Properties

Label 264.2.f.e
Level $264$
Weight $2$
Character orbit 264.f
Analytic conductor $2.108$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [264,2,Mod(133,264)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(264, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("264.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 264 = 2^{3} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 264.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.10805061336\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 1) q^{2} + \beta_{3} q^{3} + ( - \beta_{2} - 1) q^{4} + ( - \beta_{3} - 2 \beta_{2} + 1) q^{5} + \beta_1 q^{6} + (\beta_{3} - 2 \beta_1 - 1) q^{7} + (\beta_{2} - 3) q^{8} - q^{9} + ( - \beta_{2} - \beta_1 - 3) q^{10}+ \cdots - \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 6 q^{4} - 4 q^{7} - 10 q^{8} - 4 q^{9} - 14 q^{10} - 2 q^{14} + 4 q^{15} + 2 q^{16} + 8 q^{17} - 2 q^{18} - 14 q^{20} - 4 q^{23} - 12 q^{25} - 14 q^{26} + 6 q^{28} + 2 q^{30} + 32 q^{31}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/264\mathbb{Z}\right)^\times\).

\(n\) \(89\) \(133\) \(145\) \(199\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
133.1
−1.32288 0.500000i
1.32288 + 0.500000i
1.32288 0.500000i
−1.32288 + 0.500000i
0.500000 1.32288i 1.00000i −1.50000 1.32288i 1.64575i −1.32288 0.500000i 1.64575 −2.50000 + 1.32288i −1.00000 −2.17712 0.822876i
133.2 0.500000 1.32288i 1.00000i −1.50000 1.32288i 3.64575i 1.32288 + 0.500000i −3.64575 −2.50000 + 1.32288i −1.00000 −4.82288 1.82288i
133.3 0.500000 + 1.32288i 1.00000i −1.50000 + 1.32288i 3.64575i 1.32288 0.500000i −3.64575 −2.50000 1.32288i −1.00000 −4.82288 + 1.82288i
133.4 0.500000 + 1.32288i 1.00000i −1.50000 + 1.32288i 1.64575i −1.32288 + 0.500000i 1.64575 −2.50000 1.32288i −1.00000 −2.17712 + 0.822876i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 264.2.f.e 4
3.b odd 2 1 792.2.f.d 4
4.b odd 2 1 1056.2.f.d 4
8.b even 2 1 inner 264.2.f.e 4
8.d odd 2 1 1056.2.f.d 4
12.b even 2 1 3168.2.f.d 4
16.e even 4 1 8448.2.a.ba 2
16.e even 4 1 8448.2.a.cc 2
16.f odd 4 1 8448.2.a.bl 2
16.f odd 4 1 8448.2.a.bp 2
24.f even 2 1 3168.2.f.d 4
24.h odd 2 1 792.2.f.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
264.2.f.e 4 1.a even 1 1 trivial
264.2.f.e 4 8.b even 2 1 inner
792.2.f.d 4 3.b odd 2 1
792.2.f.d 4 24.h odd 2 1
1056.2.f.d 4 4.b odd 2 1
1056.2.f.d 4 8.d odd 2 1
3168.2.f.d 4 12.b even 2 1
3168.2.f.d 4 24.f even 2 1
8448.2.a.ba 2 16.e even 4 1
8448.2.a.bl 2 16.f odd 4 1
8448.2.a.bp 2 16.f odd 4 1
8448.2.a.cc 2 16.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(264, [\chi])\):

\( T_{5}^{4} + 16T_{5}^{2} + 36 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 2)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 16T^{2} + 36 \) Copy content Toggle raw display
$7$ \( (T^{2} + 2 T - 6)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 16T^{2} + 36 \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 24)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 64T^{2} + 576 \) Copy content Toggle raw display
$31$ \( (T - 8)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$41$ \( (T - 2)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 14 T + 42)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 64T^{2} + 324 \) Copy content Toggle raw display
$59$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 64T^{2} + 324 \) Copy content Toggle raw display
$67$ \( T^{4} + 184T^{2} + 1296 \) Copy content Toggle raw display
$71$ \( (T^{2} - 10 T + 18)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T - 108)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 6 T + 2)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 4 T - 108)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 12 T + 8)^{2} \) Copy content Toggle raw display
show more
show less