Properties

Label 2592.2.c.b.2591.10
Level $2592$
Weight $2$
Character 2592.2591
Analytic conductor $20.697$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2592,2,Mod(2591,2592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2592.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2592, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 49x^{12} - 12x^{10} - 600x^{8} + 108x^{6} + 4057x^{4} + 18252x^{2} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.10
Root \(-0.115299 - 1.50155i\) of defining polynomial
Character \(\chi\) \(=\) 2592.2591
Dual form 2592.2.c.b.2591.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30185i q^{5} +3.51498i q^{7} -1.81949 q^{11} -5.24703 q^{13} +3.03908i q^{17} -3.05816i q^{19} -5.22199 q^{23} +3.30519 q^{25} -3.75134i q^{29} +4.35506i q^{31} -4.57596 q^{35} +1.48502 q^{37} -8.45569i q^{41} -6.44318i q^{43} -12.6983 q^{47} -5.35506 q^{49} -11.2841i q^{53} -2.36869i q^{55} -0.685926 q^{59} -4.15992 q^{61} -6.83083i q^{65} +12.6613i q^{67} +2.50541 q^{71} +12.3052 q^{73} -6.39545i q^{77} -2.08812i q^{79} +17.1671 q^{83} -3.95641 q^{85} -12.5300i q^{89} -18.4432i q^{91} +3.98127 q^{95} -8.79122 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{13} - 48 q^{25} + 72 q^{37} - 48 q^{49} - 56 q^{61} + 96 q^{73} - 24 q^{85} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.30185i 0.582204i 0.956692 + 0.291102i \(0.0940219\pi\)
−0.956692 + 0.291102i \(0.905978\pi\)
\(6\) 0 0
\(7\) 3.51498i 1.32854i 0.747494 + 0.664268i \(0.231257\pi\)
−0.747494 + 0.664268i \(0.768743\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.81949 −0.548596 −0.274298 0.961645i \(-0.588445\pi\)
−0.274298 + 0.961645i \(0.588445\pi\)
\(12\) 0 0
\(13\) −5.24703 −1.45526 −0.727632 0.685968i \(-0.759379\pi\)
−0.727632 + 0.685968i \(0.759379\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.03908i 0.737084i 0.929611 + 0.368542i \(0.120143\pi\)
−0.929611 + 0.368542i \(0.879857\pi\)
\(18\) 0 0
\(19\) − 3.05816i − 0.701591i −0.936452 0.350796i \(-0.885911\pi\)
0.936452 0.350796i \(-0.114089\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.22199 −1.08886 −0.544431 0.838806i \(-0.683254\pi\)
−0.544431 + 0.838806i \(0.683254\pi\)
\(24\) 0 0
\(25\) 3.30519 0.661038
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 3.75134i − 0.696606i −0.937382 0.348303i \(-0.886758\pi\)
0.937382 0.348303i \(-0.113242\pi\)
\(30\) 0 0
\(31\) 4.35506i 0.782192i 0.920350 + 0.391096i \(0.127904\pi\)
−0.920350 + 0.391096i \(0.872096\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.57596 −0.773479
\(36\) 0 0
\(37\) 1.48502 0.244136 0.122068 0.992522i \(-0.461047\pi\)
0.122068 + 0.992522i \(0.461047\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 8.45569i − 1.32056i −0.751021 0.660279i \(-0.770438\pi\)
0.751021 0.660279i \(-0.229562\pi\)
\(42\) 0 0
\(43\) − 6.44318i − 0.982576i −0.870997 0.491288i \(-0.836526\pi\)
0.870997 0.491288i \(-0.163474\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.6983 −1.85224 −0.926121 0.377226i \(-0.876878\pi\)
−0.926121 + 0.377226i \(0.876878\pi\)
\(48\) 0 0
\(49\) −5.35506 −0.765009
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 11.2841i − 1.54999i −0.631965 0.774997i \(-0.717752\pi\)
0.631965 0.774997i \(-0.282248\pi\)
\(54\) 0 0
\(55\) − 2.36869i − 0.319395i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.685926 −0.0893000 −0.0446500 0.999003i \(-0.514217\pi\)
−0.0446500 + 0.999003i \(0.514217\pi\)
\(60\) 0 0
\(61\) −4.15992 −0.532623 −0.266311 0.963887i \(-0.585805\pi\)
−0.266311 + 0.963887i \(0.585805\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 6.83083i − 0.847260i
\(66\) 0 0
\(67\) 12.6613i 1.54682i 0.633907 + 0.773410i \(0.281450\pi\)
−0.633907 + 0.773410i \(0.718550\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.50541 0.297338 0.148669 0.988887i \(-0.452501\pi\)
0.148669 + 0.988887i \(0.452501\pi\)
\(72\) 0 0
\(73\) 12.3052 1.44021 0.720107 0.693863i \(-0.244093\pi\)
0.720107 + 0.693863i \(0.244093\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6.39545i − 0.728829i
\(78\) 0 0
