Properties

Label 261.1
Level 261
Weight 1
Dimension 4
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 5040
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(5040\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(261))\).

Total New Old
Modular forms 232 126 106
Cusp forms 8 4 4
Eisenstein series 224 122 102

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 4 0

Trace form

\( 4 q - 4 q^{7} - 4 q^{10} + 4 q^{16} - 4 q^{25} + 4 q^{40} + 4 q^{43} - 4 q^{46} + 4 q^{55} + 4 q^{61} + 4 q^{70} - 4 q^{73} - 4 q^{79} - 4 q^{85} - 4 q^{88} - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(261))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
261.1.b \(\chi_{261}(233, \cdot)\) None 0 1
261.1.d \(\chi_{261}(260, \cdot)\) None 0 1
261.1.f \(\chi_{261}(46, \cdot)\) 261.1.f.a 4 2
261.1.h \(\chi_{261}(86, \cdot)\) None 0 2
261.1.j \(\chi_{261}(59, \cdot)\) None 0 2
261.1.m \(\chi_{261}(70, \cdot)\) None 0 4
261.1.n \(\chi_{261}(35, \cdot)\) None 0 6
261.1.p \(\chi_{261}(53, \cdot)\) None 0 6
261.1.s \(\chi_{261}(10, \cdot)\) None 0 12
261.1.t \(\chi_{261}(20, \cdot)\) None 0 12
261.1.v \(\chi_{261}(5, \cdot)\) None 0 12
261.1.w \(\chi_{261}(31, \cdot)\) None 0 24

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(261))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(261)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 2}\)