Properties

Label 26.8.b.a.25.9
Level $26$
Weight $8$
Character 26.25
Analytic conductor $8.122$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,8,Mod(25,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.25"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 26.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.12201066259\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 17770x^{8} + 98320641x^{6} + 176057788072x^{4} + 109845194658832x^{2} + 14762086704451584 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.9
Root \(32.3570i\) of defining polynomial
Character \(\chi\) \(=\) 26.25
Dual form 26.8.b.a.25.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{2} +37.3570 q^{3} -64.0000 q^{4} -477.073i q^{5} +298.856i q^{6} -855.664i q^{7} -512.000i q^{8} -791.454 q^{9} +3816.58 q^{10} +1409.60i q^{11} -2390.85 q^{12} +(5683.55 - 5517.77i) q^{13} +6845.31 q^{14} -17822.0i q^{15} +4096.00 q^{16} +24521.4 q^{17} -6331.63i q^{18} +16871.7i q^{19} +30532.6i q^{20} -31965.0i q^{21} -11276.8 q^{22} -54186.6 q^{23} -19126.8i q^{24} -149473. q^{25} +(44142.1 + 45468.4i) q^{26} -111266. q^{27} +54762.5i q^{28} +180093. q^{29} +142576. q^{30} +73073.6i q^{31} +32768.0i q^{32} +52658.4i q^{33} +196171. i q^{34} -408214. q^{35} +50653.1 q^{36} -310734. i q^{37} -134974. q^{38} +(212320. - 206127. i) q^{39} -244261. q^{40} +405360. i q^{41} +255720. q^{42} +626140. q^{43} -90214.4i q^{44} +377581. i q^{45} -433493. i q^{46} -1.19516e6i q^{47} +153014. q^{48} +91382.5 q^{49} -1.19579e6i q^{50} +916045. q^{51} +(-363747. + 353137. i) q^{52} -1.10341e6 q^{53} -890129. i q^{54} +672481. q^{55} -438100. q^{56} +630277. i q^{57} +1.44074e6i q^{58} +2.21865e6i q^{59} +1.14061e6i q^{60} +2.71355e6 q^{61} -584589. q^{62} +677219. i q^{63} -262144. q^{64} +(-2.63238e6 - 2.71147e6i) q^{65} -421267. q^{66} +2.35192e6i q^{67} -1.56937e6 q^{68} -2.02425e6 q^{69} -3.26571e6i q^{70} +2.11218e6i q^{71} +405224. i q^{72} -297647. i q^{73} +2.48587e6 q^{74} -5.58387e6 q^{75} -1.07979e6i q^{76} +1.20614e6 q^{77} +(1.64902e6 + 1.69856e6i) q^{78} +6.13466e6 q^{79} -1.95409e6i q^{80} -2.42566e6 q^{81} -3.24288e6 q^{82} +5.86853e6i q^{83} +2.04576e6i q^{84} -1.16985e7i q^{85} +5.00912e6i q^{86} +6.72773e6 q^{87} +721715. q^{88} -5.02086e6i q^{89} -3.02065e6 q^{90} +(-4.72135e6 - 4.86321e6i) q^{91} +3.46794e6 q^{92} +2.72981e6i q^{93} +9.56128e6 q^{94} +8.04904e6 q^{95} +1.22411e6i q^{96} -4.56414e6i q^{97} +731060. i q^{98} -1.11563e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 54 q^{3} - 640 q^{4} + 13960 q^{9} - 1136 q^{10} - 3456 q^{12} + 3432 q^{13} + 3792 q^{14} + 40960 q^{16} - 6918 q^{17} + 17280 q^{22} + 94164 q^{23} - 330788 q^{25} + 118896 q^{26} - 53550 q^{27}+ \cdots + 16547484 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 37.3570 0.798818 0.399409 0.916773i \(-0.369215\pi\)
0.399409 + 0.916773i \(0.369215\pi\)
\(4\) −64.0000 −0.500000
\(5\) 477.073i 1.70683i −0.521235 0.853413i \(-0.674528\pi\)
0.521235 0.853413i \(-0.325472\pi\)
\(6\) 298.856i 0.564849i
\(7\) 855.664i 0.942888i −0.881896 0.471444i \(-0.843733\pi\)
0.881896 0.471444i \(-0.156267\pi\)
\(8\) 512.000i 0.353553i
\(9\) −791.454 −0.361890
\(10\) 3816.58 1.20691
\(11\) 1409.60i 0.319316i 0.987172 + 0.159658i \(0.0510392\pi\)
−0.987172 + 0.159658i \(0.948961\pi\)
\(12\) −2390.85 −0.399409
\(13\) 5683.55 5517.77i 0.717494 0.696565i
\(14\) 6845.31 0.666722
\(15\) 17822.0i 1.36344i
\(16\) 4096.00 0.250000
\(17\) 24521.4 1.21052 0.605262 0.796026i \(-0.293068\pi\)
0.605262 + 0.796026i \(0.293068\pi\)
\(18\) 6331.63i 0.255895i
\(19\) 16871.7i 0.564316i 0.959368 + 0.282158i \(0.0910502\pi\)
−0.959368 + 0.282158i \(0.908950\pi\)
\(20\) 30532.6i 0.853413i
\(21\) 31965.0i 0.753195i
\(22\) −11276.8 −0.225791
\(23\) −54186.6 −0.928634 −0.464317 0.885669i \(-0.653700\pi\)
−0.464317 + 0.885669i \(0.653700\pi\)
\(24\) 19126.8i 0.282425i
\(25\) −149473. −1.91326
\(26\) 44142.1 + 45468.4i 0.492546 + 0.507345i
\(27\) −111266. −1.08790
\(28\) 54762.5i 0.471444i
\(29\) 180093. 1.37121 0.685605 0.727974i \(-0.259538\pi\)
0.685605 + 0.727974i \(0.259538\pi\)
\(30\) 142576. 0.964100
\(31\) 73073.6i 0.440549i 0.975438 + 0.220275i \(0.0706954\pi\)
−0.975438 + 0.220275i \(0.929305\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 52658.4i 0.255076i
\(34\) 196171.i 0.855970i
\(35\) −408214. −1.60935
\(36\) 50653.1 0.180945
\(37\) 310734.i 1.00851i −0.863554 0.504257i \(-0.831766\pi\)
0.863554 0.504257i \(-0.168234\pi\)
\(38\) −134974. −0.399031
\(39\) 212320. 206127.i 0.573147 0.556429i
\(40\) −244261. −0.603454
\(41\) 405360.i 0.918540i 0.888297 + 0.459270i \(0.151889\pi\)
−0.888297 + 0.459270i \(0.848111\pi\)
\(42\) 255720. 0.532590
\(43\) 626140. 1.20097 0.600484 0.799637i \(-0.294975\pi\)
0.600484 + 0.799637i \(0.294975\pi\)
\(44\) 90214.4i 0.159658i
\(45\) 377581.i 0.617684i
\(46\) 433493.i 0.656643i
\(47\) 1.19516e6i 1.67913i −0.543261 0.839564i \(-0.682811\pi\)
0.543261 0.839564i \(-0.317189\pi\)
\(48\) 153014. 0.199704
\(49\) 91382.5 0.110963
\(50\) 1.19579e6i 1.35288i
\(51\) 916045. 0.966989
\(52\) −363747. + 353137.i −0.358747 + 0.348283i
\(53\) −1.10341e6 −1.01806 −0.509029 0.860749i \(-0.669996\pi\)
−0.509029 + 0.860749i \(0.669996\pi\)
\(54\) 890129.i 0.769263i
\(55\) 672481. 0.545018
\(56\) −438100. −0.333361
\(57\) 630277.i 0.450785i
\(58\) 1.44074e6i 0.969591i
\(59\) 2.21865e6i 1.40639i 0.710996 + 0.703196i \(0.248244\pi\)
−0.710996 + 0.703196i \(0.751756\pi\)
\(60\) 1.14061e6i 0.681722i
\(61\) 2.71355e6 1.53068 0.765339 0.643627i \(-0.222571\pi\)
0.765339 + 0.643627i \(0.222571\pi\)
\(62\) −584589. −0.311515
\(63\) 677219.i 0.341222i
\(64\) −262144. −0.125000
\(65\) −2.63238e6 2.71147e6i −1.18892 1.22464i
\(66\) −421267. −0.180366
