Properties

Label 261.2.e.a.175.7
Level $261$
Weight $2$
Character 261.175
Analytic conductor $2.084$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [261,2,Mod(88,261)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(261, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("261.88"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 175.7
Character \(\chi\) \(=\) 261.175
Dual form 261.2.e.a.88.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.100158 + 0.173479i) q^{2} +(1.19785 + 1.25106i) q^{3} +(0.979937 - 1.69730i) q^{4} +(0.556635 - 0.964120i) q^{5} +(-0.0970582 + 0.333105i) q^{6} +(0.359329 + 0.622375i) q^{7} +0.793225 q^{8} +(-0.130309 + 2.99717i) q^{9} +0.223006 q^{10} +(-0.874706 - 1.51504i) q^{11} +(3.29724 - 0.807151i) q^{12} +(0.587818 - 1.01813i) q^{13} +(-0.0719792 + 0.124672i) q^{14} +(1.87294 - 0.458487i) q^{15} +(-1.88043 - 3.25699i) q^{16} -4.38083 q^{17} +(-0.532996 + 0.277584i) q^{18} +4.97408 q^{19} +(-1.09093 - 1.88955i) q^{20} +(-0.348208 + 1.19505i) q^{21} +(0.175218 - 0.303486i) q^{22} +(-3.61871 + 6.26778i) q^{23} +(0.950165 + 0.992374i) q^{24} +(1.88032 + 3.25680i) q^{25} +0.235498 q^{26} +(-3.90573 + 3.42714i) q^{27} +1.40848 q^{28} +(0.500000 + 0.866025i) q^{29} +(0.267127 + 0.278994i) q^{30} +(-0.127529 + 0.220886i) q^{31} +(1.16990 - 2.02633i) q^{32} +(0.847635 - 2.90910i) q^{33} +(-0.438775 - 0.759981i) q^{34} +0.800059 q^{35} +(4.95940 + 3.15821i) q^{36} -6.12592 q^{37} +(0.498193 + 0.862896i) q^{38} +(1.97786 - 0.484172i) q^{39} +(0.441537 - 0.764764i) q^{40} +(-2.52182 + 4.36792i) q^{41} +(-0.242192 + 0.0592876i) q^{42} +(-3.94035 - 6.82488i) q^{43} -3.42863 q^{44} +(2.81709 + 1.79396i) q^{45} -1.44977 q^{46} +(-2.05254 - 3.55510i) q^{47} +(1.82223 - 6.25392i) q^{48} +(3.24177 - 5.61490i) q^{49} +(-0.376657 + 0.652389i) q^{50} +(-5.24758 - 5.48069i) q^{51} +(-1.15205 - 1.99541i) q^{52} -7.37363 q^{53} +(-0.985725 - 0.334306i) q^{54} -1.94757 q^{55} +(0.285029 + 0.493684i) q^{56} +(5.95820 + 6.22288i) q^{57} +(-0.100158 + 0.173479i) q^{58} +(1.94345 - 3.36616i) q^{59} +(1.05717 - 3.62823i) q^{60} +(2.59104 + 4.48781i) q^{61} -0.0510920 q^{62} +(-1.91219 + 0.995867i) q^{63} -7.05300 q^{64} +(-0.654399 - 1.13345i) q^{65} +(0.589564 - 0.144323i) q^{66} +(3.74658 - 6.48926i) q^{67} +(-4.29294 + 7.43559i) q^{68} +(-12.1761 + 2.98064i) q^{69} +(0.0801323 + 0.138793i) q^{70} +5.68338 q^{71} +(-0.103364 + 2.37743i) q^{72} -10.1960 q^{73} +(-0.613559 - 1.06272i) q^{74} +(-1.82212 + 6.25355i) q^{75} +(4.87428 - 8.44250i) q^{76} +(0.628614 - 1.08879i) q^{77} +(0.282092 + 0.294623i) q^{78} +(6.19034 + 10.7220i) q^{79} -4.18684 q^{80} +(-8.96604 - 0.781116i) q^{81} -1.01032 q^{82} +(-5.47200 - 9.47778i) q^{83} +(1.68714 + 1.76209i) q^{84} +(-2.43852 + 4.22364i) q^{85} +(0.789314 - 1.36713i) q^{86} +(-0.484526 + 1.66290i) q^{87} +(-0.693839 - 1.20176i) q^{88} -0.231289 q^{89} +(-0.0290596 + 0.668385i) q^{90} +0.844879 q^{91} +(7.09221 + 12.2841i) q^{92} +(-0.429102 + 0.105042i) q^{93} +(0.411156 - 0.712142i) q^{94} +(2.76874 - 4.79560i) q^{95} +(3.93644 - 0.963623i) q^{96} +(5.16660 + 8.94881i) q^{97} +1.29875 q^{98} +(4.65480 - 2.42422i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - q^{2} - 2 q^{3} - 5 q^{4} + q^{5} - q^{6} + 7 q^{7} + 6 q^{8} - 2 q^{9} - 20 q^{10} - 3 q^{11} + 10 q^{12} + 7 q^{13} + 10 q^{14} - 8 q^{15} + 7 q^{16} + 2 q^{17} + 2 q^{18} - 56 q^{19} + 4 q^{20}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.100158 + 0.173479i 0.0708224 + 0.122668i 0.899262 0.437411i \(-0.144104\pi\)
−0.828440 + 0.560078i \(0.810771\pi\)
\(3\) 1.19785 + 1.25106i 0.691579 + 0.722301i
\(4\) 0.979937 1.69730i 0.489968 0.848650i
\(5\) 0.556635 0.964120i 0.248935 0.431167i −0.714296 0.699844i \(-0.753253\pi\)
0.963230 + 0.268676i \(0.0865862\pi\)
\(6\) −0.0970582 + 0.333105i −0.0396238 + 0.135990i
\(7\) 0.359329 + 0.622375i 0.135813 + 0.235236i 0.925908 0.377749i \(-0.123302\pi\)
−0.790094 + 0.612985i \(0.789969\pi\)
\(8\) 0.793225 0.280448
\(9\) −0.130309 + 2.99717i −0.0434363 + 0.999056i
\(10\) 0.223006 0.0705205
\(11\) −0.874706 1.51504i −0.263734 0.456800i 0.703497 0.710698i \(-0.251621\pi\)
−0.967231 + 0.253898i \(0.918287\pi\)
\(12\) 3.29724 0.807151i 0.951832 0.233004i
\(13\) 0.587818 1.01813i 0.163031 0.282379i −0.772923 0.634500i \(-0.781206\pi\)
0.935954 + 0.352121i \(0.114540\pi\)
\(14\) −0.0719792 + 0.124672i −0.0192373 + 0.0333199i
\(15\) 1.87294 0.458487i 0.483590 0.118381i
\(16\) −1.88043 3.25699i −0.470106 0.814248i
\(17\) −4.38083 −1.06251 −0.531254 0.847213i \(-0.678279\pi\)
−0.531254 + 0.847213i \(0.678279\pi\)
\(18\) −0.532996 + 0.277584i −0.125628 + 0.0654273i
\(19\) 4.97408 1.14113 0.570566 0.821252i \(-0.306724\pi\)
0.570566 + 0.821252i \(0.306724\pi\)
\(20\) −1.09093 1.88955i −0.243940 0.422517i
\(21\) −0.348208 + 1.19505i −0.0759852 + 0.260782i
\(22\) 0.175218 0.303486i 0.0373565 0.0647034i
\(23\) −3.61871 + 6.26778i −0.754553 + 1.30692i 0.191044 + 0.981581i \(0.438813\pi\)
−0.945596 + 0.325342i \(0.894521\pi\)
\(24\) 0.950165 + 0.992374i 0.193952 + 0.202567i
\(25\) 1.88032 + 3.25680i 0.376063 + 0.651360i
\(26\) 0.235498 0.0461850
\(27\) −3.90573 + 3.42714i −0.751659 + 0.659552i
\(28\) 1.40848 0.266177
\(29\) 0.500000 + 0.866025i 0.0928477 + 0.160817i
\(30\) 0.267127 + 0.278994i 0.0487705 + 0.0509370i
\(31\) −0.127529 + 0.220886i −0.0229048 + 0.0396723i −0.877251 0.480033i \(-0.840625\pi\)
0.854346 + 0.519705i \(0.173958\pi\)
\(32\) 1.16990 2.02633i 0.206812 0.358209i
\(33\) 0.847635 2.90910i 0.147554 0.506409i
\(34\) −0.438775 0.759981i −0.0752493 0.130336i
\(35\) 0.800059 0.135235
\(36\) 4.95940 + 3.15821i 0.826567 + 0.526368i
\(37\) −6.12592 −1.00709 −0.503547 0.863968i \(-0.667972\pi\)
−0.503547 + 0.863968i \(0.667972\pi\)
\(38\) 0.498193 + 0.862896i 0.0808176 + 0.139980i
\(39\) 1.97786 0.484172i 0.316711 0.0775295i
\(40\) 0.441537 0.764764i 0.0698131 0.120920i
\(41\) −2.52182 + 4.36792i −0.393842 + 0.682155i −0.992953 0.118512i \(-0.962188\pi\)
0.599111 + 0.800666i \(0.295521\pi\)
\(42\) −0.242192 + 0.0592876i −0.0373711 + 0.00914827i
\(43\) −3.94035 6.82488i −0.600898 1.04079i −0.992685 0.120730i \(-0.961477\pi\)
0.391788 0.920056i \(-0.371857\pi\)
\(44\) −3.42863 −0.516885
\(45\) 2.81709 + 1.79396i 0.419948 + 0.267428i
\(46\) −1.44977 −0.213757
\(47\) −2.05254 3.55510i −0.299393 0.518564i 0.676604 0.736347i \(-0.263451\pi\)
−0.975997 + 0.217783i \(0.930118\pi\)
\(48\) 1.82223 6.25392i 0.263016 0.902675i
\(49\) 3.24177 5.61490i 0.463109 0.802129i
\(50\) −0.376657 + 0.652389i −0.0532674 + 0.0922618i
\(51\) −5.24758 5.48069i −0.734808 0.767450i
\(52\) −1.15205 1.99541i −0.159760 0.276713i
\(53\) −7.37363 −1.01285 −0.506423 0.862285i \(-0.669033\pi\)
−0.506423 + 0.862285i \(0.669033\pi\)
\(54\) −0.985725 0.334306i −0.134140 0.0454933i
\(55\) −1.94757 −0.262610
\(56\) 0.285029 + 0.493684i 0.0380885 + 0.0659713i
\(57\) 5.95820 + 6.22288i 0.789183 + 0.824240i
\(58\) −0.100158 + 0.173479i −0.0131514 + 0.0227789i
\(59\) 1.94345 3.36616i 0.253016 0.438236i −0.711339 0.702849i \(-0.751911\pi\)
0.964355 + 0.264613i \(0.0852442\pi\)
\(60\) 1.05717 3.62823i 0.136480 0.468402i
\(61\) 2.59104 + 4.48781i 0.331748 + 0.574605i 0.982855 0.184381i \(-0.0590282\pi\)
−0.651106 + 0.758987i \(0.725695\pi\)
\(62\) −0.0510920 −0.00648870
\(63\) −1.91219 + 0.995867i −0.240913 + 0.125467i
\(64\) −7.05300 −0.881625
\(65\) −0.654399 1.13345i −0.0811683 0.140588i
\(66\) 0.589564 0.144323i 0.0725703 0.0177649i
\(67\) 3.74658 6.48926i 0.457717 0.792790i −0.541122 0.840944i \(-0.682000\pi\)