\(79\) − 2.08812i − 0.234932i −0.993077 0.117466i \(-0.962523\pi\)
0.993077 0.117466i \(-0.0374771\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 17.1671 1.88434 0.942169 0.335139i \(-0.108783\pi\)
0.942169 + 0.335139i \(0.108783\pi\)
\(84\) 0 0
\(85\) −3.95641 −0.429133
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 12.5300i − 1.32818i −0.747652 0.664091i \(-0.768819\pi\)
0.747652 0.664091i \(-0.231181\pi\)
\(90\) 0 0
\(91\) − 18.4432i − 1.93337i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.98127 0.408469
\(96\) 0 0
\(97\) −8.79122 −0.892613 −0.446307 0.894880i \(-0.647261\pi\)
−0.446307 + 0.894880i \(0.647261\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.91635i − 0.190684i −0.995445 0.0953418i \(-0.969606\pi\)
0.995445 0.0953418i \(-0.0303944\pi\)
\(102\) 0 0
\(103\) 17.8564i 1.75944i 0.475488 + 0.879722i \(0.342271\pi\)
−0.475488 + 0.879722i \(0.657729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.8573 −1.82301 −0.911503 0.411293i \(-0.865077\pi\)
−0.911503 + 0.411293i \(0.865077\pi\)
\(108\) 0 0
\(109\) 17.1679 1.64439 0.822195 0.569206i \(-0.192749\pi\)
0.822195 + 0.569206i \(0.192749\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.57788i 0.242507i 0.992622 + 0.121253i \(0.0386913\pi\)
−0.992622 + 0.121253i \(0.961309\pi\)
\(114\) 0 0
\(115\) − 6.79824i − 0.633939i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.6823 −0.979243
\(120\) 0 0
\(121\) −7.68947 −0.699043
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.8121i 0.967063i
\(126\) 0 0
\(127\) − 9.73306i − 0.863669i −0.901953 0.431835i \(-0.857866\pi\)
0.901953 0.431835i \(-0.142134\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.0157 −1.22456 −0.612278 0.790642i \(-0.709747\pi\)
−0.612278 + 0.790642i \(0.709747\pi\)
\(132\) 0 0
\(133\) 10.7494 0.932089
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2.88487i − 0.246471i −0.992377 0.123236i \(-0.960673\pi\)
0.992377 0.123236i \(-0.0393271\pi\)
\(138\) 0 0
\(139\) − 8.17624i − 0.693499i −0.937958 0.346750i \(-0.887285\pi\)
0.937958 0.346750i \(-0.112715\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.54689 0.798351
\(144\) 0 0
\(145\) 4.88367 0.405567
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 8.03634i − 0.658363i −0.944267 0.329181i \(-0.893227\pi\)
0.944267 0.329181i \(-0.106773\pi\)
\(150\) 0 0
\(151\) 13.1463i 1.06983i 0.844906 + 0.534915i \(0.179656\pi\)
−0.844906 + 0.534915i \(0.820344\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.66963 −0.455395
\(156\) 0 0
\(157\) −1.72376 −0.137571 −0.0687853 0.997631i \(-0.521912\pi\)
−0.0687853 + 0.997631i \(0.521912\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 18.3552i − 1.44659i
\(162\) 0 0
\(163\) − 6.13698i − 0.480686i −0.970688 0.240343i \(-0.922740\pi\)
0.970688 0.240343i \(-0.0772598\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.2273 −1.56524 −0.782619 0.622500i \(-0.786117\pi\)
−0.782619 + 0.622500i \(0.786117\pi\)
\(168\) 0 0
\(169\) 14.5313 1.11779
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2.59144i − 0.197024i −0.995136 0.0985119i \(-0.968592\pi\)
0.995136 0.0985119i \(-0.0314082\pi\)
\(174\) 0 0
\(175\) 11.6177i 0.878214i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −25.4493 −1.90217 −0.951086 0.308925i \(-0.900031\pi\)
−0.951086 + 0.308925i \(0.900031\pi\)
\(180\) 0 0
\(181\) −0.811874 −0.0603461 −0.0301730 0.999545i \(-0.509606\pi\)
−0.0301730 + 0.999545i \(0.509606\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.93327i 0.142137i
\(186\) 0 0
\(187\) − 5.52956i − 0.404361i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.4402 −1.11721 −0.558607 0.829432i \(-0.688664\pi\)
−0.558607 + 0.829432i \(0.688664\pi\)
\(192\) 0 0
\(193\) −24.8000 −1.78514 −0.892571 0.450907i \(-0.851101\pi\)
−0.892571 + 0.450907i \(0.851101\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.99395i − 0.427051i −0.976937 0.213526i \(-0.931505\pi\)
0.976937 0.213526i \(-0.0684947\pi\)
\(198\) 0 0
\(199\) 18.7700i 1.33057i 0.746589 + 0.665286i \(0.231690\pi\)
−0.746589 + 0.665286i \(0.768310\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 13.1859 0.925466