\(67\) 2.35192e6i 0.955348i 0.878537 + 0.477674i \(0.158520\pi\)
−0.878537 + 0.477674i \(0.841480\pi\)
\(68\) −1.56937e6 −0.605262
\(69\) −2.02425e6 −0.741809
\(70\) 3.26571e6i 1.13798i
\(71\) 2.11218e6i 0.700370i 0.936681 + 0.350185i \(0.113881\pi\)
−0.936681 + 0.350185i \(0.886119\pi\)
\(72\) 405224.i 0.127948i
\(73\) 297647.i 0.0895514i −0.998997 0.0447757i \(-0.985743\pi\)
0.998997 0.0447757i \(-0.0142573\pi\)
\(74\) 2.48587e6 0.713127
\(75\) −5.58387e6 −1.52834
\(76\) 1.07979e6i 0.282158i
\(77\) 1.20614e6 0.301080
\(78\) 1.64902e6 + 1.69856e6i 0.393454 + 0.405276i
\(79\) 6.13466e6 1.39989 0.699947 0.714194i \(-0.253207\pi\)
0.699947 + 0.714194i \(0.253207\pi\)
\(80\) 1.95409e6i 0.426707i
\(81\) −2.42566e6 −0.507145
\(82\) −3.24288e6 −0.649506
\(83\) 5.86853e6i 1.12656i 0.826265 + 0.563282i \(0.190462\pi\)
−0.826265 + 0.563282i \(0.809538\pi\)
\(84\) 2.04576e6i 0.376598i
\(85\) 1.16985e7i 2.06616i
\(86\) 5.00912e6i 0.849213i
\(87\) 6.72773e6 1.09535
\(88\) 721715. 0.112895
\(89\) 5.02086e6i 0.754942i −0.926021 0.377471i \(-0.876794\pi\)
0.926021 0.377471i \(-0.123206\pi\)
\(90\) −3.02065e6 −0.436769
\(91\) −4.72135e6 4.86321e6i −0.656783 0.676516i
\(92\) 3.46794e6 0.464317
\(93\) 2.72981e6i 0.351919i
\(94\) 9.56128e6 1.18732
\(95\) 8.04904e6 0.963189
\(96\) 1.22411e6i 0.141212i
\(97\) 4.56414e6i 0.507759i −0.967236 0.253879i \(-0.918293\pi\)
0.967236 0.253879i \(-0.0817066\pi\)
\(98\) 731060.i 0.0784624i
\(99\) 1.11563e6i 0.115558i
\(100\) 9.56629e6 0.956629
\(101\) −8.13317e6 −0.785480 −0.392740 0.919650i \(-0.628473\pi\)
−0.392740 + 0.919650i \(0.628473\pi\)
\(102\) 7.32836e6i 0.683764i
\(103\) −2.68747e6 −0.242333 −0.121167 0.992632i \(-0.538664\pi\)
−0.121167 + 0.992632i \(0.538664\pi\)
\(104\) −2.82510e6 2.90998e6i −0.246273 0.253672i
\(105\) −1.52496e7 −1.28557
\(106\) 8.82731e6i 0.719876i
\(107\) 1.61235e7 1.27238 0.636188 0.771534i \(-0.280510\pi\)
0.636188 + 0.771534i \(0.280510\pi\)
\(108\) 7.12103e6 0.543951
\(109\) 3.22187e6i 0.238295i 0.992877 + 0.119148i \(0.0380162\pi\)
−0.992877 + 0.119148i \(0.961984\pi\)
\(110\) 5.37985e6i 0.385386i
\(111\) 1.16081e7i 0.805619i
\(112\) 3.50480e6i 0.235722i
\(113\) −2.69850e7 −1.75933 −0.879667 0.475589i \(-0.842235\pi\)
−0.879667 + 0.475589i \(0.842235\pi\)
\(114\) −5.04222e6 −0.318753
\(115\) 2.58510e7i 1.58502i
\(116\) −1.15259e7 −0.685605
\(117\) −4.49827e6 + 4.36706e6i −0.259654 + 0.252080i
\(118\) −1.77492e7 −0.994469
\(119\) 2.09821e7i 1.14139i
\(120\) −9.12487e6 −0.482050
\(121\) 1.75002e7 0.898037
\(122\) 2.17084e7i 1.08235i
\(123\) 1.51431e7i 0.733746i
\(124\) 4.67671e6i 0.220275i
\(125\) 3.40383e7i 1.55877i
\(126\) −5.41775e6 −0.241280
\(127\) 1.50820e7 0.653349 0.326675 0.945137i \(-0.394072\pi\)
0.326675 + 0.945137i \(0.394072\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 2.33907e7 0.959355
\(130\) 2.16917e7 2.10590e7i 0.865949 0.840691i
\(131\) −2.27489e7 −0.884118 −0.442059 0.896986i \(-0.645752\pi\)
−0.442059 + 0.896986i \(0.645752\pi\)
\(132\) 3.37014e6i 0.127538i
\(133\) 1.44365e7 0.532086
\(134\) −1.88154e7 −0.675533
\(135\) 5.30820e7i 1.85686i
\(136\) 1.25549e7i 0.427985i
\(137\) 1.76565e7i 0.586655i −0.956012 0.293328i \(-0.905237\pi\)
0.956012 0.293328i \(-0.0947627\pi\)
\(138\) 1.61940e7i 0.524538i
\(139\) 6.41568e6 0.202624 0.101312 0.994855i \(-0.467696\pi\)
0.101312 + 0.994855i \(0.467696\pi\)
\(140\) 2.61257e7 0.804673
\(141\) 4.46476e7i 1.34132i
\(142\) −1.68975e7 −0.495236
\(143\) 7.77784e6 + 8.01153e6i 0.222425 + 0.229108i
\(144\) −3.24180e6 −0.0904726
\(145\) 8.59174e7i 2.34042i
\(146\) 2.38118e6 0.0633224
\(147\) 3.41378e6 0.0886389
\(148\) 1.98869e7i 0.504257i
\(149\) 4.15648e7i 1.02938i 0.857377 + 0.514688i \(0.172092\pi\)
−0.857377 + 0.514688i \(0.827908\pi\)
\(150\) 4.46710e7i 1.08070i
\(151\) 1.02268e7i 0.241725i 0.992669 + 0.120863i \(0.0385660\pi\)
−0.992669 + 0.120863i \(0.961434\pi\)
\(152\) 8.63833e6 0.199516
\(153\) −1.94075e7 −0.438077
\(154\) 9.64915e6i 0.212895i
\(155\) 3.48614e7 0.751941
\(156\) −1.35885e7 + 1.31921e7i −0.286573 + 0.278214i
\(157\) 3.73815e7 0.770918 0.385459 0.922725i \(-0.374043\pi\)
0.385459 + 0.922725i \(0.374043\pi\)
\(158\) 4.90772e7i 0.989875i
\(159\) −4.12202e7 −0.813243
\(160\) 1.56327e7 0.301727
\(161\) 4.63655e7i 0.875598i
\(162\) 1.94053e7i 0.358606i
\(163\) 1.04456e8i 1.88919i −0.328234 0.944596i \(-0.606454\pi\)
0.328234 0.944596i \(-0.393546\pi\)
\(164\) 2.59431e7i 0.459270i
\(165\) 2.51219e7 0.435370
\(166\) −4.69483e7 −0.796601
\(167\) 8.96976e6i 0.149030i −0.997220 0.0745149i \(-0.976259\pi\)
0.997220 0.0745149i \(-0.0237408\pi\)
\(168\) −1.63661e7 −0.266295
\(169\) 1.85699e6 6.27210e7i 0.0295942 0.999562i
\(170\) 9.35878e7 1.46099
\(171\) 1.33532e7i 0.204220i
\(172\) −4.00729e7 −0.600484
\(173\) −8.89780e7 −1.30654 −0.653268 0.757127i \(-0.726602\pi\)
−0.653268 + 0.757127i \(0.726602\pi\)
\(174\) 5.38219e7i 0.774527i
\(175\) 1.27899e8i 1.80399i
\(176\) 5.77372e6i 0.0798291i
\(177\) 8.28821e7i 1.12345i
\(178\) 4.01669e7 0.533824
\(179\) 6.19856e7 0.807802 0.403901 0.914803i \(-0.367654\pi\)
0.403901 + 0.914803i \(0.367654\pi\)
\(180\) 2.41652e7i 0.308842i
\(181\) −3.19228e7 −0.400153 −0.200077 0.979780i \(-0.564119\pi\)
−0.200077 + 0.979780i \(0.564119\pi\)
\(182\) 3.89057e7 3.77708e7i 0.478369 0.464416i
\(183\) 1.01370e8 1.22273
\(184\) 2.77435e7i 0.328322i
\(185\) −1.48242e8 −1.72136
\(186\) −2.18385e7 −0.248844
\(187\) 3.45653e7i 0.386541i
\(188\) 7.64902e7i 0.839564i
\(189\) 9.52064e7i 1.02577i
\(190\) 6.43923e7i 0.681077i
\(191\) −1.65465e8 −1.71826 −0.859129 0.511759i \(-0.828994\pi\)
−0.859129 + 0.511759i \(0.828994\pi\)
\(192\) −9.79292e6 −0.0998522
\(193\) 2.01766e7i 0.202022i −0.994885 0.101011i \(-0.967792\pi\)
0.994885 0.101011i \(-0.0322077\pi\)
