Properties

Label 2565.1.dy.d.949.1
Level $2565$
Weight $1$
Character 2565.949
Analytic conductor $1.280$
Analytic rank $0$
Dimension $24$
Projective image $D_{36}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2565,1,Mod(94,2565)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([8, 9, 9])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2565.94"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2565 = 3^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2565.dy (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28010175740\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{72})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{12} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{36}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{36} - \cdots)\)

Embedding invariants

Embedding label 949.1
Root \(-0.573576 - 0.819152i\) of defining polynomial
Character \(\chi\) \(=\) 2565.949
Dual form 2565.1.dy.d.1519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.53950 - 0.560333i) q^{2} +(-0.819152 - 0.573576i) q^{3} +(1.29005 + 1.08248i) q^{4} +(-0.173648 + 0.984808i) q^{5} +(0.939693 + 1.34202i) q^{6} +(-0.560333 - 0.970525i) q^{8} +(0.342020 + 0.939693i) q^{9} +(0.819152 - 1.41881i) q^{10} +(-0.342020 - 1.93969i) q^{11} +(-0.435862 - 1.62666i) q^{12} +(0.794263 - 0.289088i) q^{13} +(0.707107 - 0.707107i) q^{15} +(0.0263861 + 0.149643i) q^{16} -1.63830i q^{18} +(0.500000 + 0.866025i) q^{19} +(-1.29005 + 1.08248i) q^{20} +(-0.560333 + 3.17781i) q^{22} +(-0.0976725 + 1.11640i) q^{24} +(-0.939693 - 0.342020i) q^{25} -1.38475 q^{26} +(0.258819 - 0.965926i) q^{27} +(-1.48481 + 0.692377i) q^{30} +(-0.151373 + 0.858480i) q^{32} +(-0.832395 + 1.78508i) q^{33} +(-0.575976 + 1.58248i) q^{36} +(-0.573576 + 0.993464i) q^{37} +(-0.284489 - 1.61341i) q^{38} +(-0.816436 - 0.218763i) q^{39} +(1.05308 - 0.383290i) q^{40} +(1.65846 - 2.87253i) q^{44} +(-0.984808 + 0.173648i) q^{45} +(0.0642174 - 0.137715i) q^{48} +(0.173648 - 0.984808i) q^{49} +(1.25501 + 1.05308i) q^{50} +(1.33757 + 0.486836i) q^{52} -0.174311 q^{53} +(-0.939693 + 1.34202i) q^{54} +1.96962 q^{55} +(0.0871557 - 0.996195i) q^{57} +(1.67763 - 0.146774i) q^{60} +(0.790050 - 1.36841i) q^{64} +(0.146774 + 0.832395i) q^{65} +(2.28171 - 2.28171i) q^{66} +(1.81535 - 0.660732i) q^{67} +(0.720350 - 0.858480i) q^{72} +(1.43969 - 1.20805i) q^{74} +(0.573576 + 0.819152i) q^{75} +(-0.292431 + 1.65846i) q^{76} +(1.13432 + 0.794263i) q^{78} -0.151951 q^{80} +(-0.766044 + 0.642788i) q^{81} +(-1.69088 + 1.41881i) q^{88} +(1.61341 + 0.284489i) q^{90} +(-0.939693 + 0.342020i) q^{95} +(0.616402 - 0.616402i) q^{96} +(-0.0898869 - 0.509774i) q^{97} +(-0.819152 + 1.41881i) q^{98} +(1.70574 - 0.984808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{16} + 12 q^{19} + 12 q^{24} - 12 q^{30} - 24 q^{36} + 12 q^{44} - 12 q^{64} + 24 q^{66} + 12 q^{74} - 24 q^{80} - 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2565\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53950 0.560333i −1.53950 0.560333i −0.573576 0.819152i \(-0.694444\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) −0.819152 0.573576i −0.819152 0.573576i
\(4\) 1.29005 + 1.08248i 1.29005 + 1.08248i
\(5\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(6\) 0.939693 + 1.34202i 0.939693 + 1.34202i
\(7\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(8\) −0.560333 0.970525i −0.560333 0.970525i
\(9\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(10\) 0.819152 1.41881i 0.819152 1.41881i
\(11\) −0.342020 1.93969i −0.342020 1.93969i −0.342020 0.939693i \(-0.611111\pi\)
1.00000i \(-0.5\pi\)
\(12\) −0.435862 1.62666i −0.435862 1.62666i
\(13\) 0.794263 0.289088i 0.794263 0.289088i 0.0871557 0.996195i \(-0.472222\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0.707107 0.707107i 0.707107 0.707107i
\(16\) 0.0263861 + 0.149643i 0.0263861 + 0.149643i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 1.63830i 1.63830i
\(19\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(20\) −1.29005 + 1.08248i −1.29005 + 1.08248i
\(21\) 0 0
\(22\) −0.560333 + 3.17781i −0.560333 + 3.17781i
\(23\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(24\) −0.0976725 + 1.11640i −0.0976725 + 1.11640i
\(25\) −0.939693 0.342020i −0.939693 0.342020i
\(26\) −1.38475 −1.38475
\(27\) 0.258819 0.965926i 0.258819 0.965926i
\(28\) 0 0