\(204\) 0 0
\(205\) 11.0080 0.768834
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.56429i 0.384890i
\(210\) 0 0
\(211\) − 19.2344i − 1.32415i −0.749437 0.662075i \(-0.769676\pi\)
0.749437 0.662075i \(-0.230324\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.38804 0.572060
\(216\) 0 0
\(217\) −15.3079 −1.03917
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 15.9461i − 1.07265i
\(222\) 0 0
\(223\) 5.98637i 0.400877i 0.979706 + 0.200438i \(0.0642367\pi\)
−0.979706 + 0.200438i \(0.935763\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.67291 −0.509269 −0.254634 0.967037i \(-0.581955\pi\)
−0.254634 + 0.967037i \(0.581955\pi\)
\(228\) 0 0
\(229\) −20.5323 −1.35681 −0.678406 0.734687i \(-0.737329\pi\)
−0.678406 + 0.734687i \(0.737329\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.0981i 1.70974i 0.518839 + 0.854872i \(0.326364\pi\)
−0.518839 + 0.854872i \(0.673636\pi\)
\(234\) 0 0
\(235\) − 16.5313i − 1.07838i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.06629 0.0689723 0.0344862 0.999405i \(-0.489021\pi\)
0.0344862 + 0.999405i \(0.489021\pi\)
\(240\) 0 0
\(241\) −11.0007 −0.708620 −0.354310 0.935128i \(-0.615284\pi\)
−0.354310 + 0.935128i \(0.615284\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 6.97148i − 0.445391i
\(246\) 0 0
\(247\) 16.0463i 1.02100i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.66440 −0.546892 −0.273446 0.961887i \(-0.588163\pi\)
−0.273446 + 0.961887i \(0.588163\pi\)
\(252\) 0 0
\(253\) 9.50134 0.597344
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.2268i 1.13696i 0.822698 + 0.568478i \(0.192468\pi\)
−0.822698 + 0.568478i \(0.807532\pi\)
\(258\) 0 0
\(259\) 5.21982i 0.324344i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.25435 −0.139009 −0.0695045 0.997582i \(-0.522142\pi\)
−0.0695045 + 0.997582i \(0.522142\pi\)
\(264\) 0 0
\(265\) 14.6902 0.902412
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.70436i 0.286830i 0.989663 + 0.143415i \(0.0458083\pi\)
−0.989663 + 0.143415i \(0.954192\pi\)
\(270\) 0 0
\(271\) 6.89999i 0.419145i 0.977793 + 0.209572i \(0.0672072\pi\)
−0.977793 + 0.209572i \(0.932793\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.01375 −0.362643
\(276\) 0 0
\(277\) −23.9163 −1.43699 −0.718496 0.695531i \(-0.755169\pi\)
−0.718496 + 0.695531i \(0.755169\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 13.8507i − 0.826261i −0.910672 0.413130i \(-0.864435\pi\)
0.910672 0.413130i \(-0.135565\pi\)
\(282\) 0 0
\(283\) 0.101750i 0.00604843i 0.999995 + 0.00302421i \(0.000962639\pi\)
−0.999995 + 0.00302421i \(0.999037\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.7216 1.75441
\(288\) 0 0
\(289\) 7.76402 0.456707
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22.1168i 1.29208i 0.763304 + 0.646040i \(0.223576\pi\)
−0.763304 + 0.646040i \(0.776424\pi\)
\(294\) 0 0
\(295\) − 0.892972i − 0.0519908i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 27.3999 1.58458
\(300\) 0 0
\(301\) 22.6476 1.30539
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 5.41558i − 0.310095i
\(306\) 0 0
\(307\) − 11.3850i − 0.649777i −0.945752 0.324889i \(-0.894673\pi\)
0.945752 0.324889i \(-0.105327\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.9415 1.24419 0.622094 0.782943i \(-0.286282\pi\)
0.622094 + 0.782943i \(0.286282\pi\)
\(312\) 0 0
\(313\) −8.48677 −0.479700 −0.239850 0.970810i \(-0.577098\pi\)
−0.239850 + 0.970810i \(0.577098\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.9048i 1.00564i 0.864393 + 0.502818i \(0.167703\pi\)
−0.864393 + 0.502818i \(0.832297\pi\)
\(318\) 0 0
\(319\) 6.82551i 0.382155i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.29400 0.517132
\(324\) 0 0
\(325\) −17.3424 −0.961985
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 44.6344i − 2.46077i
\(330\) 0 0
\(331\) − 2.08812i − 0.114773i −0.998352 0.0573867i \(-0.981723\pi\)
0.998352 0.0573867i \(-0.0182768\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.4830 −0.900564
\(336\) 0 0
\(337\) 27.6630 1.50690 0.753450 0.657505i \(-0.228388\pi\)
0.753450 + 0.657505i \(0.228388\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 7.92397i − 0.429107i