\(194\) 3.65131e7 0.359040
\(195\) −9.83377e7 1.01292e8i −0.949727 0.978262i
\(196\) −5.84848e6 −0.0554813
\(197\) 1.42398e8i 1.32700i −0.748175 0.663502i \(-0.769070\pi\)
0.748175 0.663502i \(-0.230930\pi\)
\(198\) 8.92507e6 0.0817115
\(199\) −1.04834e8 −0.943014 −0.471507 0.881862i \(-0.656290\pi\)
−0.471507 + 0.881862i \(0.656290\pi\)
\(200\) 7.65303e7i 0.676439i
\(201\) 8.78609e7i 0.763149i
\(202\) 6.50654e7i 0.555418i
\(203\) 1.54099e8i 1.29290i
\(204\) −5.86269e7 −0.483494
\(205\) 1.93386e8 1.56779
\(206\) 2.14997e7i 0.171355i
\(207\) 4.28862e7 0.336064
\(208\) 2.32798e7 2.26008e7i 0.179373 0.174141i
\(209\) −2.37824e7 −0.180195
\(210\) 1.21997e8i 0.909038i
\(211\) 1.69773e8 1.24417 0.622085 0.782950i \(-0.286286\pi\)
0.622085 + 0.782950i \(0.286286\pi\)
\(212\) 7.06185e7 0.509029
\(213\) 7.89049e7i 0.559468i
\(214\) 1.28988e8i 0.899705i
\(215\) 2.98714e8i 2.04985i
\(216\) 5.69683e7i 0.384631i
\(217\) 6.25264e7 0.415389
\(218\) −2.57750e7 −0.168500
\(219\) 1.11192e7i 0.0715352i
\(220\) −4.30388e7 −0.272509
\(221\) 1.39369e8 1.35303e8i 0.868544 0.843209i
\(222\) 9.28646e7 0.569659
\(223\) 2.62885e8i 1.58745i 0.608278 + 0.793724i \(0.291861\pi\)
−0.608278 + 0.793724i \(0.708139\pi\)
\(224\) 2.80384e7 0.166681
\(225\) 1.18301e8 0.692389
\(226\) 2.15880e8i 1.24404i
\(227\) 6.27164e7i 0.355869i 0.984042 + 0.177935i \(0.0569415\pi\)
−0.984042 + 0.177935i \(0.943058\pi\)
\(228\) 4.03378e7i 0.225393i
\(229\) 3.15618e8i 1.73675i 0.495905 + 0.868377i \(0.334836\pi\)
−0.495905 + 0.868377i \(0.665164\pi\)
\(230\) −2.06808e8 −1.12078
\(231\) 4.50579e7 0.240508
\(232\) 9.22076e7i 0.484796i
\(233\) 1.06060e8 0.549297 0.274648 0.961545i \(-0.411439\pi\)
0.274648 + 0.961545i \(0.411439\pi\)
\(234\) −3.49365e7 3.59862e7i −0.178248 0.183603i
\(235\) −5.70178e8 −2.86598
\(236\) 1.41993e8i 0.703196i
\(237\) 2.29172e8 1.11826
\(238\) 1.67856e8 0.807084
\(239\) 1.00469e8i 0.476035i 0.971261 + 0.238018i \(0.0764976\pi\)
−0.971261 + 0.238018i \(0.923502\pi\)
\(240\) 7.29989e7i 0.340861i
\(241\) 6.84416e7i 0.314964i −0.987522 0.157482i \(-0.949662\pi\)
0.987522 0.157482i \(-0.0503376\pi\)
\(242\) 1.40002e8i 0.635008i
\(243\) 1.52724e8 0.682786
\(244\) −1.73667e8 −0.765339
\(245\) 4.35961e7i 0.189394i
\(246\) −1.21144e8 −0.518837
\(247\) 9.30943e7 + 9.58913e7i 0.393083 + 0.404893i
\(248\) 3.74137e7 0.155758
\(249\) 2.19231e8i 0.899920i
\(250\) −2.72306e8 −1.10222
\(251\) −3.83227e7 −0.152967 −0.0764835 0.997071i \(-0.524369\pi\)
−0.0764835 + 0.997071i \(0.524369\pi\)
\(252\) 4.33420e7i 0.170611i
\(253\) 7.63814e7i 0.296528i
\(254\) 1.20656e8i 0.461988i
\(255\) 4.37020e8i 1.65048i
\(256\) 1.67772e7 0.0625000
\(257\) 3.94016e8 1.44793 0.723965 0.689837i \(-0.242318\pi\)
0.723965 + 0.689837i \(0.242318\pi\)
\(258\) 1.87126e8i 0.678366i
\(259\) −2.65883e8 −0.950916
\(260\) 1.68472e8 + 1.73534e8i 0.594458 + 0.612319i
\(261\) −1.42535e8 −0.496227
\(262\) 1.81991e8i 0.625166i
\(263\) −1.69352e8 −0.574044 −0.287022 0.957924i \(-0.592665\pi\)
−0.287022 + 0.957924i \(0.592665\pi\)
\(264\) 2.69611e7 0.0901829
\(265\) 5.26408e8i 1.73765i
\(266\) 1.15492e8i 0.376242i
\(267\) 1.87564e8i 0.603061i
\(268\) 1.50523e8i 0.477674i
\(269\) −4.28499e8 −1.34220 −0.671099 0.741368i \(-0.734177\pi\)
−0.671099 + 0.741368i \(0.734177\pi\)
\(270\) −4.24656e8 −1.31300
\(271\) 2.68069e8i 0.818189i 0.912492 + 0.409094i \(0.134155\pi\)
−0.912492 + 0.409094i \(0.865845\pi\)
\(272\) 1.00440e8 0.302631
\(273\) −1.76376e8 1.81675e8i −0.524650 0.540413i
\(274\) 1.41252e8 0.414828
\(275\) 2.10697e8i 0.610935i
\(276\) 1.29552e8 0.370905
\(277\) −2.29029e8 −0.647457 −0.323728 0.946150i \(-0.604936\pi\)
−0.323728 + 0.946150i \(0.604936\pi\)
\(278\) 5.13254e7i 0.143277i
\(279\) 5.78344e7i 0.159431i
\(280\) 2.09005e8i 0.568990i
\(281\) 4.22322e8i 1.13546i 0.823215 + 0.567730i \(0.192178\pi\)
−0.823215 + 0.567730i \(0.807822\pi\)
\(282\) 3.57181e8 0.948454
\(283\) −4.65403e8 −1.22061 −0.610305 0.792167i \(-0.708953\pi\)
−0.610305 + 0.792167i \(0.708953\pi\)
\(284\) 1.35180e8i 0.350185i
\(285\) 3.00688e8 0.769412
\(286\) −6.40922e7 + 6.22227e7i −0.162003 + 0.157278i
\(287\) 3.46852e8 0.866080
\(288\) 2.59344e7i 0.0639738i
\(289\) 1.90959e8 0.465370
\(290\) 6.87339e8 1.65492
\(291\) 1.70502e8i 0.405607i
\(292\) 1.90494e7i 0.0447757i
\(293\) 4.57814e8i 1.06329i 0.846967 + 0.531646i \(0.178426\pi\)
−0.846967 + 0.531646i \(0.821574\pi\)
\(294\) 2.73102e7i 0.0626772i
\(295\) 1.05846e9 2.40047
\(296\) −1.59096e8 −0.356564
\(297\) 1.56841e8i 0.347385i
\(298\) −3.32519e8 −0.727879
\(299\) −3.07972e8 + 2.98989e8i −0.666289 + 0.646854i
\(300\) 3.57368e8 0.764172
\(301\) 5.35765e8i 1.13238i
\(302\) −8.18147e7 −0.170925
\(303\) −3.03831e8 −0.627455
\(304\) 6.91066e7i 0.141079i
\(305\) 1.29456e9i 2.61260i
\(306\) 1.55260e8i 0.309767i
\(307\) 8.26875e8i 1.63101i −0.578753 0.815503i \(-0.696460\pi\)
0.578753 0.815503i \(-0.303540\pi\)
\(308\) −7.71932e7 −0.150540
\(309\) −1.00396e8 −0.193580
\(310\) 2.78891e8i 0.531703i
\(311\) 3.14108e8 0.592130 0.296065 0.955168i \(-0.404325\pi\)
0.296065 + 0.955168i \(0.404325\pi\)
\(312\) −1.05537e8 1.08708e8i −0.196727 0.202638i
\(313\) −3.13248e8 −0.577408 −0.288704 0.957418i \(-0.593224\pi\)
−0.288704 + 0.957418i \(0.593224\pi\)
\(314\) 2.99052e8i 0.545121i
\(315\) 3.23082e8 0.582407
\(316\) −3.92618e8 −0.699947
\(317\) 9.62760e8i 1.69750i −0.528792 0.848751i \(-0.677355\pi\)
0.528792 0.848751i \(-0.322645\pi\)
\(318\) 3.29762e8i 0.575050i
\(319\) 2.53859e8i 0.437850i
\(320\) 1.25062e8i 0.213353i
\(321\) 6.02325e8 1.01640
\(322\) −3.70924e8 −0.619141
\(323\) 4.13718e8i 0.683118i
\(324\) 1.55242e8 0.253573
\(325\) −8.49539e8 + 8.24759e8i −1.37275 + 1.33271i
\(326\) 8.35647e8 1.33586
\(327\) 1.20359e8i 0.190354i
\(328\) 2.07545e8 0.324753