0.998840 + 0.0481539i \(0.0153338\pi\)
\(68\) −4.29294 + 7.43559i −0.520595 + 0.901697i
\(69\) −12.1761 + 2.98064i −1.46582 + 0.358827i
\(70\) 0.0801323 + 0.138793i 0.00957764 + 0.0165890i
\(71\) 5.68338 0.674494 0.337247 0.941416i \(-0.390504\pi\)
0.337247 + 0.941416i \(0.390504\pi\)
\(72\) −0.103364 + 2.37743i −0.0121816 + 0.280183i
\(73\) −10.1960 −1.19335 −0.596675 0.802483i \(-0.703512\pi\)
−0.596675 + 0.802483i \(0.703512\pi\)
\(74\) −0.613559 1.06272i −0.0713248 0.123538i
\(75\) −1.82212 + 6.25355i −0.210401 + 0.722098i
\(76\) 4.87428 8.44250i 0.559118 0.968421i
\(77\) 0.628614 1.08879i 0.0716372 0.124079i
\(78\) 0.282092 + 0.294623i 0.0319406 + 0.0333595i
\(79\) 6.19034 + 10.7220i 0.696467 + 1.20632i 0.969684 + 0.244364i \(0.0785791\pi\)
−0.273216 + 0.961953i \(0.588088\pi\)
\(80\) −4.18684 −0.468103
\(81\) −8.96604 0.781116i −0.996227 0.0867906i
\(82\) −1.01032 −0.111571
\(83\) −5.47200 9.47778i −0.600630 1.04032i −0.992726 0.120397i \(-0.961583\pi\)
0.392096 0.919924i \(-0.371750\pi\)
\(84\) 1.68714 + 1.76209i 0.184083 + 0.192260i
\(85\) −2.43852 + 4.22364i −0.264495 + 0.458119i
\(86\) 0.789314 1.36713i 0.0851140 0.147422i
\(87\) −0.484526 + 1.66290i −0.0519466 + 0.178282i
\(88\) −0.693839 1.20176i −0.0739635 0.128109i
\(89\) −0.231289 −0.0245166 −0.0122583 0.999925i \(-0.503902\pi\)
−0.0122583 + 0.999925i \(0.503902\pi\)
\(90\) −0.0290596 + 0.668385i −0.00306315 + 0.0704540i
\(91\) 0.844879 0.0885674
\(92\) 7.09221 + 12.2841i 0.739414 + 1.28070i
\(93\) −0.429102 + 0.105042i −0.0444959 + 0.0108924i
\(94\) 0.411156 0.712142i 0.0424075 0.0734519i
\(95\) 2.76874 4.79560i 0.284067 0.492019i
\(96\) 3.93644 0.963623i 0.401761 0.0983493i
\(97\) 5.16660 + 8.94881i 0.524588 + 0.908614i 0.999590 + 0.0286289i \(0.00911410\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(98\) 1.29875 0.131194
\(99\) 4.65480 2.42422i 0.467825 0.243643i
\(100\) 7.37036 0.737036
\(101\) 1.78745 + 3.09596i 0.177858 + 0.308060i 0.941147 0.337998i \(-0.109750\pi\)
−0.763288 + 0.646058i \(0.776416\pi\)
\(102\) 0.425195 1.45928i 0.0421006 0.144490i
\(103\) 0.309953 0.536855i 0.0305406 0.0528979i −0.850351 0.526216i \(-0.823610\pi\)
0.880892 + 0.473318i \(0.156944\pi\)
\(104\) 0.466272 0.807607i 0.0457217 0.0791924i
\(105\) 0.958351 + 1.00092i 0.0935255 + 0.0976801i
\(106\) −0.738528 1.27917i −0.0717322 0.124244i
\(107\) 4.75430 0.459615 0.229808 0.973236i \(-0.426190\pi\)
0.229808 + 0.973236i \(0.426190\pi\)
\(108\) 1.98951 + 9.98758i 0.191440 + 0.961055i
\(109\) −2.64202 −0.253060 −0.126530 0.991963i \(-0.540384\pi\)
−0.126530 + 0.991963i \(0.540384\pi\)
\(110\) −0.195064 0.337861i −0.0185987 0.0322138i
\(111\) −7.33794 7.66390i −0.696486 0.727425i
\(112\) 1.35138 2.34066i 0.127694 0.221172i
\(113\) 0.730644 1.26551i 0.0687332 0.119049i −0.829611 0.558342i \(-0.811438\pi\)
0.898344 + 0.439293i \(0.144771\pi\)
\(114\) −0.482775 + 1.65689i −0.0452160 + 0.155182i
\(115\) 4.02860 + 6.97773i 0.375668 + 0.650677i
\(116\) 1.95987 0.181970
\(117\) 2.97491 + 1.89446i 0.275031 + 0.175143i
\(118\) 0.778608 0.0716767
\(119\) −1.57416 2.72652i −0.144303 0.249940i
\(120\) 1.48566 0.363683i 0.135622 0.0331996i
\(121\) 3.96978 6.87586i 0.360889 0.625078i
\(122\) −0.519026 + 0.898979i −0.0469904 + 0.0813898i
\(123\) −8.48530 + 2.07716i −0.765094 + 0.187292i
\(124\) 0.249940 + 0.432909i 0.0224453 + 0.0388764i
\(125\) 9.75294 0.872330
\(126\) −0.364282 0.231980i −0.0324529 0.0206664i
\(127\) 1.85264 0.164395 0.0821976 0.996616i \(-0.473806\pi\)
0.0821976 + 0.996616i \(0.473806\pi\)
\(128\) −3.04622 5.27621i −0.269251 0.466356i
\(129\) 3.81840 13.1048i 0.336191 1.15381i
\(130\) 0.131087 0.227049i 0.0114971 0.0199135i
\(131\) 5.59673 9.69381i 0.488988 0.846952i −0.510932 0.859621i \(-0.670699\pi\)
0.999920 + 0.0126690i \(0.00403279\pi\)
\(132\) −4.10698 4.28942i −0.357467 0.373346i
\(133\) 1.78733 + 3.09574i 0.154981 + 0.268435i
\(134\) 1.50100 0.129667
\(135\) 1.13010 + 5.67325i 0.0972637 + 0.488276i
\(136\) −3.47499 −0.297978
\(137\) 10.1097 + 17.5106i 0.863733 + 1.49603i 0.868300 + 0.496040i \(0.165213\pi\)
−0.00456701 + 0.999990i \(0.501454\pi\)
\(138\) −1.73661 1.81375i −0.147830 0.154397i
\(139\) 4.12472 7.14423i 0.349854 0.605965i −0.636369 0.771385i \(-0.719564\pi\)
0.986223 + 0.165419i \(0.0528978\pi\)
\(140\) 0.784007 1.35794i 0.0662607 0.114767i
\(141\) 1.98901 6.82632i 0.167505 0.574880i
\(142\) 0.569236 + 0.985946i 0.0477692 + 0.0827387i
\(143\) −2.05667 −0.171987
\(144\) 10.0068 5.21154i 0.833899 0.434295i
\(145\) 1.11327 0.0924520
\(146\) −1.02121 1.76879i −0.0845159 0.146386i
\(147\) 10.9077 2.67017i 0.899655 0.220232i
\(148\) −6.00301 + 10.3975i −0.493445 + 0.854671i
\(149\) 11.4249 19.7884i 0.935961 1.62113i 0.163050 0.986618i \(-0.447867\pi\)
0.772911 0.634514i \(-0.218800\pi\)
\(150\) −1.26736 + 0.310244i −0.103479 + 0.0253313i
\(151\) 9.04588 + 15.6679i 0.736143 + 1.27504i 0.954220 + 0.299106i \(0.0966883\pi\)
−0.218077 + 0.975932i \(0.569978\pi\)
\(152\) 3.94556 0.320028
\(153\) 0.570861 13.1301i 0.0461514 1.06150i
\(154\) 0.251843 0.0202941
\(155\) 0.141974 + 0.245906i 0.0114036 + 0.0197516i
\(156\) 1.11639 3.83148i 0.0893831 0.306764i
\(157\) −9.44065 + 16.3517i −0.753446 + 1.30501i 0.192697 + 0.981258i \(0.438277\pi\)
−0.946143 + 0.323749i \(0.895057\pi\)
\(158\) −1.24002 + 2.14778i −0.0986509 + 0.170868i
\(159\) −8.83251 9.22487i −0.700464 0.731580i
\(160\) −1.30242 2.25586i −0.102965 0.178341i
\(161\) −5.20122 −0.409914
\(162\) −0.762513 1.63365i −0.0599087 0.128352i
\(163\) −9.58127 −0.750463 −0.375231 0.926931i \(-0.622437\pi\)
−0.375231 + 0.926931i \(0.622437\pi\)
\(164\) 4.94245 + 8.56057i 0.385940 + 0.668468i
\(165\) −2.33289 2.43653i −0.181616 0.189683i
\(166\) 1.09613 1.89855i 0.0850761 0.147356i
\(167\) −0.395980 + 0.685857i −0.0306418 + 0.0530732i −0.880940 0.473229i \(-0.843088\pi\)
0.850298 + 0.526302i \(0.176422\pi\)
\(168\) −0.276207 + 0.947948i −0.0213099 + 0.0731358i
\(169\) 5.80894 + 10.0614i 0.446842 + 0.773952i
\(170\) −0.976949 −0.0749286
\(171\) −0.648167 + 14.9081i −0.0495665 + 1.14005i
\(172\) −15.4452 −1.17768
\(173\) 7.76382 + 13.4473i 0.590272 + 1.02238i 0.994196 + 0.107588i \(0.0343129\pi\)
−0.403924 + 0.914793i \(0.632354\pi\)
\(174\) −0.337007 + 0.0824977i −0.0255484 + 0.00625414i
\(175\) −1.35130 + 2.34052i −0.102149 + 0.176927i
\(176\) −3.28964 + 5.69782i −0.247966 + 0.429490i
\(177\) 6.53923 1.60077i 0.491519 0.120322i
\(178\) −0.0231654 0.0401237i −0.00173632 0.00300739i
\(179\) 17.8289 1.33260 0.666298 0.745686i \(-0.267878\pi\)
0.666298 + 0.745686i \(0.267878\pi\)
\(180\) 5.80547 3.02349i 0.432714 0.225357i
\(181\) −4.10193 −0.304894 −0.152447 0.988312i \(-0.548715\pi\)
−0.152447 + 0.988312i \(0.548715\pi\)
\(182\) 0.0846213 + 0.146568i 0.00627255 + 0.0108644i
\(183\) −2.51085 + 8.61727i −0.185607 + 0.637007i
\(184\) −2.87045 + 4.97177i −0.211612 + 0.366523i
\(185\) −3.40990 + 5.90612i −0.250701 + 0.434226i
\(186\) −0.0612006 0.0639193i −0.00448745 0.00468679i
\(187\) 3.83194 + 6.63711i 0.280219 + 0.485354i
\(188\) −8.04542 −0.586773
\(189\) −3.53641 1.19936i −0.257236 0.0872409i
\(190\) 1.10925 0.0804732
\(191\) −7.35271 12.7353i −0.532024 0.921492i −0.999301 0.0373811i \(-0.988098\pi\)
0.467278 0.884111i \(-0.345235\pi\)
\(192\) −8.44844 8.82374i −0.609714 0.636798i
\(193\) 0.367922 0.637259i 0.0264836 0.0458709i −0.852480 0.522760i \(-0.824902\pi\)
0.878963 + 0.476889i \(0.158236\pi\)
\(194\) −1.03495 + 1.79259i −0.0743052 + 0.128700i