\(342\) 0 0
\(343\) 5.78192i 0.312194i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.88577 −0.154916 −0.0774582 0.996996i \(-0.524680\pi\)
−0.0774582 + 0.996996i \(0.524680\pi\)
\(348\) 0 0
\(349\) 0.396905 0.0212458 0.0106229 0.999944i \(-0.496619\pi\)
0.0106229 + 0.999944i \(0.496619\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.25347i 0.492512i 0.969205 + 0.246256i \(0.0792004\pi\)
−0.969205 + 0.246256i \(0.920800\pi\)
\(354\) 0 0
\(355\) 3.26167i 0.173111i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.8248 0.887981 0.443990 0.896032i \(-0.353562\pi\)
0.443990 + 0.896032i \(0.353562\pi\)
\(360\) 0 0
\(361\) 9.64763 0.507770
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.0195i 0.838498i
\(366\) 0 0
\(367\) 0.355062i 0.0185341i 0.999957 + 0.00926703i \(0.00294983\pi\)
−0.999957 + 0.00926703i \(0.997050\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 39.6634 2.05922
\(372\) 0 0
\(373\) −3.04453 −0.157640 −0.0788200 0.996889i \(-0.525115\pi\)
−0.0788200 + 0.996889i \(0.525115\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.6834i 1.01375i
\(378\) 0 0
\(379\) 36.6330i 1.88171i 0.338805 + 0.940857i \(0.389977\pi\)
−0.338805 + 0.940857i \(0.610023\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.97421 −0.356365 −0.178183 0.983997i \(-0.557022\pi\)
−0.178183 + 0.983997i \(0.557022\pi\)
\(384\) 0 0
\(385\) 8.32590 0.424327
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 30.3779i − 1.54022i −0.637911 0.770110i \(-0.720201\pi\)
0.637911 0.770110i \(-0.279799\pi\)
\(390\) 0 0
\(391\) − 15.8700i − 0.802582i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.71841 0.136778
\(396\) 0 0
\(397\) −12.6167 −0.633215 −0.316608 0.948557i \(-0.602544\pi\)
−0.316608 + 0.948557i \(0.602544\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.2672i 0.562657i 0.959612 + 0.281328i \(0.0907750\pi\)
−0.959612 + 0.281328i \(0.909225\pi\)
\(402\) 0 0
\(403\) − 22.8511i − 1.13830i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.70198 −0.133932
\(408\) 0 0
\(409\) 18.5167 0.915590 0.457795 0.889058i \(-0.348639\pi\)
0.457795 + 0.889058i \(0.348639\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2.41102i − 0.118638i
\(414\) 0 0
\(415\) 22.3490i 1.09707i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.0897 1.12800 0.564002 0.825774i \(-0.309261\pi\)
0.564002 + 0.825774i \(0.309261\pi\)
\(420\) 0 0
\(421\) −11.1825 −0.545003 −0.272501 0.962155i \(-0.587851\pi\)
−0.272501 + 0.962155i \(0.587851\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.0447i 0.487241i
\(426\) 0 0
\(427\) − 14.6220i − 0.707608i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.3110 −0.833843 −0.416921 0.908943i \(-0.636891\pi\)
−0.416921 + 0.908943i \(0.636891\pi\)
\(432\) 0 0
\(433\) −22.7194 −1.09183 −0.545913 0.837842i \(-0.683817\pi\)
−0.545913 + 0.837842i \(0.683817\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.9697i 0.763935i
\(438\) 0 0
\(439\) − 14.4987i − 0.691983i −0.938238 0.345992i \(-0.887543\pi\)
0.938238 0.345992i \(-0.112457\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.53279 0.120336 0.0601682 0.998188i \(-0.480836\pi\)
0.0601682 + 0.998188i \(0.480836\pi\)
\(444\) 0 0
\(445\) 16.3122 0.773273
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 15.4046i − 0.726988i −0.931596 0.363494i \(-0.881584\pi\)
0.931596 0.363494i \(-0.118416\pi\)
\(450\) 0 0
\(451\) 15.3850i 0.724452i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 24.0102 1.12562
\(456\) 0 0
\(457\) 18.1098 0.847140 0.423570 0.905863i \(-0.360777\pi\)
0.423570 + 0.905863i \(0.360777\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 28.1955i 1.31320i 0.754241 + 0.656598i \(0.228005\pi\)
−0.754241 + 0.656598i \(0.771995\pi\)
\(462\) 0 0
\(463\) − 32.6330i − 1.51659i −0.651914 0.758293i \(-0.726034\pi\)
0.651914 0.758293i \(-0.273966\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.6595 −1.23366 −0.616828 0.787098i \(-0.711582\pi\)
−0.616828 + 0.787098i \(0.711582\pi\)
\(468\) 0 0
\(469\) −44.5040 −2.05501