\(329\) −1.02266e9 −1.58323
\(330\) 2.00975e8i 0.307853i
\(331\) 1.03693e9i 1.57163i 0.618462 + 0.785815i \(0.287756\pi\)
−0.618462 + 0.785815i \(0.712244\pi\)
\(332\) 3.75586e8i 0.563282i
\(333\) 2.45931e8i 0.364972i
\(334\) 7.17581e7 0.105380
\(335\) 1.12204e9 1.63061
\(336\) 1.30929e8i 0.188299i
\(337\) 3.19276e8 0.454425 0.227213 0.973845i \(-0.427039\pi\)
0.227213 + 0.973845i \(0.427039\pi\)
\(338\) 5.01768e8 + 1.48559e7i 0.706797 + 0.0209262i
\(339\) −1.00808e9 −1.40539
\(340\) 7.48703e8i 1.03308i
\(341\) −1.03004e8 −0.140675
\(342\) 1.06826e8 0.144406
\(343\) 7.82869e8i 1.04751i
\(344\) 3.20584e8i 0.424607i
\(345\) 9.65714e8i 1.26614i
\(346\) 7.11824e8i 0.923860i
\(347\) −1.04362e9 −1.34088 −0.670442 0.741962i \(-0.733895\pi\)
−0.670442 + 0.741962i \(0.733895\pi\)
\(348\) −4.30575e8 −0.547673
\(349\) 8.79993e8i 1.10813i −0.832474 0.554064i \(-0.813076\pi\)
0.832474 0.554064i \(-0.186924\pi\)
\(350\) −1.02319e9 −1.27561
\(351\) −6.32387e8 + 6.13941e8i −0.780563 + 0.757795i
\(352\) −4.61898e7 −0.0564477
\(353\) 8.23795e8i 0.996799i 0.866948 + 0.498399i \(0.166079\pi\)
−0.866948 + 0.498399i \(0.833921\pi\)
\(354\) −6.63056e8 −0.794400
\(355\) 1.00767e9 1.19541
\(356\) 3.21335e8i 0.377471i
\(357\) 7.83827e8i 0.911762i
\(358\) 4.95885e8i 0.571203i
\(359\) 9.21279e8i 1.05090i 0.850825 + 0.525449i \(0.176103\pi\)
−0.850825 + 0.525449i \(0.823897\pi\)
\(360\) 1.93321e8 0.218384
\(361\) 6.09216e8 0.681548
\(362\) 2.55383e8i 0.282951i
\(363\) 6.53755e8 0.717368
\(364\) 3.02167e8 + 3.11245e8i 0.328391 + 0.338258i
\(365\) −1.41999e8 −0.152849
\(366\) 8.10962e8i 0.864603i
\(367\) 1.43004e9 1.51014 0.755072 0.655642i \(-0.227602\pi\)
0.755072 + 0.655642i \(0.227602\pi\)
\(368\) −2.21948e8 −0.232159
\(369\) 3.20824e8i 0.332411i
\(370\) 1.18594e9i 1.21718i
\(371\) 9.44151e8i 0.959915i
\(372\) 1.74708e8i 0.175959i
\(373\) −7.93446e8 −0.791656 −0.395828 0.918325i \(-0.629542\pi\)
−0.395828 + 0.918325i \(0.629542\pi\)
\(374\) −2.76523e8 −0.273325
\(375\) 1.27157e9i 1.24518i
\(376\) −6.11922e8 −0.593661
\(377\) 1.02357e9 9.93711e8i 0.983834 0.955136i
\(378\) −7.61651e8 −0.725329
\(379\) 3.49684e8i 0.329942i −0.986298 0.164971i \(-0.947247\pi\)
0.986298 0.164971i \(-0.0527531\pi\)
\(380\) −5.15139e8 −0.481594
\(381\) 5.63418e8 0.521907
\(382\) 1.32372e9i 1.21499i
\(383\) 7.07518e8i 0.643490i 0.946826 + 0.321745i \(0.104269\pi\)
−0.946826 + 0.321745i \(0.895731\pi\)
\(384\) 7.83433e7i 0.0706062i
\(385\) 5.75418e8i 0.513891i
\(386\) 1.61413e8 0.142851
\(387\) −4.95561e8 −0.434619
\(388\) 2.92105e8i 0.253879i
\(389\) −3.66545e8 −0.315721 −0.157860 0.987461i \(-0.550460\pi\)
−0.157860 + 0.987461i \(0.550460\pi\)
\(390\) 8.10338e8 7.86701e8i 0.691736 0.671558i
\(391\) −1.32873e9 −1.12413
\(392\) 4.67878e7i 0.0392312i
\(393\) −8.49830e8 −0.706249
\(394\) 1.13918e9 0.938333
\(395\) 2.92668e9i 2.38938i
\(396\) 7.14005e7i 0.0577788i
\(397\) 2.77347e8i 0.222463i 0.993795 + 0.111231i \(0.0354794\pi\)
−0.993795 + 0.111231i \(0.964521\pi\)
\(398\) 8.38675e8i 0.666811i
\(399\) 5.39306e8 0.425040
\(400\) −6.12242e8 −0.478314
\(401\) 3.07048e7i 0.0237794i −0.999929 0.0118897i \(-0.996215\pi\)
0.999929 0.0118897i \(-0.00378470\pi\)
\(402\) −7.02887e8 −0.539628
\(403\) 4.03203e8 + 4.15317e8i 0.306871 + 0.316091i
\(404\) 5.20523e8 0.392740
\(405\) 1.15722e9i 0.865609i
\(406\) 1.23279e9 0.914216
\(407\) 4.38010e8 0.322035
\(408\) 4.69015e8i 0.341882i
\(409\) 4.23466e7i 0.0306046i −0.999883 0.0153023i \(-0.995129\pi\)
0.999883 0.0153023i \(-0.00487107\pi\)
\(410\) 1.54709e9i 1.10859i
\(411\) 6.59595e8i 0.468631i
\(412\) 1.71998e8 0.121167
\(413\) 1.89842e9 1.32607
\(414\) 3.43090e8i 0.237633i
\(415\) 2.79972e9 1.92285
\(416\) 1.80806e8 + 1.86239e8i 0.123136 + 0.126836i
\(417\) 2.39671e8 0.161860
\(418\) 1.90259e8i 0.127417i
\(419\) −1.33683e8 −0.0887824 −0.0443912 0.999014i \(-0.514135\pi\)
−0.0443912 + 0.999014i \(0.514135\pi\)
\(420\) 9.75977e8 0.642787
\(421\) 9.79644e8i 0.639854i −0.947442 0.319927i \(-0.896342\pi\)
0.947442 0.319927i \(-0.103658\pi\)
\(422\) 1.35818e9i 0.879761i
\(423\) 9.45914e8i 0.607660i
\(424\) 5.64948e8i 0.359938i
\(425\) −3.66529e9 −2.31605
\(426\) −6.31239e8 −0.395604
\(427\) 2.32189e9i 1.44326i
\(428\) −1.03190e9 −0.636188
\(429\) 2.90557e8 + 2.99287e8i 0.177677 + 0.183015i
\(430\) 2.38971e9 1.44946
\(431\) 1.66486e9i 1.00163i 0.865554 + 0.500816i \(0.166967\pi\)
−0.865554 + 0.500816i \(0.833033\pi\)
\(432\) −4.55746e8 −0.271976
\(433\) −9.13220e8 −0.540589 −0.270295 0.962778i \(-0.587121\pi\)
−0.270295 + 0.962778i \(0.587121\pi\)
\(434\) 5.00211e8i 0.293724i
\(435\) 3.20962e9i 1.86957i
\(436\) 2.06200e8i 0.119148i
\(437\) 9.14222e8i 0.524043i
\(438\) 8.89538e7 0.0505830
\(439\) −5.44736e8 −0.307299 −0.153649 0.988125i \(-0.549103\pi\)
−0.153649 + 0.988125i \(0.549103\pi\)
\(440\) 3.44310e8i 0.192693i
\(441\) −7.23250e7 −0.0401563
\(442\) 1.08243e9 + 1.11495e9i 0.596239 + 0.614153i
\(443\) 1.84491e8 0.100823 0.0504117 0.998729i \(-0.483947\pi\)
0.0504117 + 0.998729i \(0.483947\pi\)
\(444\) 7.42917e8i 0.402810i
\(445\) −2.39532e9 −1.28855
\(446\) −2.10308e9 −1.12250
\(447\) 1.55274e9i 0.822284i
\(448\) 2.24307e8i 0.117861i
\(449\) 7.85913e8i 0.409744i 0.978789 + 0.204872i \(0.0656778\pi\)
−0.978789 + 0.204872i \(0.934322\pi\)
\(450\) 9.46410e8i 0.489593i
\(451\) −5.71396e8 −0.293305
\(452\) 1.72704e9 0.879667
\(453\) 3.82044e8i 0.193094i
\(454\) −5.01731e8 −0.251637
\(455\) −2.32010e9 + 2.25243e9i −1.15470 + 1.12101i
\(456\) 3.22702e8 0.159377
\(457\) 1.23679e9i 0.606162i 0.952965 + 0.303081i \(0.0980152\pi\)
−0.952965 + 0.303081i \(0.901985\pi\)
\(458\) −2.52495e9 −1.22807
\(459\) −2.72840e9 −1.31693
\(460\) 1.65446e9i 0.792509i
\(461\) 5.60686e7i 0.0266542i 0.999911 + 0.0133271i \(0.00424228\pi\)