\(29\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(30\) −1.48481 + 0.692377i −1.48481 + 0.692377i
\(31\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(32\) −0.151373 + 0.858480i −0.151373 + 0.858480i
\(33\) −0.832395 + 1.78508i −0.832395 + 1.78508i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.575976 + 1.58248i −0.575976 + 1.58248i
\(37\) −0.573576 + 0.993464i −0.573576 + 0.993464i 0.422618 + 0.906308i \(0.361111\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(38\) −0.284489 1.61341i −0.284489 1.61341i
\(39\) −0.816436 0.218763i −0.816436 0.218763i
\(40\) 1.05308 0.383290i 1.05308 0.383290i
\(41\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(42\) 0 0
\(43\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(44\) 1.65846 2.87253i 1.65846 2.87253i
\(45\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(46\) 0 0
\(47\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(48\) 0.0642174 0.137715i 0.0642174 0.137715i
\(49\) 0.173648 0.984808i 0.173648 0.984808i
\(50\) 1.25501 + 1.05308i 1.25501 + 1.05308i
\(51\) 0 0
\(52\) 1.33757 + 0.486836i 1.33757 + 0.486836i
\(53\) −0.174311 −0.174311 −0.0871557 0.996195i \(-0.527778\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(54\) −0.939693 + 1.34202i −0.939693 + 1.34202i
\(55\) 1.96962 1.96962
\(56\) 0 0
\(57\) 0.0871557 0.996195i 0.0871557 0.996195i
\(58\) 0 0
\(59\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(60\) 1.67763 0.146774i 1.67763 0.146774i
\(61\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.790050 1.36841i 0.790050 1.36841i
\(65\) 0.146774 + 0.832395i 0.146774 + 0.832395i
\(66\) 2.28171 2.28171i 2.28171 2.28171i
\(67\) 1.81535 0.660732i 1.81535 0.660732i 0.819152 0.573576i \(-0.194444\pi\)
0.996195 0.0871557i \(-0.0277778\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) 0.720350 0.858480i 0.720350 0.858480i
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) 1.43969 1.20805i 1.43969 1.20805i
\(75\) 0.573576 + 0.819152i 0.573576 + 0.819152i
\(76\) −0.292431 + 1.65846i −0.292431 + 1.65846i
\(77\) 0 0
\(78\) 1.13432 + 0.794263i 1.13432 + 0.794263i
\(79\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(80\) −0.151951 −0.151951
\(81\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(82\) 0 0
\(83\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −1.69088 + 1.41881i −1.69088 + 1.41881i
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 1.61341 + 0.284489i 1.61341 + 0.284489i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(96\) 0.616402 0.616402i 0.616402 0.616402i
\(97\) −0.0898869 0.509774i −0.0898869 0.509774i −0.996195 0.0871557i \(-0.972222\pi\)
0.906308 0.422618i \(-0.138889\pi\)
\(98\) −0.819152 + 1.41881i −0.819152 + 1.41881i
\(99\) 1.70574 0.984808i 1.70574 0.984808i
\(100\) −0.842020 1.45842i −0.842020 1.45842i
\(101\) 1.32683 1.11334i 1.32683 1.11334i 0.342020 0.939693i \(-0.388889\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(102\) 0 0
\(103\) 0.284489 1.61341i 0.284489 1.61341i −0.422618 0.906308i \(-0.638889\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(104\) −0.725619 0.608866i −0.725619 0.608866i
\(105\) 0 0
\(106\) 0.268353 + 0.0976725i 0.268353 + 0.0976725i
\(107\) 1.99239 1.99239 0.996195 0.0871557i \(-0.0277778\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(108\) 1.37949 0.965926i 1.37949 0.965926i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −3.03223 1.10364i −3.03223 1.10364i
\(111\) 1.03967 0.484808i 1.03967 0.484808i
\(112\) 0 0
\(113\) −0.335463 + 1.90250i −0.335463 + 1.90250i 0.0871557 + 0.996195i \(0.472222\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(114\) −0.692377 + 1.48481i −0.692377 + 1.48481i
\(115\) 0 0
\(116\) 0 0
\(117\) 0.543308 + 0.647489i 0.543308 + 0.647489i
\(118\) 0 0
\(119\) 0 0
\(120\) −1.08248 0.290050i −1.08248 0.290050i
\(121\) −2.70574 + 0.984808i −2.70574 + 0.984808i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.500000 0.866025i 0.500000 0.866025i
\(126\) 0 0
\(127\) −0.965926 1.67303i −0.965926 1.67303i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(128\) −1.31527 + 1.10364i −1.31527 + 1.10364i
\(129\) 0 0
\(130\) 0.240460 1.36372i 0.240460 1.36372i
\(131\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(132\) −3.00614 + 1.40179i −3.00614 + 1.40179i
\(133\) 0 0
\(134\) −3.16496 −3.16496
\(135\) 0.906308 + 0.422618i 0.906308 + 0.422618i
\(136\) 0 0
\(137\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(138\) 0 0