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.7233i 0.539037i
\(474\) 0 0
\(475\) − 10.1078i − 0.463779i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0501 1.09888 0.549439 0.835534i \(-0.314842\pi\)
0.549439 + 0.835534i \(0.314842\pi\)
\(480\) 0 0
\(481\) −7.79196 −0.355283
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 11.4448i − 0.519683i
\(486\) 0 0
\(487\) − 17.4449i − 0.790505i −0.918573 0.395252i \(-0.870657\pi\)
0.918573 0.395252i \(-0.129343\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13.3170 −0.600987 −0.300494 0.953784i \(-0.597151\pi\)
−0.300494 + 0.953784i \(0.597151\pi\)
\(492\) 0 0
\(493\) 11.4006 0.513457
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.80647i 0.395024i
\(498\) 0 0
\(499\) − 33.3894i − 1.49472i −0.664421 0.747358i \(-0.731322\pi\)
0.664421 0.747358i \(-0.268678\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.2884 1.08297 0.541483 0.840712i \(-0.317863\pi\)
0.541483 + 0.840712i \(0.317863\pi\)
\(504\) 0 0
\(505\) 2.49479 0.111017
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 23.5729i − 1.04485i −0.852685 0.522425i \(-0.825027\pi\)
0.852685 0.522425i \(-0.174973\pi\)
\(510\) 0 0
\(511\) 43.2525i 1.91338i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −23.2463 −1.02436
\(516\) 0 0
\(517\) 23.1044 1.01613
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.5603i 1.42649i 0.700913 + 0.713246i \(0.252776\pi\)
−0.700913 + 0.713246i \(0.747224\pi\)
\(522\) 0 0
\(523\) − 5.17449i − 0.226265i −0.993580 0.113132i \(-0.963912\pi\)
0.993580 0.113132i \(-0.0360884\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13.2354 −0.576542
\(528\) 0 0
\(529\) 4.26922 0.185618
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 44.3673i 1.92176i
\(534\) 0 0
\(535\) − 24.5494i − 1.06136i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.74346 0.419680
\(540\) 0 0
\(541\) 15.6620 0.673362 0.336681 0.941619i \(-0.390696\pi\)
0.336681 + 0.941619i \(0.390696\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 22.3500i 0.957371i
\(546\) 0 0
\(547\) 28.4295i 1.21556i 0.794106 + 0.607780i \(0.207940\pi\)
−0.794106 + 0.607780i \(0.792060\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −11.4722 −0.488733
\(552\) 0 0
\(553\) 7.33969 0.312115
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 45.9337i 1.94627i 0.230225 + 0.973137i \(0.426054\pi\)
−0.230225 + 0.973137i \(0.573946\pi\)
\(558\) 0 0
\(559\) 33.8075i 1.42991i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 35.6042 1.50054 0.750269 0.661133i \(-0.229924\pi\)
0.750269 + 0.661133i \(0.229924\pi\)
\(564\) 0 0
\(565\) −3.35601 −0.141188
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.5548i 1.44861i 0.689478 + 0.724307i \(0.257840\pi\)
−0.689478 + 0.724307i \(0.742160\pi\)
\(570\) 0 0
\(571\) 2.90755i 0.121677i 0.998148 + 0.0608386i \(0.0193775\pi\)
−0.998148 + 0.0608386i \(0.980623\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −17.2597 −0.719779
\(576\) 0 0
\(577\) −28.1251 −1.17086 −0.585431 0.810722i \(-0.699075\pi\)
−0.585431 + 0.810722i \(0.699075\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 60.3421i 2.50341i
\(582\) 0 0
\(583\) 20.5313i 0.850319i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.5082 1.17666 0.588330 0.808621i \(-0.299786\pi\)
0.588330 + 0.808621i \(0.299786\pi\)
\(588\) 0 0
\(589\) 13.3185 0.548779
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 8.02682i − 0.329622i −0.986325 0.164811i \(-0.947299\pi\)
0.986325 0.164811i \(-0.0527014\pi\)
\(594\) 0 0
\(595\) − 13.9067i − 0.570119i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.2070 −0.703060 −0.351530 0.936177i \(-0.614338\pi\)
−0.351530 + 0.936177i \(0.614338\pi\)
\(600\) 0 0
\(601\) −3.45681 −0.141006 −0.0705032 0.997512i \(-0.522460\pi\)
−0.0705032 + 0.997512i \(0.522460\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 10.0105i − 0.406986i
\(606\) 0 0
\(607\) − 9.07274i − 0.368251i −0.982903 0.184126i \(-0.941055\pi\)
0.982903 0.184126i \(-0.0589453\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 66.6285 2.69550
\(612\) 0 0
\(613\) 13.1044 0.529283 0.264642 0.964347i \(-0.414746\pi\)