−0.999911 + 0.0133271i \(0.995758\pi\)
\(462\) 3.60463e8i 0.170065i
\(463\) 1.12359e9i 0.526109i 0.964781 + 0.263055i \(0.0847299\pi\)
−0.964781 + 0.263055i \(0.915270\pi\)
\(464\) 7.37661e8 0.342802
\(465\) 1.30232e9 0.600664
\(466\) 8.48482e8i 0.388411i
\(467\) −1.26480e9 −0.574664 −0.287332 0.957831i \(-0.592768\pi\)
−0.287332 + 0.957831i \(0.592768\pi\)
\(468\) 2.87889e8 2.79492e8i 0.129827 0.126040i
\(469\) 2.01246e9 0.900786
\(470\) 4.56142e9i 2.02655i
\(471\) 1.39646e9 0.615823
\(472\) 1.13595e9 0.497235
\(473\) 8.82606e8i 0.383489i
\(474\) 1.83338e9i 0.790730i
\(475\) 2.52187e9i 1.07968i
\(476\) 1.34285e9i 0.570695i
\(477\) 8.73301e8 0.368426
\(478\) −8.03751e8 −0.336608
\(479\) 1.89708e8i 0.0788701i 0.999222 + 0.0394350i \(0.0125558\pi\)
−0.999222 + 0.0394350i \(0.987444\pi\)
\(480\) 5.83991e8 0.241025
\(481\) −1.71456e9 1.76607e9i −0.702496 0.723603i
\(482\) 5.47533e8 0.222713
\(483\) 1.73208e9i 0.699443i
\(484\) −1.12001e9 −0.449018
\(485\) −2.17742e9 −0.866656
\(486\) 1.22179e9i 0.482802i
\(487\) 1.76109e8i 0.0690925i −0.999403 0.0345463i \(-0.989001\pi\)
0.999403 0.0345463i \(-0.0109986\pi\)
\(488\) 1.38934e9i 0.541176i
\(489\) 3.90216e9i 1.50912i
\(490\) 3.48769e8 0.133922
\(491\) 2.15724e9 0.822456 0.411228 0.911533i \(-0.365100\pi\)
0.411228 + 0.911533i \(0.365100\pi\)
\(492\) 9.69155e8i 0.366873i
\(493\) 4.41613e9 1.65988
\(494\) −7.67131e8 + 7.44754e8i −0.286302 + 0.277951i
\(495\) −5.32238e8 −0.197237
\(496\) 2.99309e8i 0.110137i
\(497\) 1.80732e9 0.660370
\(498\) −1.75385e9 −0.636339
\(499\) 2.05373e9i 0.739930i 0.929046 + 0.369965i \(0.120630\pi\)
−0.929046 + 0.369965i \(0.879370\pi\)
\(500\) 2.17845e9i 0.779386i
\(501\) 3.35084e8i 0.119048i
\(502\) 3.06581e8i 0.108164i
\(503\) 5.06626e9 1.77500 0.887502 0.460803i \(-0.152439\pi\)
0.887502 + 0.460803i \(0.152439\pi\)
\(504\) 3.46736e8 0.120640
\(505\) 3.88011e9i 1.34068i
\(506\) 6.11051e8 0.209677
\(507\) 6.93716e7 2.34307e9i 0.0236403 0.798468i
\(508\) −9.65247e8 −0.326675
\(509\) 2.26125e9i 0.760040i −0.924978 0.380020i \(-0.875917\pi\)
0.924978 0.380020i \(-0.124083\pi\)
\(510\) 3.49616e9 1.16707
\(511\) −2.54686e8 −0.0844369
\(512\) 1.34218e8i 0.0441942i
\(513\) 1.87725e9i 0.613920i
\(514\) 3.15213e9i 1.02384i
\(515\) 1.28212e9i 0.413621i
\(516\) −1.49701e9 −0.479677
\(517\) 1.68470e9 0.536173
\(518\) 2.12707e9i 0.672399i
\(519\) −3.32395e9 −1.04368
\(520\) −1.38827e9 + 1.34778e9i −0.432975 + 0.420345i
\(521\) 1.92865e9 0.597477 0.298739 0.954335i \(-0.403434\pi\)
0.298739 + 0.954335i \(0.403434\pi\)
\(522\) 1.14028e9i 0.350886i
\(523\) −2.29757e9 −0.702285 −0.351142 0.936322i \(-0.614207\pi\)
−0.351142 + 0.936322i \(0.614207\pi\)
\(524\) 1.45593e9 0.442059
\(525\) 4.77792e9i 1.44106i
\(526\) 1.35482e9i 0.405910i
\(527\) 1.79187e9i 0.533296i
\(528\) 2.15689e8i 0.0637689i
\(529\) −4.68636e8 −0.137639
\(530\) −4.21127e9 −1.22870
\(531\) 1.75596e9i 0.508960i
\(532\) −9.23938e8 −0.266043
\(533\) 2.23669e9 + 2.30389e9i 0.639823 + 0.659046i
\(534\) 1.50052e9 0.426428
\(535\) 7.69206e9i 2.17172i
\(536\) 1.20419e9 0.337767
\(537\) 2.31560e9 0.645287
\(538\) 3.42799e9i 0.949077i
\(539\) 1.28813e8i 0.0354322i
\(540\) 3.39725e9i 0.928430i
\(541\) 5.72111e8i 0.155342i −0.996979 0.0776712i \(-0.975252\pi\)
0.996979 0.0776712i \(-0.0247484\pi\)
\(542\) −2.14455e9 −0.578547
\(543\) −1.19254e9 −0.319650
\(544\) 8.03517e8i 0.213993i
\(545\) 1.53707e9 0.406729
\(546\) 1.45340e9 1.41101e9i 0.382130 0.370983i
\(547\) −3.34561e9 −0.874018 −0.437009 0.899457i \(-0.643962\pi\)
−0.437009 + 0.899457i \(0.643962\pi\)
\(548\) 1.13002e9i 0.293328i
\(549\) −2.14765e9 −0.553938
\(550\) 1.68558e9 0.431996
\(551\) 3.03848e9i 0.773795i
\(552\) 1.03642e9i 0.262269i
\(553\) 5.24920e9i 1.31994i
\(554\) 1.83223e9i 0.457821i
\(555\) −5.53789e9 −1.37505
\(556\) −4.10604e8 −0.101312
\(557\) 4.94218e9i 1.21178i 0.795547 + 0.605892i \(0.207184\pi\)
−0.795547 + 0.605892i \(0.792816\pi\)
\(558\) 4.62675e8 0.112734
\(559\) 3.55870e9 3.45489e9i 0.861687 0.836553i
\(560\) −1.67204e9 −0.402337
\(561\) 1.29126e9i 0.308775i
\(562\) −3.37858e9 −0.802891
\(563\) 5.69292e9 1.34448 0.672242 0.740332i \(-0.265332\pi\)
0.672242 + 0.740332i \(0.265332\pi\)
\(564\) 2.85745e9i 0.670658i
\(565\) 1.28738e10i 3.00288i
\(566\) 3.72323e9i 0.863102i
\(567\) 2.07555e9i 0.478181i
\(568\) 1.08144e9 0.247618
\(569\) −3.35746e9 −0.764044 −0.382022 0.924153i \(-0.624772\pi\)
−0.382022 + 0.924153i \(0.624772\pi\)
\(570\) 2.40550e9i 0.544057i
\(571\) −5.43730e9 −1.22224 −0.611120 0.791538i \(-0.709281\pi\)
−0.611120 + 0.791538i \(0.709281\pi\)
\(572\) −4.97782e8 5.12738e8i −0.111212 0.114554i
\(573\) −6.18126e9 −1.37257
\(574\) 2.77482e9i 0.612411i
\(575\) 8.09945e9 1.77672
\(576\) 2.07475e8 0.0452363
\(577\) 5.94360e7i 0.0128805i −0.999979 0.00644027i \(-0.997950\pi\)
0.999979 0.00644027i \(-0.00205002\pi\)
\(578\) 1.52768e9i 0.329067i
\(579\) 7.53739e8i 0.161379i
\(580\) 5.49871e9i 1.17021i
\(581\) 5.02149e9 1.06222
\(582\) 1.36402e9 0.286807
\(583\) 1.55537e9i 0.325083i
\(584\) −1.52396e8 −0.0316612
\(585\) 2.08340e9 + 2.14600e9i 0.430257 + 0.443184i
\(586\) −3.66251e9 −0.751860
\(587\) 2.94167e9i 0.600290i −0.953894 0.300145i \(-0.902965\pi\)
0.953894 0.300145i \(-0.0970351\pi\)
\(588\) −2.18482e8 −0.0443194
\(589\) −1.23288e9 −0.248609
\(590\) 8.46765e9i 1.69739i
\(591\) 5.31956e9i 1.06003i
\(592\) 1.27276e9i 0.252129i
\(593\) 8.23762e9i 1.62222i 0.584892 + 0.811111i \(0.301137\pi\)
−0.584892 + 0.811111i \(0.698863\pi\)
\(594\) 1.25473e9 0.245638
\(595\) −1.00100e10 −1.94815
\(596\) 2.66015e9i 0.514688i
\(597\) −3.91630e9 −0.753296
\(598\) −2.39191e9 2.46378e9i −0.457395 0.471138i
\(599\) −3.51762e9 −0.668737 −0.334368 0.942442i \(-0.608523\pi\)
−0.334368 + 0.942442i \(0.608523\pi\)
\(600\) 2.85894e9i 0.540351i