\(195\) 0.634147 2.17640i 0.0454122 0.155855i
\(196\) −6.35345 11.0045i −0.453818 0.786036i
\(197\) 21.7386 1.54881 0.774406 0.632689i \(-0.218049\pi\)
0.774406 + 0.632689i \(0.218049\pi\)
\(198\) 0.886765 + 0.564703i 0.0630197 + 0.0401317i
\(199\) −15.8209 −1.12151 −0.560756 0.827981i \(-0.689489\pi\)
−0.560756 + 0.827981i \(0.689489\pi\)
\(200\) 1.49151 + 2.58338i 0.105466 + 0.182672i
\(201\) 12.6063 3.08597i 0.889180 0.217667i
\(202\) −0.358055 + 0.620170i −0.0251927 + 0.0436350i
\(203\) −0.359329 + 0.622375i −0.0252199 + 0.0436822i
\(204\) −14.4447 + 3.53599i −1.01133 + 0.247569i
\(205\) 2.80746 + 4.86267i 0.196082 + 0.339624i
\(206\) 0.124177 0.00865183
\(207\) −18.3141 11.6626i −1.27291 0.810608i
\(208\) −4.42139 −0.306568
\(209\) −4.35086 7.53590i −0.300955 0.521269i
\(210\) −0.0776523 + 0.266504i −0.00535852 + 0.0183905i
\(211\) 8.88504 15.3893i 0.611671 1.05945i −0.379288 0.925279i \(-0.623831\pi\)
0.990959 0.134167i \(-0.0428357\pi\)
\(212\) −7.22570 + 12.5153i −0.496263 + 0.859552i
\(213\) 6.80784 + 7.11026i 0.466466 + 0.487187i
\(214\) 0.476181 + 0.824769i 0.0325510 + 0.0563801i
\(215\) −8.77334 −0.598337
\(216\) −3.09813 + 2.71849i −0.210801 + 0.184970i
\(217\) −0.183299 −0.0124431
\(218\) −0.264619 0.458334i −0.0179223 0.0310423i
\(219\) −12.2133 12.7558i −0.825297 0.861958i
\(220\) −1.90849 + 3.30561i −0.128671 + 0.222864i
\(221\) −2.57513 + 4.46026i −0.173222 + 0.300029i
\(222\) 0.594571 2.04058i 0.0399050 0.136954i
\(223\) −10.4315 18.0679i −0.698546 1.20992i −0.968971 0.247175i \(-0.920498\pi\)
0.270425 0.962741i \(-0.412836\pi\)
\(224\) 1.68152 0.112351
\(225\) −10.0062 + 5.21123i −0.667081 + 0.347416i
\(226\) 0.292719 0.0194714
\(227\) 0.797071 + 1.38057i 0.0529035 + 0.0916315i 0.891264 0.453484i \(-0.149819\pi\)
−0.838361 + 0.545116i \(0.816486\pi\)
\(228\) 16.4007 4.01483i 1.08617 0.265889i
\(229\) −9.93007 + 17.1994i −0.656197 + 1.13657i 0.325395 + 0.945578i \(0.394503\pi\)
−0.981592 + 0.190989i \(0.938831\pi\)
\(230\) −0.806992 + 1.39775i −0.0532114 + 0.0921649i
\(231\) 2.11513 0.517774i 0.139165 0.0340671i
\(232\) 0.396613 + 0.686953i 0.0260389 + 0.0451007i
\(233\) 27.3329 1.79064 0.895319 0.445426i \(-0.146948\pi\)
0.895319 + 0.445426i \(0.146948\pi\)
\(234\) −0.0306876 + 0.705829i −0.00200611 + 0.0461415i
\(235\) −4.57005 −0.298117
\(236\) −3.80892 6.59724i −0.247939 0.429444i
\(237\) −5.99875 + 20.5878i −0.389661 + 1.33732i
\(238\) 0.315329 0.546165i 0.0204397 0.0354026i
\(239\) 5.81904 10.0789i 0.376402 0.651948i −0.614134 0.789202i \(-0.710494\pi\)
0.990536 + 0.137254i \(0.0438278\pi\)
\(240\) −5.01521 5.23799i −0.323730 0.338111i
\(241\) 6.11725 + 10.5954i 0.394047 + 0.682509i 0.992979 0.118291i \(-0.0377415\pi\)
−0.598932 + 0.800800i \(0.704408\pi\)
\(242\) 1.59042 0.102236
\(243\) −9.76275 12.1527i −0.626281 0.779598i
\(244\) 10.1562 0.650185
\(245\) −3.60896 6.25090i −0.230568 0.399355i
\(246\) −1.21021 1.26397i −0.0771604 0.0805880i
\(247\) 2.92385 5.06426i 0.186040 0.322231i
\(248\) −0.101159 + 0.175213i −0.00642360 + 0.0111260i
\(249\) 5.30265 18.1988i 0.336042 1.15330i
\(250\) 0.976835 + 1.69193i 0.0617804 + 0.107007i
\(251\) −13.9999 −0.883666 −0.441833 0.897097i \(-0.645672\pi\)
−0.441833 + 0.897097i \(0.645672\pi\)
\(252\) −0.183537 + 4.22144i −0.0115618 + 0.265926i
\(253\) 12.6612 0.796004
\(254\) 0.185557 + 0.321394i 0.0116429 + 0.0201660i
\(255\) −8.20502 + 2.00855i −0.513818 + 0.125780i
\(256\) −6.44280 + 11.1592i −0.402675 + 0.697453i
\(257\) 3.34923 5.80104i 0.208919 0.361859i −0.742455 0.669896i \(-0.766339\pi\)
0.951374 + 0.308037i \(0.0996720\pi\)
\(258\) 2.65585 0.650140i 0.165346 0.0404759i
\(259\) −2.20122 3.81262i −0.136777 0.236905i
\(260\) −2.56508 −0.159080
\(261\) −2.66078 + 1.38573i −0.164698 + 0.0857747i
\(262\) 2.24223 0.138525
\(263\) −10.9025 18.8837i −0.672279 1.16442i −0.977256 0.212061i \(-0.931982\pi\)
0.304978 0.952360i \(-0.401351\pi\)
\(264\) 0.672366 2.30757i 0.0413813 0.142021i
\(265\) −4.10442 + 7.10907i −0.252133 + 0.436706i
\(266\) −0.358030 + 0.620126i −0.0219522 + 0.0380224i
\(267\) −0.277049 0.289356i −0.0169551 0.0177083i
\(268\) −7.34282 12.7181i −0.448534 0.776884i
\(269\) −28.6547 −1.74711 −0.873553 0.486729i \(-0.838190\pi\)
−0.873553 + 0.486729i \(0.838190\pi\)
\(270\) −0.871000 + 0.764270i −0.0530074 + 0.0465120i
\(271\) −2.06951 −0.125714 −0.0628570 0.998023i \(-0.520021\pi\)
−0.0628570 + 0.998023i \(0.520021\pi\)
\(272\) 8.23783 + 14.2683i 0.499492 + 0.865145i
\(273\) 1.01204 + 1.05700i 0.0612514 + 0.0639723i
\(274\) −2.02514 + 3.50765i −0.122343 + 0.211905i
\(275\) 3.28945 5.69749i 0.198361 0.343572i
\(276\) −6.87271 + 23.5873i −0.413689 + 1.41979i
\(277\) −1.69727 2.93975i −0.101979 0.176633i 0.810521 0.585710i \(-0.199184\pi\)
−0.912500 + 0.409077i \(0.865851\pi\)
\(278\) 1.65249 0.0991100
\(279\) −0.645415 0.411008i −0.0386400 0.0246064i
\(280\) 0.634627 0.0379262
\(281\) −7.69685 13.3313i −0.459155 0.795281i 0.539761 0.841818i \(-0.318515\pi\)
−0.998917 + 0.0465377i \(0.985181\pi\)
\(282\) 1.38344 0.338659i 0.0823825 0.0201669i
\(283\) 12.2698 21.2520i 0.729366 1.26330i −0.227786 0.973711i \(-0.573149\pi\)
0.957152 0.289587i \(-0.0935179\pi\)
\(284\) 5.56936 9.64641i 0.330481 0.572409i
\(285\) 9.31614 2.28055i 0.551840 0.135088i
\(286\) −0.205992 0.356789i −0.0121806 0.0210973i
\(287\) −3.62465 −0.213956
\(288\) 5.92082 + 3.77045i 0.348887 + 0.222176i
\(289\) 2.19168 0.128922
\(290\) 0.111503 + 0.193128i 0.00654767 + 0.0113409i
\(291\) −5.00670 + 17.1831i −0.293498 + 1.00729i
\(292\) −9.99143 + 17.3057i −0.584704 + 1.01274i
\(293\) 4.51809 7.82556i 0.263949 0.457174i −0.703338 0.710855i \(-0.748308\pi\)
0.967288 + 0.253681i \(0.0816415\pi\)
\(294\) 1.55571 + 1.62482i 0.0907310 + 0.0947615i
\(295\) −2.16358 3.74744i −0.125969 0.218184i
\(296\) −4.85924 −0.282437
\(297\) 8.60860 + 2.91959i 0.499522 + 0.169412i
\(298\) 4.57716 0.265148
\(299\) 4.25428 + 7.36863i 0.246031 + 0.426139i
\(300\) 8.82859 + 9.22078i 0.509719 + 0.532362i
\(301\) 2.83176 4.90475i 0.163220 0.282705i
\(302\) −1.81203 + 3.13853i −0.104271 + 0.180602i
\(303\) −1.73213 + 5.94471i −0.0995085 + 0.341515i
\(304\) −9.35338 16.2005i −0.536453 0.929164i
\(305\) 5.76905 0.330335
\(306\) 2.33497 1.21605i 0.133481 0.0695170i
\(307\) 16.6320 0.949239 0.474620 0.880191i \(-0.342586\pi\)
0.474620 + 0.880191i \(0.342586\pi\)
\(308\) −1.23200 2.13389i −0.0701999 0.121590i
\(309\) 1.04292 0.255301i 0.0593294 0.0145236i
\(310\) −0.0284396 + 0.0492588i −0.00161526 + 0.00279771i
\(311\) −8.61447 + 14.9207i −0.488482 + 0.846076i −0.999912 0.0132492i \(-0.995783\pi\)
0.511430 + 0.859325i \(0.329116\pi\)
\(312\) 1.56889 0.384057i 0.0888209 0.0217430i
\(313\) −16.4733 28.5326i −0.931127 1.61276i −0.781399 0.624032i \(-0.785494\pi\)
−0.149728 0.988727i \(-0.547840\pi\)
\(314\) −3.78223 −0.213443
\(315\) −0.104255 + 2.39791i −0.00587409 + 0.135107i
\(316\) 24.2645 1.36499
\(317\) 7.63755 + 13.2286i 0.428968 + 0.742994i 0.996782 0.0801629i \(-0.0255441\pi\)
−0.567814 + 0.823157i \(0.692211\pi\)
\(318\) 0.715672 2.45620i 0.0401329 0.137737i
\(319\) 0.874706 1.51504i 0.0489741 0.0848257i
\(320\) −3.92595 + 6.79994i −0.219467 + 0.380128i
\(321\) 5.69494 + 5.94792i 0.317860 + 0.331980i
\(322\) −0.520943 0.902300i −0.0290310 0.0502832i
\(323\) −21.7906 −1.21246
\(324\) −10.1119 + 14.4526i −0.561774 + 0.802923i
\(325\) 4.42113 0.245240
\(326\) −0.959640 1.66214i −0.0531495 0.0920577i
\(327\) −3.16474 3.30533i −0.175011 0.182785i
\(328\) −2.00037 + 3.46475i −0.110452 + 0.191309i
