Properties

Label 261.1.f
Level $261$
Weight $1$
Character orbit 261.f
Rep. character $\chi_{261}(46,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $1$
Sturm bound $30$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 261.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(261, [\chi])\).

Total New Old
Modular forms 12 6 6
Cusp forms 4 4 0
Eisenstein series 8 2 6

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4 q - 4 q^{7} - 4 q^{10} + 4 q^{16} - 4 q^{25} + 4 q^{40} + 4 q^{43} - 4 q^{46} + 4 q^{55} + 4 q^{61} + 4 q^{70} - 4 q^{73} - 4 q^{79} - 4 q^{85} - 4 q^{88} - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(261, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
261.1.f.a 261.f 29.c $4$ $0.130$ \(\Q(\zeta_{8})\) $S_{4}$ None None 261.1.f.a \(0\) \(0\) \(0\) \(-4\) \(q-\zeta_{8}q^{2}+(-\zeta_{8}-\zeta_{8}^{3})q^{5}-q^{7}+\zeta_{8}^{3}q^{8}+\cdots\)