\(601\) 6.64097e8 0.124787 0.0623937 0.998052i \(-0.480127\pi\)
0.0623937 + 0.998052i \(0.480127\pi\)
\(602\) 4.28612e9 0.800713
\(603\) 1.86144e9i 0.345731i
\(604\) 6.54517e8i 0.120863i
\(605\) 8.34887e9i 1.53279i
\(606\) 2.43065e9i 0.443678i
\(607\) 1.57643e9 0.286097 0.143049 0.989716i \(-0.454309\pi\)
0.143049 + 0.989716i \(0.454309\pi\)
\(608\) −5.52853e8 −0.0997578
\(609\) 5.75668e9i 1.03279i
\(610\) 1.03565e10 1.84739
\(611\) −6.59462e9 6.79275e9i −1.16962 1.20476i
\(612\) 1.24208e9 0.219039
\(613\) 2.49714e9i 0.437856i −0.975741 0.218928i \(-0.929744\pi\)
0.975741 0.218928i \(-0.0702560\pi\)
\(614\) 6.61500e9 1.15330
\(615\) 7.22434e9 1.25238
\(616\) 6.17545e8i 0.106448i
\(617\) 2.59765e9i 0.445228i 0.974907 + 0.222614i \(0.0714590\pi\)
−0.974907 + 0.222614i \(0.928541\pi\)
\(618\) 8.03165e8i 0.136882i
\(619\) 8.01395e9i 1.35809i 0.734096 + 0.679046i \(0.237606\pi\)
−0.734096 + 0.679046i \(0.762394\pi\)
\(620\) −2.23113e9 −0.375971
\(621\) 6.02914e9 1.01026
\(622\) 2.51286e9i 0.418699i
\(623\) −4.29617e9 −0.711825
\(624\) 8.69665e8 8.44297e8i 0.143287 0.139107i
\(625\) 4.56114e9 0.747297
\(626\) 2.50598e9i 0.408289i
\(627\) −8.88439e8 −0.143943
\(628\) −2.39242e9 −0.385459
\(629\) 7.61961e9i 1.22083i
\(630\) 2.58466e9i 0.411824i
\(631\) 3.75388e8i 0.0594809i −0.999558 0.0297405i \(-0.990532\pi\)
0.999558 0.0297405i \(-0.00946808\pi\)
\(632\) 3.14094e9i 0.494937i
\(633\) 6.34220e9 0.993865
\(634\) 7.70208e9 1.20032
\(635\) 7.19520e9i 1.11515i
\(636\) 2.63810e9 0.406622
\(637\) 5.19377e8 5.04227e8i 0.0796150 0.0772927i
\(638\) −2.03087e9 −0.309606
\(639\) 1.67170e9i 0.253457i
\(640\) −1.00049e9 −0.150864
\(641\) −8.82161e9 −1.32295 −0.661477 0.749965i \(-0.730070\pi\)
−0.661477 + 0.749965i \(0.730070\pi\)
\(642\) 4.81860e9i 0.718700i
\(643\) 1.10280e10i 1.63591i 0.575285 + 0.817953i \(0.304891\pi\)
−0.575285 + 0.817953i \(0.695109\pi\)
\(644\) 2.96739e9i 0.437799i
\(645\) 1.11591e10i 1.63745i
\(646\) −3.30975e9 −0.483037
\(647\) −5.88926e9 −0.854861 −0.427430 0.904048i \(-0.640581\pi\)
−0.427430 + 0.904048i \(0.640581\pi\)
\(648\) 1.24194e9i 0.179303i
\(649\) −3.12741e9 −0.449084
\(650\) −6.59807e9 6.79631e9i −0.942367 0.970681i
\(651\) 2.33580e9 0.331820
\(652\) 6.68518e9i 0.944596i
\(653\) 3.58689e9 0.504106 0.252053 0.967713i \(-0.418894\pi\)
0.252053 + 0.967713i \(0.418894\pi\)
\(654\) −9.62875e8 −0.134601
\(655\) 1.08529e10i 1.50904i
\(656\) 1.66036e9i 0.229635i
\(657\) 2.35574e8i 0.0324078i
\(658\) 8.18124e9i 1.11951i
\(659\) 9.75238e9 1.32743 0.663715 0.747986i \(-0.268979\pi\)
0.663715 + 0.747986i \(0.268979\pi\)
\(660\) −1.60780e9 −0.217685
\(661\) 4.28515e9i 0.577113i −0.957463 0.288556i \(-0.906825\pi\)
0.957463 0.288556i \(-0.0931753\pi\)
\(662\) −8.29542e9 −1.11131
\(663\) 5.20639e9 5.05453e9i 0.693808 0.673571i
\(664\) 3.00469e9 0.398301
\(665\) 6.88727e9i 0.908179i
\(666\) −1.96745e9 −0.258074
\(667\) −9.75863e9 −1.27335
\(668\) 5.74065e8i 0.0745149i
\(669\) 9.82061e9i 1.26808i
\(670\) 8.97631e9i 1.15302i
\(671\) 3.82502e9i 0.488771i
\(672\) 1.04743e9 0.133147
\(673\) 3.75536e9 0.474897 0.237448 0.971400i \(-0.423689\pi\)
0.237448 + 0.971400i \(0.423689\pi\)
\(674\) 2.55421e9i 0.321327i
\(675\) 1.66313e10 2.08144
\(676\) −1.18847e8 + 4.01415e9i −0.0147971 + 0.499781i
\(677\) 1.35417e10 1.67731 0.838654 0.544664i \(-0.183343\pi\)
0.838654 + 0.544664i \(0.183343\pi\)
\(678\) 8.06464e9i 0.993759i
\(679\) −3.90537e9 −0.478760
\(680\) −5.98962e9 −0.730497
\(681\) 2.34290e9i 0.284275i
\(682\) 8.24036e8i 0.0994720i
\(683\) 4.91290e9i 0.590019i 0.955494 + 0.295009i \(0.0953227\pi\)
−0.955494 + 0.295009i \(0.904677\pi\)
\(684\) 8.54605e8i 0.102110i
\(685\) −8.42344e9 −1.00132
\(686\) 6.26295e9 0.740704
\(687\) 1.17906e10i 1.38735i
\(688\) 2.56467e9 0.300242
\(689\) −6.27131e9 + 6.08838e9i −0.730451 + 0.709144i
\(690\) −7.72571e9 −0.895296
\(691\) 7.93688e9i 0.915117i 0.889180 + 0.457558i \(0.151276\pi\)
−0.889180 + 0.457558i \(0.848724\pi\)
\(692\) 5.69459e9 0.653268
\(693\) −9.54607e8 −0.108958
\(694\) 8.34900e9i 0.948148i
\(695\) 3.06075e9i 0.345844i
\(696\) 3.44460e9i 0.387263i
\(697\) 9.94000e9i 1.11192i
\(698\) 7.03994e9 0.783565
\(699\) 3.96209e9 0.438788
\(700\) 8.18553e9i 0.901994i
\(701\) −8.76538e9 −0.961076 −0.480538 0.876974i \(-0.659559\pi\)
−0.480538 + 0.876974i \(0.659559\pi\)
\(702\) −4.91153e9 5.05909e9i −0.535842 0.551941i
\(703\) 5.24261e9 0.569120
\(704\) 3.69518e8i 0.0399146i
\(705\) −2.13001e10 −2.28939
\(706\) −6.59036e9 −0.704843
\(707\) 6.95926e9i 0.740619i
\(708\) 5.30445e9i 0.561725i
\(709\) 1.60949e10i 1.69600i −0.529995 0.848001i \(-0.677806\pi\)
0.529995 0.848001i \(-0.322194\pi\)
\(710\) 8.06132e9i 0.845283i
\(711\) −4.85530e9 −0.506608
\(712\) −2.57068e9 −0.266912
\(713\) 3.95961e9i 0.409109i
\(714\) 6.27062e9 0.644713
\(715\) 3.82208e9 3.71060e9i 0.391047 0.379640i
\(716\) −3.96708e9 −0.403901
\(717\) 3.75322e9i 0.380265i
\(718\) −7.37023e9 −0.743097
\(719\) 7.66897e9 0.769460 0.384730 0.923029i \(-0.374295\pi\)
0.384730 + 0.923029i \(0.374295\pi\)
\(720\) 1.54657e9i 0.154421i
\(721\) 2.29957e9i 0.228493i
\(722\) 4.87373e9i 0.481927i
\(723\) 2.55677e9i 0.251599i
\(724\) 2.04306e9 0.200077
\(725\) −2.69191e10 −2.62348
\(726\) 5.23004e9i 0.507256i
\(727\) −1.05757e10 −1.02080 −0.510398 0.859938i \(-0.670502\pi\)
−0.510398 + 0.859938i \(0.670502\pi\)
\(728\) −2.48996e9 + 2.41733e9i −0.239185 + 0.232208i
\(729\) 1.10102e10 1.05257
\(730\) 1.13600e9i 0.108080i
\(731\) 1.53538e10 1.45380
\(732\) −6.48769e9 −0.611366
\(733\) 1.15268e10i 1.08104i 0.841330 + 0.540522i \(0.181773\pi\)
−0.841330 + 0.540522i \(0.818227\pi\)
\(734\) 1.14404e10i 1.06783i
\(735\) 1.62862e9i 0.151291i
\(736\) 1.77559e9i 0.164161i
\(737\) −3.31527e9 −0.305058
\(738\) 2.56659e9 0.235050