\(329\) 1.47507 2.55490i 0.0813232 0.140856i
\(330\) 0.189027 0.648745i 0.0104056 0.0357122i
\(331\) 15.7537 + 27.2862i 0.865902 + 1.49979i 0.866149 + 0.499785i \(0.166588\pi\)
−0.000247710 1.00000i \(0.500079\pi\)
\(332\) −21.4489 −1.17716
\(333\) 0.798262 18.3604i 0.0437445 1.00614i
\(334\) −0.158642 −0.00868051
\(335\) −4.17095 7.22430i −0.227883 0.394706i
\(336\) 4.54706 1.11310i 0.248063 0.0607246i
\(337\) 0.0185574 0.0321424i 0.00101089 0.00175091i −0.865520 0.500875i \(-0.833012\pi\)
0.866530 + 0.499124i \(0.166345\pi\)
\(338\) −1.16362 + 2.01545i −0.0632927 + 0.109626i
\(339\) 2.45844 0.601814i 0.133524 0.0326861i
\(340\) 4.77920 + 8.27781i 0.259188 + 0.448927i
\(341\) 0.446201 0.0241631
\(342\) −2.65116 + 1.38073i −0.143359 + 0.0746611i
\(343\) 9.69004 0.523213
\(344\) −3.12559 5.41367i −0.168520 0.291886i
\(345\) −3.90392 + 13.3983i −0.210180 + 0.721340i
\(346\) −1.55522 + 2.69371i −0.0836089 + 0.144815i
\(347\) −7.82100 + 13.5464i −0.419853 + 0.727207i −0.995924 0.0901924i \(-0.971252\pi\)
0.576071 + 0.817400i \(0.304585\pi\)
\(348\) 2.34764 + 2.45192i 0.125846 + 0.131437i
\(349\) −6.60224 11.4354i −0.353410 0.612124i 0.633434 0.773796i \(-0.281645\pi\)
−0.986845 + 0.161672i \(0.948311\pi\)
\(350\) −0.541375 −0.0289377
\(351\) 1.19341 + 5.99107i 0.0636996 + 0.319780i
\(352\) −4.09329 −0.218173
\(353\) 17.4198 + 30.1719i 0.927161 + 1.60589i 0.788048 + 0.615614i \(0.211092\pi\)
0.139114 + 0.990276i \(0.455575\pi\)
\(354\) 0.932656 + 0.974087i 0.0495701 + 0.0517721i
\(355\) 3.16357 5.47946i 0.167905 0.290820i
\(356\) −0.226648 + 0.392566i −0.0120123 + 0.0208060i
\(357\) 1.52544 5.23533i 0.0807348 0.277083i
\(358\) 1.78571 + 3.09294i 0.0943776 + 0.163467i
\(359\) −11.2109 −0.591688 −0.295844 0.955236i \(-0.595601\pi\)
−0.295844 + 0.955236i \(0.595601\pi\)
\(360\) 2.23459 + 1.42302i 0.117773 + 0.0749995i
\(361\) 5.74144 0.302181
\(362\) −0.410841 0.711598i −0.0215933 0.0374007i
\(363\) 13.3573 3.26981i 0.701077 0.171621i
\(364\) 0.827928 1.43401i 0.0433952 0.0751627i
\(365\) −5.67544 + 9.83015i −0.297066 + 0.514534i
\(366\) −1.74639 + 0.427509i −0.0912855 + 0.0223463i
\(367\) 1.19502 + 2.06984i 0.0623797 + 0.108045i 0.895529 0.445004i \(-0.146798\pi\)
−0.833149 + 0.553049i \(0.813464\pi\)
\(368\) 27.2188 1.41888
\(369\) −12.7628 8.12750i −0.664404 0.423101i
\(370\) −1.36611 −0.0710209
\(371\) −2.64956 4.58917i −0.137558 0.238258i
\(372\) −0.242205 + 0.831251i −0.0125577 + 0.0430983i
\(373\) −4.74900 + 8.22550i −0.245894 + 0.425900i −0.962382 0.271698i \(-0.912415\pi\)
0.716489 + 0.697599i \(0.245748\pi\)
\(374\) −0.767598 + 1.32952i −0.0396916 + 0.0687478i
\(375\) 11.6826 + 12.2015i 0.603285 + 0.630084i
\(376\) −1.62812 2.81999i −0.0839641 0.145430i
\(377\) 1.17564 0.0605483
\(378\) −0.146135 0.733617i −0.00751638 0.0377332i
\(379\) 18.4353 0.946959 0.473480 0.880805i \(-0.342998\pi\)
0.473480 + 0.880805i \(0.342998\pi\)
\(380\) −5.42639 9.39878i −0.278368 0.482147i
\(381\) 2.21919 + 2.31777i 0.113692 + 0.118743i
\(382\) 1.47286 2.55108i 0.0753583 0.130524i
\(383\) 10.5510 18.2749i 0.539133 0.933806i −0.459818 0.888013i \(-0.652085\pi\)
0.998951 0.0457926i \(-0.0145813\pi\)
\(384\) 2.95195 10.1311i 0.150641 0.517002i
\(385\) −0.699817 1.21212i −0.0356660 0.0617752i
\(386\) 0.147401 0.00750252
\(387\) 20.9688 10.9205i 1.06590 0.555123i
\(388\) 20.2518 1.02813
\(389\) 1.55415 + 2.69186i 0.0787983 + 0.136483i 0.902732 0.430204i \(-0.141558\pi\)
−0.823933 + 0.566687i \(0.808225\pi\)
\(390\) 0.441074 0.107973i 0.0223346 0.00546742i
\(391\) 15.8529 27.4581i 0.801718 1.38862i
\(392\) 2.57145 4.45388i 0.129878 0.224955i
\(393\) 18.8316 4.60989i 0.949928 0.232538i
\(394\) 2.17729 + 3.77118i 0.109691 + 0.189990i
\(395\) 13.7830 0.693499
\(396\) 0.446781 10.2762i 0.0224516 0.516397i
\(397\) −28.1778 −1.41420 −0.707102 0.707111i \(-0.749998\pi\)
−0.707102 + 0.707111i \(0.749998\pi\)
\(398\) −1.58459 2.74458i −0.0794281 0.137574i
\(399\) −1.73201 + 5.94429i −0.0867091 + 0.297587i
\(400\) 7.07159 12.2483i 0.353579 0.612417i
\(401\) −3.24353 + 5.61796i −0.161974 + 0.280547i −0.935577 0.353124i \(-0.885119\pi\)
0.773603 + 0.633671i \(0.218453\pi\)
\(402\) 1.79797 + 1.87784i 0.0896747 + 0.0936582i
\(403\) 0.149927 + 0.259682i 0.00746841 + 0.0129357i
\(404\) 7.00637 0.348580
\(405\) −5.74390 + 8.20954i −0.285417 + 0.407935i
\(406\) −0.143958 −0.00714454
\(407\) 5.35838 + 9.28099i 0.265605 + 0.460041i
\(408\) −4.16251 4.34742i −0.206075 0.215229i
\(409\) 7.85167 13.5995i 0.388240 0.672452i −0.603973 0.797005i \(-0.706416\pi\)
0.992213 + 0.124553i \(0.0397497\pi\)
\(410\) −0.562380 + 0.974070i −0.0277740 + 0.0481059i
\(411\) −9.79685 + 33.6229i −0.483243 + 1.65850i
\(412\) −0.607469 1.05217i −0.0299279 0.0518366i
\(413\) 2.79335 0.137452
\(414\) 0.188918 4.34520i 0.00928481 0.213555i
\(415\) −12.1836 −0.598070
\(416\) −1.37538 2.38223i −0.0674336 0.116798i
\(417\) 13.8787 3.39744i 0.679641 0.166373i
\(418\) 0.871545 1.50956i 0.0426287 0.0738350i
\(419\) −1.87618 + 3.24963i −0.0916572 + 0.158755i −0.908209 0.418518i \(-0.862550\pi\)
0.816551 + 0.577273i \(0.195883\pi\)
\(420\) 2.63799 0.645768i 0.128721 0.0315103i
\(421\) −18.6578 32.3163i −0.909328 1.57500i −0.815000 0.579461i \(-0.803263\pi\)
−0.0943281 0.995541i \(-0.530070\pi\)
\(422\) 3.55963 0.173280
\(423\) 10.9227 5.68854i 0.531079 0.276586i
\(424\) −5.84896 −0.284050
\(425\) −8.23735 14.2675i −0.399570 0.692075i
\(426\) −0.551619 + 1.89316i −0.0267260 + 0.0917241i
\(427\) −1.86207 + 3.22520i −0.0901118 + 0.156078i
\(428\) 4.65891 8.06947i 0.225197 0.390053i
\(429\) −2.46358 2.57302i −0.118943 0.124227i
\(430\) −0.878720 1.52199i −0.0423756 0.0733967i
\(431\) −22.0148 −1.06041 −0.530207 0.847868i \(-0.677886\pi\)
−0.530207 + 0.847868i \(0.677886\pi\)
\(432\) 18.5066 + 6.27647i 0.890399 + 0.301977i
\(433\) 21.0621 1.01218 0.506090 0.862481i \(-0.331090\pi\)
0.506090 + 0.862481i \(0.331090\pi\)
\(434\) −0.0183588 0.0317984i −0.000881252 0.00152637i
\(435\) 1.33353 + 1.39277i 0.0639379 + 0.0667781i
\(436\) −2.58901 + 4.48430i −0.123991 + 0.214759i
\(437\) −17.9997 + 31.1764i −0.861044 + 1.49137i
\(438\) 0.989604 3.39634i 0.0472851 0.162283i
\(439\) −19.3519 33.5185i −0.923618 1.59975i −0.793769 0.608219i \(-0.791884\pi\)
−0.129849 0.991534i \(-0.541449\pi\)
\(440\) −1.54486 −0.0736483
\(441\) 16.4064 + 10.4478i 0.781256 + 0.497514i
\(442\) −1.03168 −0.0490720
\(443\) −5.63422 9.75876i −0.267690 0.463653i 0.700575 0.713579i \(-0.252927\pi\)
−0.968265 + 0.249926i \(0.919594\pi\)
\(444\) −20.1987 + 4.94454i −0.958586 + 0.234658i
\(445\) −0.128743 + 0.222990i −0.00610302 + 0.0105707i
\(446\) 2.08960 3.61929i 0.0989453 0.171378i
\(447\) 38.4418 9.41039i 1.81824 0.445096i
\(448\) −2.53435 4.38961i −0.119737 0.207390i
\(449\) 12.8135 0.604708 0.302354 0.953196i \(-0.402228\pi\)
0.302354 + 0.953196i \(0.402228\pi\)
\(450\) −1.90624 1.21392i −0.0898609 0.0572246i
\(451\) 8.82341 0.415478
\(452\) −1.43197 2.48024i −0.0673542 0.116661i
\(453\) −8.76592 + 30.0848i −0.411859 + 1.41351i
\(454\) −0.159666 + 0.276550i −0.00749349 + 0.0129791i
\(455\) 0.470289 0.814564i 0.0220475 0.0381874i
\(456\) 4.72620 + 4.93614i 0.221324 + 0.231156i
\(457\) 10.9867 + 19.0295i 0.513936 + 0.890163i 0.999869 + 0.0161675i \(0.00514649\pi\)
−0.485933 + 0.873996i \(0.661520\pi\)
\(458\) −3.97830 −0.185894
\(459\) 17.1104 15.0137i 0.798643 0.700779i
\(460\) 15.7911 0.736263
\(461\) 15.7697 + 27.3140i 0.734469 + 1.27214i 0.954956 + 0.296748i \(0.0959022\pi\)
