Properties

Label 264.2.h.a
Level $264$
Weight $2$
Character orbit 264.h
Analytic conductor $2.108$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(43,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,-2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-7})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - q^{3} + (\beta - 2) q^{4} + \beta q^{6} + 4 q^{7} + (\beta + 2) q^{8} + q^{9} + ( - 2 \beta - 1) q^{11} + ( - \beta + 2) q^{12} + 2 q^{13} - 4 \beta q^{14} + ( - 3 \beta + 2) q^{16} + \cdots + ( - 2 \beta - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} - 3 q^{4} + q^{6} + 8 q^{7} + 5 q^{8} + 2 q^{9} - 4 q^{11} + 3 q^{12} + 4 q^{13} - 4 q^{14} + q^{16} - q^{18} - 8 q^{21} - 5 q^{22} - 5 q^{24} + 10 q^{25} - 2 q^{26} - 2 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
0.500000 + 1.32288i
0.500000 1.32288i
−0.500000 1.32288i −1.00000 −1.50000 + 1.32288i 0 0.500000 + 1.32288i 4.00000 2.50000 + 1.32288i 1.00000 0
43.2 −0.500000 + 1.32288i −1.00000 −1.50000 1.32288i 0 0.500000 1.32288i 4.00000 2.50000 1.32288i 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
88.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 264.2.h.a 2
3.b odd 2 1 792.2.h.c 2
4.b odd 2 1 1056.2.h.a 2
8.b even 2 1 1056.2.h.b 2
8.d odd 2 1 264.2.h.b yes 2
11.b odd 2 1 264.2.h.b yes 2
12.b even 2 1 3168.2.h.a 2
24.f even 2 1 792.2.h.a 2
24.h odd 2 1 3168.2.h.c 2
33.d even 2 1 792.2.h.a 2
44.c even 2 1 1056.2.h.b 2
88.b odd 2 1 1056.2.h.a 2
88.g even 2 1 inner 264.2.h.a 2
132.d odd 2 1 3168.2.h.c 2
264.m even 2 1 3168.2.h.a 2
264.p odd 2 1 792.2.h.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
264.2.h.a 2 1.a even 1 1 trivial
264.2.h.a 2 88.g even 2 1 inner
264.2.h.b yes 2 8.d odd 2 1
264.2.h.b yes 2 11.b odd 2 1
792.2.h.a 2 24.f even 2 1
792.2.h.a 2 33.d even 2 1
792.2.h.c 2 3.b odd 2 1
792.2.h.c 2 264.p odd 2 1
1056.2.h.a 2 4.b odd 2 1
1056.2.h.a 2 88.b odd 2 1
1056.2.h.b 2 8.b even 2 1
1056.2.h.b 2 44.c even 2 1
3168.2.h.a 2 12.b even 2 1
3168.2.h.a 2 264.m even 2 1
3168.2.h.c 2 24.h odd 2 1
3168.2.h.c 2 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(264, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T + 11 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 28 \) Copy content Toggle raw display
$23$ \( T^{2} + 28 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 28 \) Copy content Toggle raw display
$37$ \( T^{2} + 112 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 28 \) Copy content Toggle raw display
$47$ \( T^{2} + 28 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T - 4)^{2} \) Copy content Toggle raw display
$61$ \( (T + 6)^{2} \) Copy content Toggle raw display
$67$ \( (T + 12)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 252 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 252 \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less