\(739\) 1.69679e10i 1.54658i −0.634051 0.773291i \(-0.718609\pi\)
0.634051 0.773291i \(-0.281391\pi\)
\(740\) 9.48752e9 0.860680
\(741\) 3.47772e9 + 3.58221e9i 0.314001 + 0.323436i
\(742\) −7.55321e9 −0.678763
\(743\) 5.71581e9i 0.511231i 0.966779 + 0.255615i \(0.0822780\pi\)
−0.966779 + 0.255615i \(0.917722\pi\)
\(744\) 1.39766e9 0.124422
\(745\) 1.98294e10 1.75697
\(746\) 6.34757e9i 0.559785i
\(747\) 4.64467e9i 0.407693i
\(748\) 2.21218e9i 0.193270i
\(749\) 1.37963e10i 1.19971i
\(750\) −1.01726e10 −0.880472
\(751\) 1.36628e10 1.17707 0.588534 0.808473i \(-0.299705\pi\)
0.588534 + 0.808473i \(0.299705\pi\)
\(752\) 4.89538e9i 0.419782i
\(753\) −1.43162e9 −0.122193
\(754\) 7.94969e9 + 8.18854e9i 0.675383 + 0.695675i
\(755\) 4.87894e9 0.412583
\(756\) 6.09321e9i 0.512885i
\(757\) −6.72435e9 −0.563397 −0.281699 0.959503i \(-0.590898\pi\)
−0.281699 + 0.959503i \(0.590898\pi\)
\(758\) 2.79747e9 0.233304
\(759\) 2.85338e9i 0.236872i
\(760\) 4.12111e9i 0.340539i
\(761\) 8.09445e9i 0.665796i 0.942963 + 0.332898i \(0.108026\pi\)
−0.942963 + 0.332898i \(0.891974\pi\)
\(762\) 4.50734e9i 0.369044i
\(763\) 2.75684e9 0.224686
\(764\) 1.05897e10 0.859129
\(765\) 9.25881e9i 0.747722i
\(766\) −5.66014e9 −0.455016
\(767\) 1.22420e10 + 1.26098e10i 0.979644 + 1.00908i
\(768\) 6.26747e8 0.0499261
\(769\) 1.30012e10i 1.03096i −0.856901 0.515481i \(-0.827613\pi\)
0.856901 0.515481i \(-0.172387\pi\)
\(770\) 4.60334e9 0.363376
\(771\) 1.47192e10 1.15663
\(772\) 1.29131e9i 0.101011i
\(773\) 2.12901e10i 1.65786i −0.559349 0.828932i \(-0.688949\pi\)
0.559349 0.828932i \(-0.311051\pi\)
\(774\) 3.96449e9i 0.307322i
\(775\) 1.09225e10i 0.842884i
\(776\) −2.33684e9 −0.179520
\(777\) −9.93261e9 −0.759608
\(778\) 2.93236e9i 0.223248i
\(779\) −6.83913e9 −0.518346
\(780\) 6.29361e9 + 6.48271e9i 0.474864 + 0.489131i
\(781\) −2.97733e9 −0.223640
\(782\) 1.06298e10i 0.794883i
\(783\) −2.00382e10 −1.49174
\(784\) 3.74303e8 0.0277407
\(785\) 1.78337e10i 1.31582i
\(786\) 6.79864e9i 0.499394i
\(787\) 1.73104e10i 1.26589i 0.774198 + 0.632943i \(0.218153\pi\)
−0.774198 + 0.632943i \(0.781847\pi\)
\(788\) 9.11347e9i 0.663502i
\(789\) −6.32648e9 −0.458556
\(790\) 2.34134e10 1.68955
\(791\) 2.30901e10i 1.65886i
\(792\) −5.71204e8 −0.0408558
\(793\) 1.54226e10 1.49728e10i 1.09825 1.06622i
\(794\) −2.21878e9 −0.157305
\(795\) 1.96650e10i 1.38807i
\(796\) 6.70940e9 0.471507
\(797\) −2.31694e9 −0.162110 −0.0810551 0.996710i \(-0.525829\pi\)
−0.0810551 + 0.996710i \(0.525829\pi\)
\(798\) 4.31444e9i 0.300549i
\(799\) 2.93070e10i 2.03263i
\(800\) 4.89794e9i 0.338219i
\(801\) 3.97378e9i 0.273206i
\(802\) 2.45639e8 0.0168146
\(803\) 4.19564e8 0.0285952
\(804\) 5.62310e9i 0.381574i
\(805\) 2.21197e10 1.49449
\(806\) −3.32254e9 + 3.22562e9i −0.223510 + 0.216991i
\(807\) −1.60074e10 −1.07217
\(808\) 4.16418e9i 0.277709i
\(809\) 8.62119e9 0.572463 0.286232 0.958160i \(-0.407597\pi\)
0.286232 + 0.958160i \(0.407597\pi\)
\(810\) −9.25773e9 −0.612078
\(811\) 8.00455e9i 0.526943i −0.964667 0.263472i \(-0.915132\pi\)
0.964667 0.263472i \(-0.0848675\pi\)
\(812\) 9.86234e9i 0.646448i
\(813\) 1.00142e10i 0.653584i
\(814\) 3.50408e9i 0.227713i
\(815\) −4.98330e10 −3.22452
\(816\) 3.75212e9 0.241747
\(817\) 1.05641e10i 0.677725i
\(818\) 3.38773e8 0.0216408
\(819\) 3.73673e9 + 3.84901e9i 0.237683 + 0.244825i
\(820\) −1.23767e10 −0.783894
\(821\) 7.27959e9i 0.459099i 0.973297 + 0.229549i \(0.0737252\pi\)
−0.973297 + 0.229549i \(0.926275\pi\)
\(822\) 5.27676e9 0.331372
\(823\) −8.53877e8 −0.0533944 −0.0266972 0.999644i \(-0.508499\pi\)
−0.0266972 + 0.999644i \(0.508499\pi\)
\(824\) 1.37598e9i 0.0856777i
\(825\) 7.87103e9i 0.488025i
\(826\) 1.51873e10i 0.937673i
\(827\) 2.01479e10i 1.23868i −0.785122 0.619342i \(-0.787400\pi\)
0.785122 0.619342i \(-0.212600\pi\)
\(828\) −2.74472e9 −0.168032
\(829\) 1.50140e9 0.0915284 0.0457642 0.998952i \(-0.485428\pi\)
0.0457642 + 0.998952i \(0.485428\pi\)
\(830\) 2.23977e10i 1.35966i
\(831\) −8.55582e9 −0.517200
\(832\) −1.48991e9 + 1.44645e9i −0.0896867 + 0.0870706i
\(833\) 2.24082e9 0.134323
\(834\) 1.91737e9i 0.114452i
\(835\) −4.27923e9 −0.254368
\(836\) 1.52207e9 0.0900976
\(837\) 8.13062e9i 0.479274i
\(838\) 1.06946e9i 0.0627787i
\(839\) 1.78226e10i 1.04185i −0.853603 0.520925i \(-0.825587\pi\)
0.853603 0.520925i \(-0.174413\pi\)
\(840\) 7.80782e9i 0.454519i
\(841\) 1.51836e10 0.880214
\(842\) 7.83715e9 0.452445
\(843\) 1.57767e10i 0.907025i
\(844\) −1.08655e10 −0.622085
\(845\) −2.99225e10 8.85919e8i −1.70608 0.0505121i
\(846\) −7.56731e9 −0.429680
\(847\) 1.49743e10i 0.846748i
\(848\) −4.51958e9 −0.254515
\(849\) −1.73861e10 −0.975045
\(850\) 2.93223e10i 1.63769i
\(851\) 1.68376e10i 0.936541i
\(852\) 5.04991e9i 0.279734i
\(853\) 5.18447e9i 0.286011i −0.989722 0.143005i \(-0.954323\pi\)
0.989722 0.143005i \(-0.0456766\pi\)
\(854\) 1.85751e10 1.02054
\(855\) −6.37045e9 −0.348569
\(856\) 8.25522e9i 0.449853i
\(857\) −2.11545e10 −1.14807 −0.574037 0.818829i \(-0.694623\pi\)
−0.574037 + 0.818829i \(0.694623\pi\)
\(858\) −2.39429e9 + 2.32446e9i −0.129411 + 0.125636i
\(859\) 6.22064e9 0.334856 0.167428 0.985884i \(-0.446454\pi\)
0.167428 + 0.985884i \(0.446454\pi\)
\(860\) 1.91177e10i 1.02492i
\(861\) 1.29574e10 0.691840
\(862\) −1.33189e10 −0.708261
\(863\) 7.78903e9i 0.412521i 0.978497 + 0.206260i \(0.0661294\pi\)
−0.978497 + 0.206260i \(0.933871\pi\)
\(864\) 3.64597e9i 0.192316i
\(865\) 4.24490e10i 2.23003i
\(866\) 7.30576e9i 0.382254i
\(867\) 7.13367e9 0.371746
\(868\) −4.00169e9 −0.207694
\(869\) 8.64741e9i 0.447009i
\(870\) 2.56769e10 1.32198
\(871\) 1.29774e10 + 1.33673e10i 0.665462 + 0.685456i
\(872\) 1.64960e9 0.0842501
\(873\) 3.61230e9i 0.183753i
\(874\) 7.31378e9 0.370554
\(875\) 2.91253e10 1.46975
\(876\) 7.11630e8i 0.0357676i