−0.220486 + 0.975390i \(0.570764\pi\)
\(462\) 0.301670 + 0.315071i 0.0140350 + 0.0146584i
\(463\) −11.1352 + 19.2868i −0.517498 + 0.896332i 0.482296 + 0.876008i \(0.339803\pi\)
−0.999793 + 0.0203236i \(0.993530\pi\)
\(464\) 1.88043 3.25699i 0.0872966 0.151202i
\(465\) −0.137580 + 0.472176i −0.00638011 + 0.0218967i
\(466\) 2.73761 + 4.74167i 0.126817 + 0.219654i
\(467\) −0.900593 −0.0416745 −0.0208372 0.999783i \(-0.506633\pi\)
−0.0208372 + 0.999783i \(0.506633\pi\)
\(468\) 6.13069 3.19286i 0.283391 0.147590i
\(469\) 5.38501 0.248657
\(470\) −0.457727 0.792806i −0.0211134 0.0365694i
\(471\) −31.7655 + 7.77604i −1.46368 + 0.358301i
\(472\) 1.54160 2.67012i 0.0709577 0.122902i
\(473\) −6.89330 + 11.9395i −0.316954 + 0.548981i
\(474\) −4.17237 + 1.02138i −0.191643 + 0.0469134i
\(475\) 9.35283 + 16.1996i 0.429137 + 0.743288i
\(476\) −6.17030 −0.282815
\(477\) 0.960851 22.1000i 0.0439943 1.01189i
\(478\) 2.33129 0.106631
\(479\) 0.962817 + 1.66765i 0.0439922 + 0.0761968i 0.887183 0.461418i \(-0.152659\pi\)
−0.843191 + 0.537614i \(0.819326\pi\)
\(480\) 1.26211 4.33158i 0.0576072 0.197709i
\(481\) −3.60092 + 6.23698i −0.164188 + 0.284382i
\(482\) −1.22538 + 2.12242i −0.0558146 + 0.0966738i
\(483\) −6.23028 6.50704i −0.283488 0.296081i
\(484\) −7.78026 13.4758i −0.353648 0.612537i
\(485\) 11.5036 0.522353
\(486\) 1.13042 2.91082i 0.0512769 0.132037i
\(487\) 0.168069 0.00761594 0.00380797 0.999993i \(-0.498788\pi\)
0.00380797 + 0.999993i \(0.498788\pi\)
\(488\) 2.05528 + 3.55984i 0.0930380 + 0.161147i
\(489\) −11.4769 11.9868i −0.519004 0.542060i
\(490\) 0.722932 1.25215i 0.0326587 0.0565666i
\(491\) 21.5347 37.2992i 0.971847 1.68329i 0.281875 0.959451i \(-0.409044\pi\)
0.689972 0.723837i \(-0.257623\pi\)
\(492\) −4.78949 + 16.4376i −0.215927 + 0.741064i
\(493\) −2.19042 3.79391i −0.0986513 0.170869i
\(494\) 1.17139 0.0527032
\(495\) 0.253785 5.83719i 0.0114068 0.262362i
\(496\) 0.959233 0.0430708
\(497\) 2.04220 + 3.53720i 0.0916053 + 0.158665i
\(498\) 3.68820 0.902855i 0.165272 0.0404579i
\(499\) −16.5651 + 28.6916i −0.741555 + 1.28441i 0.210232 + 0.977652i \(0.432578\pi\)
−0.951787 + 0.306760i \(0.900755\pi\)
\(500\) 9.55727 16.5537i 0.427414 0.740303i
\(501\) −1.33237 + 0.326159i −0.0595261 + 0.0145717i
\(502\) −1.40220 2.42868i −0.0625833 0.108397i
\(503\) −28.6639 −1.27806 −0.639030 0.769182i \(-0.720664\pi\)
−0.639030 + 0.769182i \(0.720664\pi\)
\(504\) −1.51680 + 0.789947i −0.0675635 + 0.0351870i
\(505\) 3.97983 0.177100
\(506\) 1.26812 + 2.19645i 0.0563749 + 0.0976442i
\(507\) −5.62916 + 19.3194i −0.250000 + 0.858003i
\(508\) 1.81547 3.14449i 0.0805485 0.139514i
\(509\) −15.1739 + 26.2820i −0.672572 + 1.16493i 0.304601 + 0.952480i \(0.401477\pi\)
−0.977172 + 0.212448i \(0.931856\pi\)
\(510\) −1.17024 1.22222i −0.0518191 0.0541210i
\(511\) −3.66371 6.34573i −0.162073 0.280719i
\(512\) −14.7661 −0.652575
\(513\) −19.4274 + 17.0468i −0.857741 + 0.752636i
\(514\) 1.34181 0.0591847
\(515\) −0.345062 0.597664i −0.0152052 0.0263362i
\(516\) −18.5010 19.3229i −0.814461 0.850641i
\(517\) −3.59073 + 6.21933i −0.157920 + 0.273526i
\(518\) 0.440939 0.763729i 0.0193737 0.0335563i
\(519\) −7.52354 + 25.8209i −0.330247 + 1.13341i
\(520\) −0.519086 0.899084i −0.0227634 0.0394274i
\(521\) −31.0573 −1.36065 −0.680323 0.732913i \(-0.738160\pi\)
−0.680323 + 0.732913i \(0.738160\pi\)
\(522\) −0.506893 0.322796i −0.0221861 0.0141284i
\(523\) −10.3024 −0.450491 −0.225245 0.974302i \(-0.572318\pi\)
−0.225245 + 0.974302i \(0.572318\pi\)
\(524\) −10.9689 18.9986i −0.479177 0.829960i
\(525\) −4.54680 + 1.11304i −0.198439 + 0.0485769i
\(526\) 2.18395 3.78271i 0.0952247 0.164934i
\(527\) 0.558682 0.967665i 0.0243366 0.0421521i
\(528\) −11.0688 + 2.70960i −0.481709 + 0.117920i
\(529\) −14.6901 25.4440i −0.638699 1.10626i
\(530\) −1.64436 −0.0714265
\(531\) 9.83569 + 6.26349i 0.426833 + 0.271812i
\(532\) 7.00587 0.303743
\(533\) 2.96474 + 5.13508i 0.128417 + 0.222425i
\(534\) 0.0224485 0.0770435i 0.000971440 0.00333400i
\(535\) 2.64641 4.58371i 0.114414 0.198171i
\(536\) 2.97188 5.14745i 0.128366 0.222336i
\(537\) 21.3564 + 22.3051i 0.921595 + 0.962535i
\(538\) −2.86999 4.97097i −0.123734 0.214314i
\(539\) −11.3424 −0.488551
\(540\) 10.7366 + 3.64131i 0.462032 + 0.156697i
\(541\) −10.3441 −0.444728 −0.222364 0.974964i \(-0.571377\pi\)
−0.222364 + 0.974964i \(0.571377\pi\)
\(542\) −0.207278 0.359016i −0.00890335 0.0154211i
\(543\) −4.91350 5.13177i −0.210859 0.220225i
\(544\) −5.12515 + 8.87703i −0.219739 + 0.380599i
\(545\) −1.47064 + 2.54722i −0.0629953 + 0.109111i
\(546\) −0.0820024 + 0.281434i −0.00350938 + 0.0120442i
\(547\) 4.78485 + 8.28761i 0.204585 + 0.354352i 0.950001 0.312248i \(-0.101082\pi\)
−0.745415 + 0.666601i \(0.767749\pi\)
\(548\) 39.6276 1.69281
\(549\) −13.7884 + 7.18098i −0.588473 + 0.306477i
\(550\) 1.31786 0.0561936
\(551\) 2.48704 + 4.30768i 0.105951 + 0.183513i
\(552\) −9.65835 + 2.36432i −0.411087 + 0.100632i
\(553\) −4.44873 + 7.70542i −0.189179 + 0.327668i
\(554\) 0.339990 0.588879i 0.0144448 0.0250191i
\(555\) −11.4735 + 2.80865i −0.487021 + 0.119221i
\(556\) −8.08393 14.0018i −0.342835 0.593808i
\(557\) 15.0530 0.637815 0.318908 0.947786i \(-0.396684\pi\)
0.318908 + 0.947786i \(0.396684\pi\)
\(558\) 0.00665775 0.153131i 0.000281845 0.00648257i
\(559\) −9.26483 −0.391860
\(560\) −1.50445 2.60579i −0.0635747 0.110115i
\(561\) −3.71335 + 12.7443i −0.156778 + 0.538063i
\(562\) 1.54180 2.67048i 0.0650369 0.112647i
\(563\) −17.4383 + 30.2040i −0.734936 + 1.27295i 0.219815 + 0.975542i \(0.429455\pi\)
−0.954751 + 0.297406i \(0.903879\pi\)
\(564\) −9.63721 10.0653i −0.405800 0.423826i
\(565\) −0.813403 1.40886i −0.0342201 0.0592710i
\(566\) 4.91568 0.206622
\(567\) −2.73561 5.86092i −0.114885 0.246135i
\(568\) 4.50820 0.189160
\(569\) −4.47272 7.74698i −0.187506 0.324770i 0.756912 0.653517i \(-0.226707\pi\)
−0.944418 + 0.328747i \(0.893374\pi\)
\(570\) 1.32871 + 1.38774i 0.0556536 + 0.0581258i
\(571\) 5.75861 9.97421i 0.240991 0.417408i −0.720006 0.693968i \(-0.755861\pi\)
0.960997 + 0.276560i \(0.0891944\pi\)
\(572\) −2.01541 + 3.49079i −0.0842684 + 0.145957i
\(573\) 7.12516 24.4536i 0.297658 1.02157i
\(574\) −0.363037 0.628799i −0.0151529 0.0262456i
\(575\) −27.2172 −1.13504
\(576\) 0.919069 21.1390i 0.0382946 0.880793i
\(577\) −39.3542 −1.63834 −0.819169 0.573552i \(-0.805565\pi\)
−0.819169 + 0.573552i \(0.805565\pi\)
\(578\) 0.219514 + 0.380209i 0.00913058 + 0.0158146i
\(579\) 1.23796 0.303048i 0.0514481 0.0125943i
\(580\) 1.09093 1.88955i 0.0452985 0.0784594i
\(581\) 3.93249 6.81128i 0.163147 0.282579i
\(582\) −3.48235 + 0.852465i −0.144348 + 0.0353358i
\(583\) 6.44976 + 11.1713i 0.267122 + 0.462669i
\(584\) −8.08772 −0.334672
\(585\) 3.48242 1.81365i 0.143981 0.0749851i
\(586\) 1.81009 0.0747741
\(587\) −3.38263 5.85889i −0.139616 0.241822i 0.787735 0.616014i \(-0.211254\pi\)
−0.927351 + 0.374192i \(0.877920\pi\)
\(588\) 6.15682 21.1303i 0.253903 0.871399i
\(589\) −0.634338 + 1.09870i −0.0261374 + 0.0452713i
\(590\) 0.433400 0.750671i 0.0178428 0.0309047i
\(591\) 26.0396 + 27.1963i 1.07113 + 1.11871i
\(592\) 11.5193 + 19.9521i 0.473442 + 0.820025i
\(593\) −41.8168 −1.71721 −0.858606 0.512636i \(-0.828669\pi\)
−0.858606 + 0.512636i \(0.828669\pi\)
\(594\) 0.355734 + 1.78583i 0.0145959 + 0.0732734i
\(595\) −3.50492 −0.143688
\(596\) −22.3913 38.7828i −0.917183 1.58861i
\(597\) −18.9510 19.7929i −0.775614 0.810069i
\(598\) −0.852200 + 1.47605i −0.0348490 + 0.0603603i
\(599\) −1.33709 + 2.31591i −0.0546321 + 0.0946256i −0.892048 0.451940i \(-0.850732\pi\)