0.264642 + 0.964347i \(0.414746\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 3.72358i − 0.149906i −0.997187 0.0749528i \(-0.976119\pi\)
0.997187 0.0749528i \(-0.0238806\pi\)
\(618\) 0 0
\(619\) − 11.4687i − 0.460966i −0.973076 0.230483i \(-0.925969\pi\)
0.973076 0.230483i \(-0.0740306\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 44.0428 1.76454
\(624\) 0 0
\(625\) 2.45026 0.0980103
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.51310i 0.179949i
\(630\) 0 0
\(631\) 10.1436i 0.403810i 0.979405 + 0.201905i \(0.0647132\pi\)
−0.979405 + 0.201905i \(0.935287\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.6710 0.502832
\(636\) 0 0
\(637\) 28.0982 1.11329
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 11.5075i − 0.454521i −0.973834 0.227260i \(-0.927023\pi\)
0.973834 0.227260i \(-0.0729768\pi\)
\(642\) 0 0
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −27.5438 −1.08286 −0.541430 0.840746i \(-0.682117\pi\)
−0.541430 + 0.840746i \(0.682117\pi\)
\(648\) 0 0
\(649\) 1.24803 0.0489896
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 45.9560i − 1.79840i −0.437541 0.899199i \(-0.644150\pi\)
0.437541 0.899199i \(-0.355850\pi\)
\(654\) 0 0
\(655\) − 18.2463i − 0.712942i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −33.3332 −1.29848 −0.649238 0.760585i \(-0.724912\pi\)
−0.649238 + 0.760585i \(0.724912\pi\)
\(660\) 0 0
\(661\) −11.7026 −0.455177 −0.227588 0.973757i \(-0.573084\pi\)
−0.227588 + 0.973757i \(0.573084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.9941i 0.542666i
\(666\) 0 0
\(667\) 19.5895i 0.758507i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.56891 0.292194
\(672\) 0 0
\(673\) −49.3252 −1.90135 −0.950674 0.310193i \(-0.899606\pi\)
−0.950674 + 0.310193i \(0.899606\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.5827i 0.637326i 0.947868 + 0.318663i \(0.103234\pi\)
−0.947868 + 0.318663i \(0.896766\pi\)
\(678\) 0 0
\(679\) − 30.9009i − 1.18587i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.39972 0.283142 0.141571 0.989928i \(-0.454785\pi\)
0.141571 + 0.989928i \(0.454785\pi\)
\(684\) 0 0
\(685\) 3.75566 0.143496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 59.2081i 2.25565i
\(690\) 0 0
\(691\) − 12.2855i − 0.467364i −0.972313 0.233682i \(-0.924923\pi\)
0.972313 0.233682i \(-0.0750775\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.6442 0.403758
\(696\) 0 0
\(697\) 25.6975 0.973362
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.5927i 0.891084i 0.895261 + 0.445542i \(0.146989\pi\)
−0.895261 + 0.445542i \(0.853011\pi\)
\(702\) 0 0
\(703\) − 4.54145i − 0.171284i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.73591 0.253330
\(708\) 0 0
\(709\) 3.46770 0.130232 0.0651160 0.997878i \(-0.479258\pi\)
0.0651160 + 0.997878i \(0.479258\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 22.7421i − 0.851699i
\(714\) 0 0
\(715\) 12.4286i 0.464803i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.7874 0.924413 0.462206 0.886772i \(-0.347058\pi\)
0.462206 + 0.886772i \(0.347058\pi\)
\(720\) 0 0
\(721\) −62.7649 −2.33749
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 12.3989i − 0.460483i
\(726\) 0 0
\(727\) − 10.6194i − 0.393852i −0.980418 0.196926i \(-0.936904\pi\)
0.980418 0.196926i \(-0.0630959\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 19.5813 0.724241
\(732\) 0 0
\(733\) 16.8119 0.620961 0.310480 0.950580i \(-0.399510\pi\)
0.310480 + 0.950580i \(0.399510\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 23.0370i − 0.848578i
\(738\) 0 0
\(739\) 46.0507i 1.69400i 0.531591 + 0.847001i \(0.321594\pi\)
−0.531591 + 0.847001i \(0.678406\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.5183 0.752744 0.376372 0.926469i \(-0.377172\pi\)
0.376372 + 0.926469i \(0.377172\pi\)
\(744\) 0 0
\(745\) 10.4621 0.383301
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 66.2830i − 2.42193i
\(750\) 0 0
\(751\) 37.0410i 1.35165i 0.737064 + 0.675823i \(0.236211\pi\)
−0.737064 + 0.675823i \(0.763789\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17.1145 −0.622859
\(756\) 0 0
