\) 2.20528 0.0709905
\(966\) 35.2758 + 24.2078i 1.13498 + 0.778874i
\(967\) 47.7447i 1.53537i −0.640829 0.767684i \(-0.721409\pi\)
0.640829 0.767684i \(-0.278591\pi\)
\(968\) 2.71721 0.785358i 0.0873343 0.0252424i
\(969\) 11.1836 64.5223i 0.359269 2.07276i
\(970\) 17.8365 38.9111i 0.572697 1.24936i
\(971\) 1.75054i 0.0561774i 0.999605 + 0.0280887i \(0.00894208\pi\)
−0.999605 + 0.0280887i \(0.991058\pi\)
\(972\) −4.56487 + 30.8409i −0.146418 + 0.989223i
\(973\) 11.1613i 0.357814i
\(974\) 39.9291 + 18.3032i 1.27941 + 0.586472i
\(975\) 1.90143 10.9701i 0.0608946 0.351323i
\(976\) 2.10534 + 0.314847i 0.0673902 + 0.0100780i
\(977\) 10.9073i 0.348957i −0.984661 0.174478i \(-0.944176\pi\)
0.984661 0.174478i \(-0.0558239\pi\)
\(978\) −1.19827 + 1.74612i −0.0383163 + 0.0558347i
\(979\) −10.7653 −0.344062
\(980\) 6.38537 + 7.41129i 0.203973 + 0.236745i
\(981\) 0.687273 1.92300i 0.0219429 0.0613967i
\(982\) 31.5728 + 14.4727i 1.00753 + 0.461843i
\(983\) 59.4277 1.89545 0.947725 0.319087i \(-0.103376\pi\)
0.947725 + 0.319087i \(0.103376\pi\)
\(984\) −0.480082 4.35716i −0.0153045 0.138901i
\(985\) 35.9835 1.14653
\(986\) 13.2436 + 6.07075i 0.421761 + 0.193332i
\(987\) −4.93755 + 28.4865i −0.157164 + 0.906736i
\(988\) −34.5546 + 29.7713i −1.09933 + 0.947152i
\(989\) −35.1746 −1.11849
\(990\) −7.96644 7.77224i −0.253190 0.247018i
\(991\) 12.9007i 0.409803i 0.978783 + 0.204902i \(0.0656874\pi\)
−0.978783 + 0.204902i \(0.934313\pi\)
\(992\) −26.7005 + 40.9090i −0.847742 + 1.29886i
\(993\) −2.55022 0.442029i −0.0809289 0.0140274i
\(994\) 6.61596 + 3.03270i 0.209846 + 0.0961915i
\(995\) 9.63143i 0.305337i
\(996\) −0.875689 + 0.524379i −0.0277473 + 0.0166156i
\(997\) 19.1672i 0.607033i 0.952826 + 0.303516i \(0.0981607\pi\)
−0.952826 + 0.303516i \(0.901839\pi\)
\(998\) 1.25145 2.73010i 0.0396141 0.0864197i
\(999\) −18.7766 + 33.1876i −0.594067 + 1.05001i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 264.2.k.b.155.21 yes 32
3.2 odd 2 inner 264.2.k.b.155.12 yes 32
4.3 odd 2 1056.2.k.b.815.31 32
8.3 odd 2 inner 264.2.k.b.155.11 32
8.5 even 2 1056.2.k.b.815.32 32
12.11 even 2 1056.2.k.b.815.30 32
24.5 odd 2 1056.2.k.b.815.29 32
24.11 even 2 inner 264.2.k.b.155.22 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
264.2.k.b.155.11 32 8.3 odd 2 inner
264.2.k.b.155.12 yes 32 3.2 odd 2 inner
264.2.k.b.155.21 yes 32 1.1 even 1 trivial
264.2.k.b.155.22 yes 32 24.11 even 2 inner
1056.2.k.b.815.29 32 24.5 odd 2
1056.2.k.b.815.30 32 12.11 even 2
1056.2.k.b.815.31 32 4.3 odd 2
1056.2.k.b.815.32 32 8.5 even 2