0.837416 + 0.546566i \(0.184065\pi\)
\(600\) −1.44535 + 4.96048i −0.0590063 + 0.202511i
\(601\) 3.65206 + 6.32555i 0.148971 + 0.258025i 0.930847 0.365409i \(-0.119071\pi\)
−0.781877 + 0.623433i \(0.785737\pi\)
\(602\) 1.13449 0.0462385
\(603\) 18.9612 + 12.0747i 0.772160 + 0.491721i
\(604\) 35.4576 1.44275
\(605\) −4.41943 7.65468i −0.179675 0.311207i
\(606\) −1.20477 + 0.294922i −0.0489403 + 0.0119804i
\(607\) 10.2311 17.7207i 0.415266 0.719262i −0.580190 0.814481i \(-0.697022\pi\)
0.995456 + 0.0952189i \(0.0303551\pi\)
\(608\) 5.81920 10.0791i 0.236000 0.408763i
\(609\) −1.20905 + 0.295970i −0.0489932 + 0.0119933i
\(610\) 0.577816 + 1.00081i 0.0233951 + 0.0405215i
\(611\) −4.82607 −0.195242
\(612\) −21.7263 13.8356i −0.878233 0.559270i
\(613\) −10.5862 −0.427571 −0.213786 0.976881i \(-0.568579\pi\)
−0.213786 + 0.976881i \(0.568579\pi\)
\(614\) 1.66583 + 2.88530i 0.0672274 + 0.116441i
\(615\) −2.72058 + 9.33706i −0.109704 + 0.376507i
\(616\) 0.498633 0.863657i 0.0200905 0.0347977i
\(617\) 6.36377 11.0224i 0.256196 0.443744i −0.709024 0.705185i \(-0.750864\pi\)
0.965220 + 0.261440i \(0.0841975\pi\)
\(618\) 0.148746 + 0.155353i 0.00598343 + 0.00624922i
\(619\) 8.31609 + 14.4039i 0.334252 + 0.578941i 0.983341 0.181771i \(-0.0581831\pi\)
−0.649089 + 0.760712i \(0.724850\pi\)
\(620\) 0.556501 0.0223496
\(621\) −7.34684 36.8821i −0.294819 1.48003i
\(622\) −3.45123 −0.138382
\(623\) −0.0831087 0.143948i −0.00332968 0.00576717i
\(624\) −5.29616 5.53143i −0.212016 0.221434i
\(625\) −3.97275 + 6.88101i −0.158910 + 0.275240i
\(626\) 3.29987 5.71554i 0.131889 0.228439i
\(627\) 4.21620 14.4701i 0.168379 0.577879i
\(628\) 18.5025 + 32.0472i 0.738330 + 1.27882i
\(629\) 26.8366 1.07005
\(630\) −0.426428 + 0.222084i −0.0169893 + 0.00884803i
\(631\) 32.1616 1.28033 0.640166 0.768237i \(-0.278866\pi\)
0.640166 + 0.768237i \(0.278866\pi\)
\(632\) 4.91033 + 8.50494i 0.195323 + 0.338309i
\(633\) 29.8959 7.31839i 1.18826 0.290880i
\(634\) −1.52992 + 2.64990i −0.0607610 + 0.105241i
\(635\) 1.03124 1.78617i 0.0409237 0.0708819i
\(636\) −24.3127 + 5.95164i −0.964060 + 0.235998i
\(637\) −3.81114 6.60108i −0.151003 0.261544i
\(638\) 0.350435 0.0138739
\(639\) −0.740596 + 17.0341i −0.0292975 + 0.673857i
\(640\) −6.78253 −0.268103
\(641\) −3.36868 5.83472i −0.133055 0.230458i 0.791798 0.610783i \(-0.209145\pi\)
−0.924853 + 0.380326i \(0.875812\pi\)
\(642\) −0.461444 + 1.58368i −0.0182117 + 0.0625029i
\(643\) −6.34818 + 10.9954i −0.250348 + 0.433615i −0.963622 0.267271i \(-0.913878\pi\)
0.713274 + 0.700885i \(0.247212\pi\)
\(644\) −5.09687 + 8.82803i −0.200845 + 0.347873i
\(645\) −10.5091 10.9760i −0.413797 0.432179i
\(646\) −2.18250 3.78020i −0.0858693 0.148730i
\(647\) 24.8669 0.977617 0.488809 0.872391i \(-0.337432\pi\)
0.488809 + 0.872391i \(0.337432\pi\)
\(648\) −7.11209 0.619601i −0.279389 0.0243402i
\(649\) −6.79980 −0.266915
\(650\) 0.442811 + 0.766972i 0.0173685 + 0.0300831i
\(651\) −0.219565 0.229318i −0.00860541 0.00898768i
\(652\) −9.38904 + 16.2623i −0.367703 + 0.636880i
\(653\) 6.65645 11.5293i 0.260487 0.451177i −0.705884 0.708327i \(-0.749450\pi\)
0.966371 + 0.257150i \(0.0827835\pi\)
\(654\) 0.256430 0.880070i 0.0100272 0.0344135i
\(655\) −6.23066 10.7918i −0.243452 0.421671i
\(656\) 18.9684 0.740591
\(657\) 1.32863 30.5591i 0.0518348 1.19222i
\(658\) 0.590960 0.0230380
\(659\) −15.6719 27.1445i −0.610489 1.05740i −0.991158 0.132687i \(-0.957639\pi\)
0.380669 0.924712i \(-0.375694\pi\)
\(660\) −6.42160 + 1.57198i −0.249961 + 0.0611893i
\(661\) −11.1857 + 19.3743i −0.435075 + 0.753572i −0.997302 0.0734109i \(-0.976612\pi\)
0.562227 + 0.826983i \(0.309945\pi\)
\(662\) −3.15572 + 5.46586i −0.122650 + 0.212437i
\(663\) −8.66467 + 2.12107i −0.336508 + 0.0823757i
\(664\) −4.34053 7.51802i −0.168445 0.291756i
\(665\) 3.97955 0.154321
\(666\) 3.26509 1.70046i 0.126520 0.0658915i
\(667\) −7.23741 −0.280234
\(668\) 0.776071 + 1.34419i 0.0300271 + 0.0520084i
\(669\) 10.1087 34.6931i 0.390824 1.34131i
\(670\) 0.835508 1.44714i 0.0322785 0.0559080i
\(671\) 4.53279 7.85103i 0.174987 0.303086i
\(672\) 2.01421 + 2.10369i 0.0776998 + 0.0811514i
\(673\) −18.7805 32.5288i −0.723937 1.25389i −0.959410 0.282014i \(-0.908997\pi\)
0.235474 0.971881i \(-0.424336\pi\)
\(674\) 0.00743469 0.000286373
\(675\) −18.5055 6.27610i −0.712277 0.241567i
\(676\) 22.7696 0.875753
\(677\) 24.1974 + 41.9111i 0.929980 + 1.61077i 0.783349 + 0.621582i \(0.213510\pi\)
0.146631 + 0.989191i \(0.453157\pi\)
\(678\) 0.350634 + 0.366210i 0.0134660 + 0.0140642i
\(679\) −3.71301 + 6.43112i −0.142492 + 0.246804i
\(680\) −1.93430 + 3.35030i −0.0741769 + 0.128478i
\(681\) −0.772403 + 2.65090i −0.0295985 + 0.101583i
\(682\) 0.0446905 + 0.0774063i 0.00171129 + 0.00296404i
\(683\) 41.0436 1.57049 0.785244 0.619186i \(-0.212537\pi\)
0.785244 + 0.619186i \(0.212537\pi\)
\(684\) 24.6684 + 15.7092i 0.943221 + 0.600655i
\(685\) 22.5097 0.860052
\(686\) 0.970534 + 1.68101i 0.0370552 + 0.0641814i
\(687\) −33.4122 + 8.17916i −1.27476 + 0.312054i
\(688\) −14.8191 + 25.6674i −0.564972 + 0.978560i
\(689\) −4.33435 + 7.50732i −0.165126 + 0.286006i
\(690\) −2.71533 + 0.664700i −0.103371 + 0.0253047i
\(691\) 21.1108 + 36.5650i 0.803094 + 1.39100i 0.917570 + 0.397574i \(0.130148\pi\)
−0.114476 + 0.993426i \(0.536519\pi\)
\(692\) 30.4322 1.15686
\(693\) 3.18138 + 2.02594i 0.120851 + 0.0769591i
\(694\) −3.13334 −0.118940
\(695\) −4.59193 7.95345i −0.174182 0.301691i
\(696\) −0.384338 + 1.31905i −0.0145683 + 0.0499986i
\(697\) 11.0477 19.1351i 0.418460 0.724794i
\(698\) 1.32253 2.29070i 0.0500587 0.0867042i
\(699\) 32.7407 + 34.1951i 1.23837 + 1.29338i
\(700\) 2.64838 + 4.58713i 0.100099 + 0.173377i
\(701\) 38.2085 1.44312 0.721558 0.692354i \(-0.243426\pi\)
0.721558 + 0.692354i \(0.243426\pi\)
\(702\) −0.919794 + 0.807085i −0.0347154 + 0.0304615i
\(703\) −30.4708 −1.14923
\(704\) 6.16930 + 10.6855i 0.232514 + 0.402727i
\(705\) −5.47424 5.71741i −0.206172 0.215330i
\(706\) −3.48946 + 6.04392i −0.131327 + 0.227466i
\(707\) −1.28457 + 2.22493i −0.0483111 + 0.0836773i
\(708\) 3.69104 12.6677i 0.138718 0.476081i
\(709\) 4.07026 + 7.04989i 0.152862 + 0.264764i 0.932278 0.361742i \(-0.117818\pi\)
−0.779417 + 0.626506i \(0.784484\pi\)
\(710\) 1.26743 0.0475656
\(711\) −32.9422 + 17.1563i −1.23543 + 0.643412i
\(712\) −0.183464 −0.00687561
\(713\) −0.922978 1.59864i −0.0345658 0.0598697i
\(714\) 1.06100 0.259729i 0.0397070 0.00972011i
\(715\) −1.14481 + 1.98288i −0.0428136 + 0.0741554i
\(716\) 17.4712 30.2610i 0.652930 1.13091i
\(717\) 19.5796 4.79300i 0.731214 0.178998i
\(718\) −1.12286 1.94485i −0.0419048 0.0725812i
\(719\) 15.6490 0.583610 0.291805 0.956478i \(-0.405744\pi\)
0.291805 + 0.956478i \(0.405744\pi\)
\(720\) 0.545583 12.5487i 0.0203327 0.467661i
\(721\) 0.445500 0.0165913
\(722\) 0.575051 + 0.996017i 0.0214012 + 0.0370679i
\(723\) −5.92793 + 20.3447i −0.220462 + 0.756629i
\(724\) −4.01964 + 6.96221i −0.149389 + 0.258749i
\(725\) −1.88032 + 3.25680i −0.0698332 + 0.120955i
\(726\) 1.90508 + 1.98971i 0.0707043 + 0.0738451i
\(727\) 10.6561 + 18.4569i 0.395213 + 0.684529i 0.993128 0.117030i \(-0.0373375\pi\)
−0.597915 + 0.801559i \(0.704004\pi\)
\(728\) 0.670179 0.0248385
\(729\) 3.50949 26.7709i 0.129981 0.991516i
\(730\) −2.27376 −0.0841557
\(731\) 17.2620 + 29.8987i 0.638458 + 1.10584i
\(732\) 12.1656 + 12.7060i 0.449654 + 0.469629i
\(733\) −15.9259 + 27.5844i −0.588236 + 1.01885i 0.406228 + 0.913772i \(0.366844\pi\)