\(757\) −16.2740 −0.591487 −0.295744 0.955267i \(-0.595567\pi\)
−0.295744 + 0.955267i \(0.595567\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 15.9597i − 0.578538i −0.957248 0.289269i \(-0.906588\pi\)
0.957248 0.289269i \(-0.0934122\pi\)
\(762\) 0 0
\(763\) 60.3449i 2.18463i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.59907 0.129955
\(768\) 0 0
\(769\) −4.02995 −0.145324 −0.0726619 0.997357i \(-0.523149\pi\)
−0.0726619 + 0.997357i \(0.523149\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 7.21587i − 0.259537i −0.991544 0.129768i \(-0.958577\pi\)
0.991544 0.129768i \(-0.0414234\pi\)
\(774\) 0 0
\(775\) 14.3943i 0.517059i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −25.8589 −0.926491
\(780\) 0 0
\(781\) −4.55856 −0.163118
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 2.24407i − 0.0800942i
\(786\) 0 0
\(787\) 47.0969i 1.67882i 0.543497 + 0.839411i \(0.317100\pi\)
−0.543497 + 0.839411i \(0.682900\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.06119 −0.322179
\(792\) 0 0
\(793\) 21.8272 0.775106
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 19.2072i − 0.680354i −0.940361 0.340177i \(-0.889513\pi\)
0.940361 0.340177i \(-0.110487\pi\)
\(798\) 0 0
\(799\) − 38.5912i − 1.36526i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22.3891 −0.790095
\(804\) 0 0
\(805\) 23.8957 0.842211
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 36.8312i − 1.29492i −0.762101 0.647458i \(-0.775832\pi\)
0.762101 0.647458i \(-0.224168\pi\)
\(810\) 0 0
\(811\) 37.2208i 1.30700i 0.756927 + 0.653499i \(0.226700\pi\)
−0.756927 + 0.653499i \(0.773300\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.98942 0.279857
\(816\) 0 0
\(817\) −19.7043 −0.689366
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.9895i 0.488237i 0.969745 + 0.244118i \(0.0784985\pi\)
−0.969745 + 0.244118i \(0.921501\pi\)
\(822\) 0 0
\(823\) − 8.49258i − 0.296033i −0.988985 0.148016i \(-0.952711\pi\)
0.988985 0.148016i \(-0.0472888\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 51.1755 1.77955 0.889774 0.456402i \(-0.150862\pi\)
0.889774 + 0.456402i \(0.150862\pi\)
\(828\) 0 0
\(829\) −37.9762 −1.31897 −0.659484 0.751718i \(-0.729225\pi\)
−0.659484 + 0.751718i \(0.729225\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 16.2744i − 0.563876i
\(834\) 0 0
\(835\) − 26.3329i − 0.911288i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.79613 −0.338200 −0.169100 0.985599i \(-0.554086\pi\)
−0.169100 + 0.985599i \(0.554086\pi\)
\(840\) 0 0
\(841\) 14.9275 0.514740
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.9175i 0.650783i
\(846\) 0 0
\(847\) − 27.0283i − 0.928704i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.75478 −0.265831
\(852\) 0 0
\(853\) −50.6264 −1.73342 −0.866708 0.498816i \(-0.833768\pi\)
−0.866708 + 0.498816i \(0.833768\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.3633i 0.798074i 0.916935 + 0.399037i \(0.130656\pi\)
−0.916935 + 0.399037i \(0.869344\pi\)
\(858\) 0 0
\(859\) 10.4150i 0.355354i 0.984089 + 0.177677i \(0.0568583\pi\)
−0.984089 + 0.177677i \(0.943142\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −15.7458 −0.535992 −0.267996 0.963420i \(-0.586361\pi\)
−0.267996 + 0.963420i \(0.586361\pi\)
\(864\) 0 0
\(865\) 3.37366 0.114708
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.79930i 0.128882i
\(870\) 0 0
\(871\) − 66.4340i − 2.25103i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −38.0043 −1.28478
\(876\) 0 0
\(877\) 25.4612 0.859765 0.429883 0.902885i \(-0.358555\pi\)
0.429883 + 0.902885i \(0.358555\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.8884i 0.703747i 0.936048 + 0.351873i \(0.114455\pi\)
−0.936048 + 0.351873i \(0.885545\pi\)
\(882\) 0 0
\(883\) − 15.3039i − 0.515018i −0.966276 0.257509i \(-0.917098\pi\)
0.966276 0.257509i \(-0.0829017\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.2289 0.914258 0.457129 0.889400i \(-0.348878\pi\)
0.457129 + 0.889400i \(0.348878\pi\)
\(888\) 0 0
\(889\) 34.2115 1.14742
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 38.8336i 1.29952i
\(894\) 0 0
