Properties

Label 2565.1.fg.a
Level $2565$
Weight $1$
Character orbit 2565.fg
Analytic conductor $1.280$
Analytic rank $0$
Dimension $6$
Projective image $D_{9}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2565,1,Mod(404,2565)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 16])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2565.404"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2565 = 3^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2565.fg (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28010175740\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{9} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{18}^{4} - 1) q^{2} + (\zeta_{18}^{8} + \zeta_{18}^{4} + 1) q^{4} + \zeta_{18}^{5} q^{5} + ( - \zeta_{18}^{8} - \zeta_{18}^{4} + \cdots - 1) q^{8} + ( - \zeta_{18}^{5} + 1) q^{10} + (\zeta_{18}^{8} - \zeta_{18}^{7} + \cdots + 1) q^{16}+ \cdots + ( - \zeta_{18}^{6} + \zeta_{18}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} - 3 q^{8} + 6 q^{10} + 3 q^{16} + 3 q^{17} - 6 q^{20} - 3 q^{32} - 3 q^{34} + 3 q^{38} + 6 q^{40} + 3 q^{47} - 3 q^{49} - 6 q^{53} + 3 q^{62} + 6 q^{68} - 3 q^{76} - 3 q^{80} - 3 q^{85}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2565\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{18}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
404.1
−0.173648 0.984808i
−0.766044 0.642788i
−0.766044 + 0.642788i
−0.173648 + 0.984808i
0.939693 0.342020i
0.939693 + 0.342020i
−1.76604 + 0.642788i 0 1.93969 1.62760i −0.766044 0.642788i 0 0 −1.43969 + 2.49362i 0 1.76604 + 0.642788i
674.1 −0.0603074 0.342020i 0 0.826352 0.300767i 0.939693 + 0.342020i 0 0 −0.326352 0.565258i 0 0.0603074 0.342020i
1214.1 −0.0603074 + 0.342020i 0 0.826352 + 0.300767i 0.939693 0.342020i 0 0 −0.326352 + 0.565258i 0 0.0603074 + 0.342020i
1619.1 −1.76604 0.642788i 0 1.93969 + 1.62760i −0.766044 + 0.642788i 0 0 −1.43969 2.49362i 0 1.76604 0.642788i
1754.1 −1.17365 + 0.984808i 0 0.233956 1.32683i −0.173648 0.984808i 0 0 0.266044 + 0.460802i 0 1.17365 + 0.984808i
2429.1 −1.17365 0.984808i 0 0.233956 + 1.32683i −0.173648 + 0.984808i 0 0 0.266044 0.460802i 0 1.17365 0.984808i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 404.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
19.e even 9 1 inner
285.bd odd 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2565.1.fg.a 6
3.b odd 2 1 2565.1.fg.d yes 6
5.b even 2 1 2565.1.fg.d yes 6
15.d odd 2 1 CM 2565.1.fg.a 6
19.e even 9 1 inner 2565.1.fg.a 6
57.l odd 18 1 2565.1.fg.d yes 6
95.p even 18 1 2565.1.fg.d yes 6
285.bd odd 18 1 inner 2565.1.fg.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2565.1.fg.a 6 1.a even 1 1 trivial
2565.1.fg.a 6 15.d odd 2 1 CM
2565.1.fg.a 6 19.e even 9 1 inner
2565.1.fg.a 6 285.bd odd 18 1 inner
2565.1.fg.d yes 6 3.b odd 2 1
2565.1.fg.d yes 6 5.b even 2 1
2565.1.fg.d yes 6 57.l odd 18 1
2565.1.fg.d yes 6 95.p even 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 6T_{2}^{5} + 15T_{2}^{4} + 19T_{2}^{3} + 12T_{2}^{2} + 3T_{2} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2565, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 6 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$23$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{6} + 6 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} + 8T^{3} + 64 \) Copy content Toggle raw display
$67$ \( T^{6} \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} \) Copy content Toggle raw display
$79$ \( T^{6} + 8T^{3} + 64 \) Copy content Toggle raw display
$83$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less