−0.994464 + 0.105083i \(0.966489\pi\)
\(734\) −0.239382 + 0.414622i −0.00883576 + 0.0153040i
\(735\) 3.49727 12.0027i 0.128999 0.442725i
\(736\) 8.46708 + 14.6654i 0.312101 + 0.540575i
\(737\) −13.1086 −0.482862
\(738\) 0.131654 3.02810i 0.00484625 0.111466i
\(739\) −29.5769 −1.08800 −0.544001 0.839084i \(-0.683091\pi\)
−0.544001 + 0.839084i \(0.683091\pi\)
\(740\) 6.68297 + 11.5752i 0.245671 + 0.425514i
\(741\) 9.83803 2.40831i 0.361409 0.0884714i
\(742\) 0.530748 0.919283i 0.0194844 0.0337480i
\(743\) −2.55972 + 4.43357i −0.0939070 + 0.162652i −0.909152 0.416465i \(-0.863269\pi\)
0.815245 + 0.579116i \(0.196602\pi\)
\(744\) −0.340375 + 0.0833223i −0.0124788 + 0.00305474i
\(745\) −12.7189 22.0299i −0.465986 0.807112i
\(746\) −1.90260 −0.0696591
\(747\) 29.1196 15.1655i 1.06543 0.554875i
\(748\) 15.0202 0.549194
\(749\) 1.70836 + 2.95896i 0.0624219 + 0.108118i
\(750\) −0.946603 + 3.24876i −0.0345650 + 0.118628i
\(751\) 9.09635 15.7553i 0.331930 0.574920i −0.650960 0.759112i \(-0.725633\pi\)
0.982890 + 0.184192i \(0.0589667\pi\)
\(752\) −7.71928 + 13.3702i −0.281493 + 0.487561i
\(753\) −16.7698 17.5147i −0.611125 0.638273i
\(754\) 0.117749 + 0.203948i 0.00428817 + 0.00742733i
\(755\) 20.1410 0.733006
\(756\) −5.50113 + 4.82704i −0.200074 + 0.175558i
\(757\) −40.1892 −1.46070 −0.730351 0.683072i \(-0.760643\pi\)
−0.730351 + 0.683072i \(0.760643\pi\)
\(758\) 1.84644 + 3.19814i 0.0670659 + 0.116162i
\(759\) 15.1662 + 15.8400i 0.550500 + 0.574954i
\(760\) 2.19624 3.80400i 0.0796659 0.137985i
\(761\) −7.84047 + 13.5801i −0.284217 + 0.492278i −0.972419 0.233241i \(-0.925067\pi\)
0.688202 + 0.725519i \(0.258400\pi\)
\(762\) −0.179814 + 0.617124i −0.00651397 + 0.0223561i
\(763\) −0.949353 1.64433i −0.0343689 0.0595287i
\(764\) −28.8208 −1.04270
\(765\) −12.3412 7.85904i −0.446198 0.284144i
\(766\) 4.22708 0.152731
\(767\) −2.28479 3.95737i −0.0824990 0.142892i
\(768\) −21.6784 + 5.30678i −0.782252 + 0.191492i
\(769\) 0.543526 0.941414i 0.0196000 0.0339483i −0.856059 0.516878i \(-0.827094\pi\)
0.875659 + 0.482930i \(0.160427\pi\)
\(770\) 0.140184 0.242806i 0.00505189 0.00875014i
\(771\) 11.2693 2.75868i 0.405855 0.0993516i
\(772\) −0.721080 1.24895i −0.0259522 0.0449506i
\(773\) −8.23186 −0.296080 −0.148040 0.988981i \(-0.547296\pi\)
−0.148040 + 0.988981i \(0.547296\pi\)
\(774\) 3.99467 + 2.54386i 0.143586 + 0.0914371i
\(775\) −0.959177 −0.0344546
\(776\) 4.09828 + 7.09842i 0.147120 + 0.254819i
\(777\) 2.13309 7.32081i 0.0765243 0.262633i
\(778\) −0.311320 + 0.539222i −0.0111614 + 0.0193321i
\(779\) −12.5437 + 21.7264i −0.449426 + 0.778428i
\(780\) −3.07258 3.20907i −0.110016 0.114903i
\(781\) −4.97129 8.61053i −0.177887 0.308109i
\(782\) 6.35119 0.227118
\(783\) −4.92085 1.66890i −0.175857 0.0596415i
\(784\) −24.3836 −0.870843
\(785\) 10.5100 + 18.2038i 0.375118 + 0.649723i
\(786\) 2.68585 + 2.80516i 0.0958011 + 0.100057i
\(787\) 12.5101 21.6681i 0.445935 0.772383i −0.552181 0.833724i \(-0.686204\pi\)
0.998117 + 0.0613412i \(0.0195378\pi\)
\(788\) 21.3025 36.8970i 0.758869 1.31440i
\(789\) 10.5651 36.2596i 0.376128 1.29088i
\(790\) 1.38048 + 2.39106i 0.0491152 + 0.0850701i
\(791\) 1.05016 0.0373396
\(792\) 3.69231 1.92295i 0.131200 0.0683291i
\(793\) 6.09223 0.216342
\(794\) −2.82223 4.88825i −0.100157 0.173477i
\(795\) −13.8104 + 3.38071i −0.489803 + 0.119902i
\(796\) −15.5035 + 26.8528i −0.549505 + 0.951771i
\(797\) 20.4442 35.4105i 0.724172 1.25430i −0.235142 0.971961i \(-0.575555\pi\)
0.959314 0.282342i \(-0.0911113\pi\)
\(798\) −1.20468 + 0.294901i −0.0426453 + 0.0104394i
\(799\) 8.99181 + 15.5743i 0.318108 + 0.550978i
\(800\) 8.79916 0.311097
\(801\) 0.0301390 0.693211i 0.00106491 0.0244934i
\(802\) −1.29946 −0.0458855
\(803\) 8.91850 + 15.4473i 0.314727 + 0.545123i
\(804\) 7.11557 24.4207i 0.250947 0.861253i
\(805\) −2.89518 + 5.01460i −0.102042 + 0.176741i
\(806\) −0.0300328 + 0.0520183i −0.00105786 + 0.00183227i
\(807\) −34.3240 35.8488i −1.20826 1.26194i
\(808\) 1.41785 + 2.45579i 0.0498799 + 0.0863946i
\(809\) 31.2887 1.10005 0.550026 0.835148i \(-0.314618\pi\)
0.550026 + 0.835148i \(0.314618\pi\)
\(810\) −1.99948 0.174193i −0.0702544 0.00612052i
\(811\) 36.1607 1.26977 0.634886 0.772606i \(-0.281047\pi\)
0.634886 + 0.772606i \(0.281047\pi\)
\(812\) 0.704239 + 1.21978i 0.0247139 + 0.0428058i
\(813\) −2.47897 2.58909i −0.0869411 0.0908032i
\(814\) −1.07337 + 1.85913i −0.0376215 + 0.0651624i
\(815\) −5.33327 + 9.23749i −0.186816 + 0.323575i
\(816\) −7.98288 + 27.3974i −0.279457 + 0.959099i
\(817\) −19.5996 33.9475i −0.685703 1.18767i
\(818\) 3.14563 0.109984
\(819\) −0.110095 + 2.53224i −0.00384704 + 0.0884838i
\(820\) 11.0046 0.384296
\(821\) −23.4565 40.6279i −0.818639 1.41792i −0.906685 0.421808i \(-0.861396\pi\)
0.0880458 0.996116i \(-0.471938\pi\)
\(822\) −6.81409 + 1.66806i −0.237669 + 0.0581803i
\(823\) −17.2807 + 29.9311i −0.602369 + 1.04333i 0.390093 + 0.920776i \(0.372443\pi\)
−0.992461 + 0.122557i \(0.960890\pi\)
\(824\) 0.245863 0.425847i 0.00856504 0.0148351i
\(825\) 11.0682 2.70944i 0.385344 0.0943306i
\(826\) 0.279776 + 0.484587i 0.00973466 + 0.0168609i
\(827\) 55.9915 1.94701 0.973507 0.228657i \(-0.0734333\pi\)
0.973507 + 0.228657i \(0.0734333\pi\)
\(828\) −37.7416 + 19.6558i −1.31161 + 0.683087i
\(829\) −2.90297 −0.100824 −0.0504121 0.998729i \(-0.516053\pi\)
−0.0504121 + 0.998729i \(0.516053\pi\)
\(830\) −1.22029 2.11360i −0.0423568 0.0733641i
\(831\) 1.64474 5.64477i 0.0570554 0.195815i
\(832\) −4.14588 + 7.18087i −0.143733 + 0.248952i
\(833\) −14.2016 + 24.5979i −0.492057 + 0.852268i
\(834\) 1.97944 + 2.06737i 0.0685424 + 0.0715872i
\(835\) 0.440832 + 0.763544i 0.0152556 + 0.0264235i
\(836\) −17.0543 −0.589834
\(837\) −0.258914 1.29978i −0.00894937 0.0449270i
\(838\) −0.751656 −0.0259655
\(839\) 24.9166 + 43.1567i 0.860215 + 1.48994i 0.871721 + 0.490003i \(0.163004\pi\)
−0.0115057 + 0.999934i \(0.503662\pi\)
\(840\) 0.760188 + 0.793958i 0.0262290 + 0.0273941i
\(841\) −0.500000 + 0.866025i −0.0172414 + 0.0298629i
\(842\) 3.73746 6.47348i 0.128801 0.223091i
\(843\) 7.45864 25.5982i 0.256889 0.881648i
\(844\) −17.4135 30.1611i −0.599399 1.03819i
\(845\) 12.9338 0.444937
\(846\) 2.08083 + 1.32510i 0.0715405 + 0.0455579i
\(847\) 5.70582 0.196054
\(848\) 13.8656 + 24.0159i 0.476146 + 0.824709i
\(849\) 41.2849 10.1064i 1.41690 0.346850i
\(850\) 1.65007 2.85801i 0.0565970 0.0980288i
\(851\) 22.1679 38.3959i 0.759906 1.31620i
\(852\) 18.7395 4.58735i 0.642005 0.157160i
\(853\) 21.5576 + 37.3388i 0.738118 + 1.27846i 0.953342 + 0.301893i \(0.0976184\pi\)
−0.215224 + 0.976565i \(0.569048\pi\)
\(854\) −0.746004 −0.0255277
\(855\) 14.0124 + 8.92330i 0.479215 + 0.305170i
\(856\) 3.77123 0.128898
\(857\) −11.3711 19.6953i −0.388429 0.672779i 0.603809 0.797129i \(-0.293649\pi\)
−0.992238 + 0.124350i \(0.960316\pi\)
\(858\) 0.199617 0.685088i 0.00681480 0.0233885i
\(859\) 6.11742 10.5957i 0.208724 0.361520i −0.742589 0.669747i \(-0.766402\pi\)
0.951313 + 0.308227i \(0.0997358\pi\)
\(860\) −8.59732 + 14.8910i −0.293166 + 0.507779i
\(861\) −4.34179 4.53466i −0.147968 0.154541i
\(862\) −2.20495 3.81909i −0.0751010 0.130079i
\(863\) −19.8296 −0.675007 −0.337504 0.941324i \(-0.609582\pi\)
−0.337504 + 0.941324i \(0.609582\pi\)
\(864\) 2.37519 + 11.9237i 0.0808055 + 0.405654i
\(865\) 17.2864 0.587756
\(866\) 2.10954 + 3.65382i 0.0716850 + 0.124162i
\(867\) 2.62530 + 2.74192i 0.0891600 + 0.0931207i
\(868\) −0.179621 + 0.311113i −0.00609674 + 0.0105599i
\(869\) 10.8294 18.7572i 0.367364 0.636293i