\(895\) − 33.1312i − 1.10745i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.3373 0.544880
\(900\) 0 0
\(901\) 34.2933 1.14248
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 1.05694i − 0.0351337i
\(906\) 0 0
\(907\) 15.7607i 0.523326i 0.965159 + 0.261663i \(0.0842710\pi\)
−0.965159 + 0.261663i \(0.915729\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 27.3074 0.904734 0.452367 0.891832i \(-0.350580\pi\)
0.452367 + 0.891832i \(0.350580\pi\)
\(912\) 0 0
\(913\) −31.2353 −1.03374
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 49.2648i − 1.62687i
\(918\) 0 0
\(919\) − 39.7723i − 1.31197i −0.754775 0.655984i \(-0.772254\pi\)
0.754775 0.655984i \(-0.227746\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −13.1460 −0.432705
\(924\) 0 0
\(925\) 4.90829 0.161383
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 34.8487i − 1.14335i −0.820481 0.571674i \(-0.806294\pi\)
0.820481 0.571674i \(-0.193706\pi\)
\(930\) 0 0
\(931\) 16.3767i 0.536723i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.19864 0.235421
\(936\) 0 0
\(937\) 34.4177 1.12438 0.562188 0.827010i \(-0.309960\pi\)
0.562188 + 0.827010i \(0.309960\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.21959i 0.0397575i 0.999802 + 0.0198788i \(0.00632802\pi\)
−0.999802 + 0.0198788i \(0.993672\pi\)
\(942\) 0 0
\(943\) 44.1556i 1.43790i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11.5249 0.374508 0.187254 0.982312i \(-0.440041\pi\)
0.187254 + 0.982312i \(0.440041\pi\)
\(948\) 0 0
\(949\) −64.5657 −2.09589
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 50.5559i 1.63767i 0.574031 + 0.818834i \(0.305379\pi\)
−0.574031 + 0.818834i \(0.694621\pi\)
\(954\) 0 0
\(955\) − 20.1008i − 0.650447i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.1403 0.327446
\(960\) 0 0
\(961\) 12.0334 0.388175
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 32.2858i − 1.03932i
\(966\) 0 0
\(967\) 12.4644i 0.400827i 0.979711 + 0.200414i \(0.0642286\pi\)
−0.979711 + 0.200414i \(0.935771\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.9467 −0.608029 −0.304015 0.952667i \(-0.598327\pi\)
−0.304015 + 0.952667i \(0.598327\pi\)
\(972\) 0 0
\(973\) 28.7393 0.921339
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 5.18431i − 0.165861i −0.996555 0.0829304i \(-0.973572\pi\)
0.996555 0.0829304i \(-0.0264279\pi\)
\(978\) 0 0
\(979\) 22.7982i 0.728635i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25.5419 0.814660 0.407330 0.913281i \(-0.366460\pi\)
0.407330 + 0.913281i \(0.366460\pi\)
\(984\) 0 0
\(985\) 7.80321 0.248631
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 33.6462i 1.06989i
\(990\) 0 0
\(991\) − 39.9173i − 1.26801i −0.773327 0.634007i \(-0.781409\pi\)
0.773327 0.634007i \(-0.218591\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.4357 −0.774664
\(996\) 0 0
\(997\) −4.34276 −0.137537 −0.0687684 0.997633i \(-0.521907\pi\)
−0.0687684 + 0.997633i \(0.521907\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.2.c.b.2591.10 yes 16
3.2 odd 2 inner 2592.2.c.b.2591.8 yes 16
4.3 odd 2 inner 2592.2.c.b.2591.9 yes 16
8.3 odd 2 5184.2.c.l.5183.7 16
8.5 even 2 5184.2.c.l.5183.8 16
9.2 odd 6 2592.2.s.i.863.5 16
9.4 even 3 2592.2.s.j.1727.5 16
9.5 odd 6 2592.2.s.j.1727.4 16
9.7 even 3 2592.2.s.i.863.4 16
12.11 even 2 inner 2592.2.c.b.2591.7 16
24.5 odd 2 5184.2.c.l.5183.10 16
24.11 even 2 5184.2.c.l.5183.9 16
36.7 odd 6 2592.2.s.j.863.4 16
36.11 even 6 2592.2.s.j.863.5 16
36.23 even 6 2592.2.s.i.1727.4 16
36.31 odd 6 2592.2.s.i.1727.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2592.2.c.b.2591.7 16 12.11 even 2 inner
2592.2.c.b.2591.8 yes 16 3.2 odd 2 inner
2592.2.c.b.2591.9 yes 16 4.3 odd 2 inner
2592.2.c.b.2591.10 yes 16 1.1 even 1 trivial
2592.2.s.i.863.4 16 9.7 even 3
2592.2.s.i.863.5 16 9.2 odd 6
2592.2.s.i.1727.4 16 36.23 even 6
2592.2.s.i.1727.5 16 36.31 odd 6
2592.2.s.j.863.4 16 36.7 odd 6
2592.2.s.j.863.5 16 36.11 even 6
2592.2.s.j.1727.4 16 9.5 odd 6
2592.2.s.j.1727.5 16 9.4 even 3
5184.2.c.l.5183.7 16 8.3 odd 2
5184.2.c.l.5183.8 16 8.5 even 2
5184.2.c.l.5183.9 16 24.11 even 2
5184.2.c.l.5183.10 16 24.5 odd 2