\(877\) 5.19360e8i 0.0259998i 0.999915 + 0.0129999i \(0.00413811\pi\)
−0.999915 + 0.0129999i \(0.995862\pi\)
\(878\) 4.35789e9i 0.217293i
\(879\) 1.71026e10i 0.849376i
\(880\) 2.75448e9 0.136254
\(881\) 3.70780e9 0.182684 0.0913420 0.995820i \(-0.470884\pi\)
0.0913420 + 0.995820i \(0.470884\pi\)
\(882\) 5.78600e8i 0.0283948i
\(883\) 1.10427e9 0.0539774 0.0269887 0.999636i \(-0.491408\pi\)
0.0269887 + 0.999636i \(0.491408\pi\)
\(884\) −8.91959e9 + 8.65941e9i −0.434272 + 0.421605i
\(885\) 3.95408e10 1.91754
\(886\) 1.47593e9i 0.0712930i
\(887\) 4.25547e9 0.204746 0.102373 0.994746i \(-0.467356\pi\)
0.102373 + 0.994746i \(0.467356\pi\)
\(888\) −5.94333e9 −0.284829
\(889\) 1.29051e10i 0.616035i
\(890\) 1.91625e10i 0.911146i
\(891\) 3.41921e9i 0.161940i
\(892\) 1.68247e10i 0.793724i
\(893\) 2.01644e10 0.947558
\(894\) −1.24219e10 −0.581443
\(895\) 2.95716e10i 1.37878i
\(896\) −1.79446e9 −0.0833403
\(897\) −1.15049e10 + 1.11693e10i −0.532243 + 0.516718i
\(898\) −6.28730e9 −0.289733
\(899\) 1.31600e10i 0.604085i
\(900\) −7.57128e9 −0.346195
\(901\) −2.70572e10 −1.23239
\(902\) 4.57117e9i 0.207398i
\(903\) 2.00146e10i 0.904564i
\(904\) 1.38163e10i 0.622019i
\(905\) 1.52295e10i 0.682992i
\(906\) −3.05635e9 −0.136538
\(907\) −2.01728e10 −0.897719 −0.448859 0.893602i \(-0.648170\pi\)
−0.448859 + 0.893602i \(0.648170\pi\)
\(908\) 4.01385e9i 0.177935i
\(909\) 6.43703e9 0.284258
\(910\) −1.80194e10 1.85608e10i −0.792677 0.816493i
\(911\) 1.56380e10 0.685280 0.342640 0.939467i \(-0.388679\pi\)
0.342640 + 0.939467i \(0.388679\pi\)
\(912\) 2.58162e9i 0.112696i
\(913\) −8.27228e9 −0.359731
\(914\) −9.89430e9 −0.428621
\(915\) 4.83609e10i 2.08699i
\(916\) 2.01996e10i 0.868377i
\(917\) 1.94654e10i 0.833624i
\(918\) 2.18272e10i 0.931212i
\(919\) 1.23405e10 0.524481 0.262240 0.965003i \(-0.415539\pi\)
0.262240 + 0.965003i \(0.415539\pi\)
\(920\) 1.32357e10 0.560388
\(921\) 3.08896e10i 1.30288i
\(922\) −4.48548e8 −0.0188474
\(923\) 1.16545e10 + 1.20047e10i 0.487853 + 0.502511i
\(924\) −2.88371e9 −0.120254
\(925\) 4.64463e10i 1.92955i
\(926\) −8.98875e9 −0.372015
\(927\) 2.12701e9 0.0876980
\(928\) 5.90128e9i 0.242398i
\(929\) 3.16207e10i 1.29395i −0.762512 0.646974i \(-0.776034\pi\)
0.762512 0.646974i \(-0.223966\pi\)
\(930\) 1.04185e10i 0.424734i
\(931\) 1.54178e9i 0.0626179i
\(932\) −6.78786e9 −0.274648
\(933\) 1.17341e10 0.473004
\(934\) 1.01184e10i 0.406349i
\(935\) 1.64902e10 0.659758
\(936\) 2.23593e9 + 2.30311e9i 0.0891238 + 0.0918015i
\(937\) 1.10850e10 0.440196 0.220098 0.975478i \(-0.429362\pi\)
0.220098 + 0.975478i \(0.429362\pi\)
\(938\) 1.60997e10i 0.636952i
\(939\) −1.17020e10 −0.461244
\(940\) 3.64914e10 1.43299
\(941\) 1.36475e10i 0.533937i −0.963705 0.266969i \(-0.913978\pi\)
0.963705 0.266969i \(-0.0860220\pi\)
\(942\) 1.11717e10i 0.435453i
\(943\) 2.19651e10i 0.852987i
\(944\) 9.08758e9i 0.351598i
\(945\) 4.54204e10 1.75081
\(946\) −7.06085e9 −0.271168
\(947\) 4.34410e9i 0.166217i −0.996541 0.0831083i \(-0.973515\pi\)
0.996541 0.0831083i \(-0.0264848\pi\)
\(948\) −1.46670e10 −0.559130
\(949\) −1.64235e9 1.69169e9i −0.0623784 0.0642525i
\(950\) 2.01750e10 0.763450
\(951\) 3.59658e10i 1.35600i
\(952\) −1.07428e10 −0.403542
\(953\) −8.40733e9 −0.314654 −0.157327 0.987547i \(-0.550288\pi\)
−0.157327 + 0.987547i \(0.550288\pi\)
\(954\) 6.98641e9i 0.260516i
\(955\) 7.89386e10i 2.93277i
\(956\) 6.43001e9i 0.238018i
\(957\) 9.48341e9i 0.349762i
\(958\) −1.51767e9 −0.0557696
\(959\) −1.51080e10 −0.553150
\(960\) 4.67193e9i 0.170430i
\(961\) 2.21729e10 0.805916
\(962\) 1.41286e10 1.37164e10i 0.511664 0.496740i
\(963\) −1.27610e10 −0.460460
\(964\) 4.38026e9i 0.157482i
\(965\) −9.62572e9 −0.344816
\(966\) −1.38566e10 −0.494581
\(967\) 4.83860e10i 1.72079i −0.509629 0.860394i \(-0.670217\pi\)
0.509629 0.860394i \(-0.329783\pi\)
\(968\) 8.96010e9i 0.317504i
\(969\) 1.54553e10i 0.545687i
\(970\) 1.74194e10i 0.612819i
\(971\) −2.60955e10 −0.914740 −0.457370 0.889276i \(-0.651209\pi\)
−0.457370 + 0.889276i \(0.651209\pi\)
\(972\) −9.77431e9 −0.341393
\(973\) 5.48967e9i 0.191052i
\(974\) 1.40887e9 0.0488558
\(975\) −3.17362e10 + 3.08105e10i −1.09658 + 1.06459i
\(976\) 1.11147e10 0.382670
\(977\) 8.92873e9i 0.306308i −0.988202 0.153154i \(-0.951057\pi\)
0.988202 0.153154i \(-0.0489431\pi\)
\(978\) 3.12173e10 1.06711
\(979\) 7.07741e9 0.241065
\(980\) 2.79015e9i 0.0946970i
\(981\) 2.54996e9i 0.0862367i
\(982\) 1.72579e10i 0.581564i
\(983\) 4.62667e10i 1.55357i −0.629765 0.776786i \(-0.716849\pi\)
0.629765 0.776786i \(-0.283151\pi\)
\(984\) 7.75324e9 0.259418
\(985\) −6.79342e10 −2.26496
\(986\) 3.53290e10i 1.17371i
\(987\) −3.82033e10 −1.26471
\(988\) −5.95803e9 6.13705e9i −0.196541 0.202446i
\(989\) −3.39284e10 −1.11526
\(990\) 4.25790e9i 0.139467i
\(991\) 2.15714e10 0.704079 0.352040 0.935985i \(-0.385488\pi\)
0.352040 + 0.935985i \(0.385488\pi\)
\(992\) −2.39448e9 −0.0778788
\(993\) 3.87365e10i 1.25545i
\(994\) 1.44586e10i 0.466952i
\(995\) 5.00136e10i 1.60956i
\(996\) 1.40308e10i 0.449960i
\(997\) 4.72486e10 1.50993 0.754963 0.655767i \(-0.227655\pi\)
0.754963 + 0.655767i \(0.227655\pi\)
\(998\) −1.64298e10 −0.523209
\(999\) 3.45741e10i 1.09716i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.8.b.a.25.9 yes 10
3.2 odd 2 234.8.b.c.181.5 10
4.3 odd 2 208.8.f.c.129.3 10
13.5 odd 4 338.8.a.l.1.4 5
13.8 odd 4 338.8.a.k.1.4 5
13.12 even 2 inner 26.8.b.a.25.4 10
39.38 odd 2 234.8.b.c.181.6 10
52.51 odd 2 208.8.f.c.129.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.b.a.25.4 10 13.12 even 2 inner
26.8.b.a.25.9 yes 10 1.1 even 1 trivial
208.8.f.c.129.3 10 4.3 odd 2
208.8.f.c.129.4 10 52.51 odd 2
234.8.b.c.181.5 10 3.2 odd 2
234.8.b.c.181.6 10 39.38 odd 2
338.8.a.k.1.4 5 13.8 odd 4
338.8.a.l.1.4 5 13.5 odd 4