\(870\) −0.108052 + 0.370836i −0.00366330 + 0.0125725i
\(871\) −4.40461 7.62901i −0.149245 0.258499i
\(872\) −2.09572 −0.0709699
\(873\) −27.4943 + 14.3191i −0.930542 + 0.484626i
\(874\) −7.21126 −0.243925
\(875\) 3.50451 + 6.06999i 0.118474 + 0.205203i
\(876\) −33.6187 + 8.22970i −1.13587 + 0.278056i
\(877\) −1.07965 + 1.87001i −0.0364572 + 0.0631458i −0.883678 0.468095i \(-0.844941\pi\)
0.847221 + 0.531241i \(0.178274\pi\)
\(878\) 3.87650 6.71430i 0.130826 0.226597i
\(879\) 15.2022 3.72144i 0.512759 0.125521i
\(880\) 3.66226 + 6.34321i 0.123455 + 0.213830i
\(881\) −46.3330 −1.56100 −0.780499 0.625158i \(-0.785035\pi\)
−0.780499 + 0.625158i \(0.785035\pi\)
\(882\) −0.169239 + 3.89259i −0.00569858 + 0.131070i
\(883\) 48.5475 1.63375 0.816876 0.576813i \(-0.195704\pi\)
0.816876 + 0.576813i \(0.195704\pi\)
\(884\) 5.04693 + 8.74154i 0.169747 + 0.294010i
\(885\) 2.09662 7.19565i 0.0704773 0.241879i
\(886\) 1.12862 1.95483i 0.0379169 0.0656739i
\(887\) −22.0866 + 38.2551i −0.741594 + 1.28448i 0.210175 + 0.977664i \(0.432597\pi\)
−0.951769 + 0.306815i \(0.900737\pi\)
\(888\) −5.82064 6.07920i −0.195328 0.204005i
\(889\) 0.665707 + 1.15304i 0.0223271 + 0.0386717i
\(890\) −0.0515787 −0.00172892
\(891\) 6.65923 + 14.2671i 0.223093 + 0.477966i
\(892\) −40.8889 −1.36906
\(893\) −10.2095 17.6833i −0.341647 0.591750i
\(894\) 5.48275 + 5.72631i 0.183371 + 0.191516i
\(895\) 9.92419 17.1892i 0.331729 0.574572i
\(896\) 2.18919 3.79179i 0.0731357 0.126675i
\(897\) −4.12262 + 14.1489i −0.137650 + 0.472417i
\(898\) 1.28338 + 2.22287i 0.0428269 + 0.0741783i
\(899\) −0.255057 −0.00850664
\(900\) −0.960424 + 22.0902i −0.0320141 + 0.736341i
\(901\) 32.3026 1.07616
\(902\) 0.883734 + 1.53067i 0.0294251 + 0.0509658i
\(903\) 9.52817 2.33245i 0.317078 0.0776192i
\(904\) 0.579565 1.00384i 0.0192761 0.0333871i
\(905\) −2.28328 + 3.95475i −0.0758987 + 0.131460i
\(906\) −6.09704 + 1.49253i −0.202561 + 0.0495859i
\(907\) 12.0599 + 20.8883i 0.400441 + 0.693584i 0.993779 0.111369i \(-0.0355235\pi\)
−0.593338 + 0.804953i \(0.702190\pi\)
\(908\) 3.12432 0.103684
\(909\) −9.51204 + 4.95387i −0.315494 + 0.164309i
\(910\) 0.188413 0.00624582
\(911\) −13.1960 22.8562i −0.437203 0.757258i 0.560269 0.828311i \(-0.310698\pi\)
−0.997473 + 0.0710522i \(0.977364\pi\)
\(912\) 9.06391 31.1075i 0.300136 1.03007i
\(913\) −9.57279 + 16.5806i −0.316813 + 0.548736i
\(914\) −2.20081 + 3.81191i −0.0727963 + 0.126087i
\(915\) 6.91045 + 7.21743i 0.228453 + 0.238601i
\(916\) 19.4617 + 33.7086i 0.643032 + 1.11376i
\(917\) 8.04425 0.265645
\(918\) 4.31829 + 1.46454i 0.142525 + 0.0483370i
\(919\) −0.199873 −0.00659321 −0.00329660 0.999995i \(-0.501049\pi\)
−0.00329660 + 0.999995i \(0.501049\pi\)
\(920\) 3.19558 + 5.53491i 0.105355 + 0.182481i
\(921\) 19.9227 + 20.8077i 0.656474 + 0.685636i
\(922\) −3.15893 + 5.47142i −0.104034 + 0.180192i
\(923\) 3.34079 5.78642i 0.109964 0.190462i
\(924\) 1.19387 4.09740i 0.0392756 0.134794i
\(925\) −11.5187 19.9509i −0.378731 0.655982i
\(926\) −4.46112 −0.146602
\(927\) 1.56866 + 0.998940i 0.0515214 + 0.0328095i
\(928\) 2.33981 0.0768080
\(929\) 2.55131 + 4.41900i 0.0837058 + 0.144983i 0.904839 0.425754i \(-0.139991\pi\)
−0.821133 + 0.570737i \(0.806658\pi\)
\(930\) −0.0956922 + 0.0234250i −0.00313787 + 0.000768137i
\(931\) 16.1248 27.9290i 0.528469 0.915335i
\(932\) 26.7845 46.3921i 0.877356 1.51963i
\(933\) −28.9856 + 7.09554i −0.948945 + 0.232297i
\(934\) −0.0902015 0.156234i −0.00295148 0.00511212i
\(935\) 8.53196 0.279025
\(936\) 2.35977 + 1.50273i 0.0771316 + 0.0491184i
\(937\) −12.5457 −0.409852 −0.204926 0.978778i \(-0.565695\pi\)
−0.204926 + 0.978778i \(0.565695\pi\)
\(938\) 0.539352 + 0.934184i 0.0176105 + 0.0305022i
\(939\) 15.9635 54.7869i 0.520949 1.78790i
\(940\) −4.47836 + 7.75675i −0.146068 + 0.252997i
\(941\) −7.69552 + 13.3290i −0.250867 + 0.434514i −0.963765 0.266754i \(-0.914049\pi\)
0.712898 + 0.701268i \(0.247382\pi\)
\(942\) −4.53054 4.73180i −0.147613 0.154170i
\(943\) −18.2515 31.6124i −0.594349 1.02944i
\(944\) −14.6181 −0.475777
\(945\) −3.12482 + 2.74191i −0.101650 + 0.0891943i
\(946\) −2.76167 −0.0897897
\(947\) −9.18962 15.9169i −0.298623 0.517230i 0.677198 0.735800i \(-0.263194\pi\)
−0.975821 + 0.218571i \(0.929861\pi\)
\(948\) 29.0653 + 30.3564i 0.943997 + 0.985931i
\(949\) −5.99339 + 10.3808i −0.194554 + 0.336977i
\(950\) −1.87352 + 3.24503i −0.0607851 + 0.105283i
\(951\) −7.40118 + 25.4010i −0.240000 + 0.823683i
\(952\) −1.24866 2.16275i −0.0404694 0.0700950i
\(953\) −34.7398 −1.12533 −0.562666 0.826684i \(-0.690224\pi\)
−0.562666 + 0.826684i \(0.690224\pi\)
\(954\) 3.93012 2.04681i 0.127242 0.0662678i
\(955\) −16.3711 −0.529756
\(956\) −11.4046 19.7533i −0.368850 0.638867i
\(957\) 2.94317 0.720475i 0.0951392 0.0232896i
\(958\) −0.192867 + 0.334056i −0.00623127 + 0.0107929i
\(959\) −7.26543 + 12.5841i −0.234613 + 0.406362i
\(960\) −13.2098 + 3.23371i −0.426346 + 0.104367i
\(961\) 15.4675 + 26.7904i 0.498951 + 0.864208i
\(962\) −1.44264 −0.0465127
\(963\) −0.619528 + 14.2494i −0.0199640 + 0.459182i
\(964\) 23.9781 0.772282
\(965\) −0.409596 0.709441i −0.0131854 0.0228377i
\(966\) 0.504821 1.73255i 0.0162423 0.0557440i
\(967\) 7.42914 12.8676i 0.238905 0.413796i −0.721495 0.692419i \(-0.756545\pi\)
0.960400 + 0.278624i \(0.0898782\pi\)
\(968\) 3.14893 5.45411i 0.101210 0.175302i
\(969\) −26.1019 27.2614i −0.838513 0.875761i
\(970\) 1.15218 + 1.99563i 0.0369943 + 0.0640759i
\(971\) −43.2023 −1.38643 −0.693214 0.720732i \(-0.743806\pi\)
−0.693214 + 0.720732i \(0.743806\pi\)
\(972\) −30.1937 + 4.66142i −0.968463 + 0.149515i
\(973\) 5.92852 0.190060
\(974\) 0.0168335 + 0.0291564i 0.000539379 + 0.000934232i
\(975\) 5.29585 + 5.53111i 0.169603 + 0.177137i
\(976\) 9.74451 16.8780i 0.311914 0.540251i
\(977\) −3.57799 + 6.19726i −0.114470 + 0.198268i −0.917568 0.397579i \(-0.869850\pi\)
0.803098 + 0.595847i \(0.203184\pi\)
\(978\) 0.929940 3.19157i 0.0297362 0.102055i
\(979\) 0.202310 + 0.350411i 0.00646585 + 0.0111992i
\(980\) −14.1462 −0.451884
\(981\) 0.344279 7.91858i 0.0109920 0.252821i
\(982\) 8.62748 0.275314
\(983\) −25.9422 44.9332i −0.827428 1.43315i −0.900050 0.435787i \(-0.856470\pi\)
0.0726221 0.997360i \(-0.476863\pi\)
\(984\) −6.73076 + 1.64766i −0.214569 + 0.0525254i
\(985\) 12.1005 20.9586i 0.385553 0.667797i
\(986\) 0.438775 0.759981i 0.0139734 0.0242027i
\(987\) 4.96325 1.21498i 0.157982 0.0386732i
\(988\) −5.73038 9.92530i −0.182308 0.315766i
\(989\) 57.0359 1.81364
\(990\) 1.03805 0.540614i 0.0329913 0.0171818i
\(991\) −23.6947 −0.752687 −0.376344 0.926480i \(-0.622819\pi\)
−0.376344 + 0.926480i \(0.622819\pi\)
\(992\) 0.298393 + 0.516832i 0.00947398 + 0.0164094i
\(993\) −15.2661 + 52.3936i −0.484456 + 1.66266i
\(994\) −0.409086 + 0.708557i −0.0129754 + 0.0224741i
\(995\) −8.80644 + 15.2532i −0.279183 + 0.483559i
\(996\) −25.6925 26.8338i −0.814099 0.850263i
\(997\) −5.22186 9.04452i −0.165378 0.286443i 0.771412 0.636337i \(-0.219551\pi\)
−0.936789 + 0.349894i \(0.886218\pi\)
\(998\) −6.63650 −0.210075
\(999\) 23.9262 20.9944i 0.756992 0.664232i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.e.a.175.7 yes 22
3.2 odd 2 783.2.e.a.523.5 22
9.2 odd 6 783.2.e.a.262.5 22
9.4 even 3 2349.2.a.f.1.5 11
9.5 odd 6 2349.2.a.e.1.7 11
9.7 even 3 inner 261.2.e.a.88.7 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.e.a.88.7 22 9.7 even 3 inner
261.2.e.a.175.7 yes 22 1.1 even 1 trivial
783.2.e.a.262.5 22 9.2 odd 6
783.2.e.a.523.5 22 3.2 odd 2
2349.2.a.e.1.7 11 9.5 odd 6
2349.2.a.f.1.5 11 9.4 even 3