\(139\) 1.32683 + 1.11334i 1.32683 + 1.11334i 0.984808 + 0.173648i \(0.0555556\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.832395 1.44175i −0.832395 1.44175i
\(144\) −0.131594 + 0.0759757i −0.131594 + 0.0759757i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(148\) −1.81535 + 0.660732i −1.81535 + 0.660732i
\(149\) 1.20805 0.439693i 1.20805 0.439693i 0.342020 0.939693i \(-0.388889\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) −0.424024 1.58248i −0.424024 1.58248i
\(151\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(152\) 0.560333 0.970525i 0.560333 0.970525i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.816436 1.16599i −0.816436 1.16599i
\(157\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(158\) 0 0
\(159\) 0.142788 + 0.0999810i 0.142788 + 0.0999810i
\(160\) −0.819152 0.298147i −0.819152 0.298147i
\(161\) 0 0
\(162\) 1.53950 0.560333i 1.53950 0.560333i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −1.61341 1.12973i −1.61341 1.12973i
\(166\) 0 0
\(167\) 0.314757 1.78508i 0.314757 1.78508i −0.258819 0.965926i \(-0.583333\pi\)
0.573576 0.819152i \(-0.305556\pi\)
\(168\) 0 0
\(169\) −0.218763 + 0.183564i −0.218763 + 0.183564i
\(170\) 0 0
\(171\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(172\) 0 0
\(173\) −0.146774 0.832395i −0.146774 0.832395i −0.965926 0.258819i \(-0.916667\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.281237 0.102362i 0.281237 0.102362i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) −1.45842 0.842020i −1.45842 0.842020i
\(181\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.878770 0.737376i −0.878770 0.737376i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 1.63830 1.63830
\(191\) 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i \(-0.111111\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) −1.43206 + 0.667779i −1.43206 + 0.667779i
\(193\) −0.133530 0.112045i −0.133530 0.112045i 0.573576 0.819152i \(-0.305556\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) −0.147262 + 0.835165i −0.147262 + 0.835165i
\(195\) 0.357212 0.766044i 0.357212 0.766044i
\(196\) 1.29005 1.08248i 1.29005 1.08248i
\(197\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(198\) −3.17781 + 0.560333i −3.17781 + 0.560333i
\(199\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(200\) 0.194602 + 1.10364i 0.194602 + 1.10364i
\(201\) −1.86603 0.500000i −1.86603 0.500000i
\(202\) −2.66650 + 0.970525i −2.66650 + 0.970525i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −1.34202 + 2.32445i −1.34202 + 2.32445i
\(207\) 0 0
\(208\) 0.0642174 + 0.111228i 0.0642174 + 0.111228i
\(209\) 1.50881 1.26604i 1.50881 1.26604i
\(210\) 0 0
\(211\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(212\) −0.224870 0.188689i −0.224870 0.188689i
\(213\) 0 0
\(214\) −3.06729 1.11640i −3.06729 1.11640i
\(215\) 0 0
\(216\) −1.08248 + 0.290050i −1.08248 + 0.290050i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 2.54090 + 2.13207i 2.54090 + 2.13207i
\(221\) 0 0
\(222\) −1.87223 + 0.163799i −1.87223 + 0.163799i
\(223\) 1.38854 1.16513i 1.38854 1.16513i 0.422618 0.906308i \(-0.361111\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 1.58248 2.74094i 1.58248 2.74094i
\(227\) 0.245576 + 1.39273i 0.245576 + 1.39273i 0.819152 + 0.573576i \(0.194444\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(228\) 1.19080 1.19080i 1.19080 1.19080i
\(229\) 0.642788 0.233956i 0.642788 0.233956i 1.00000i \(-0.5\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) −0.473614 1.30124i −0.473614 1.30124i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(240\) 0.124471 + 0.0871557i 0.124471 + 0.0871557i
\(241\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(242\) 4.71731 4.71731
\(243\) 0.996195 0.0871557i 0.996195 0.0871557i
\(244\) 0 0
\(245\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(246\) 0 0
\(247\) 0.647489 + 0.543308i 0.647489 + 0.543308i
\(248\) 0 0
\(249\) 0 0
\(250\) −1.25501 + 1.05308i −1.25501 + 1.05308i
\(251\) −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.549590 + 3.11688i 0.549590 + 3.11688i
\(255\) 0 0
\(256\) 1.15846 0.421643i 1.15846 0.421643i
\(257\) 1.32893 0.483690i 1.32893 0.483690i 0.422618 0.906308i \(-0.361111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.711706 + 1.23271i −0.711706 + 1.23271i
\(261\) 0 0
\(262\) 1.53950 + 2.66650i 1.53950 + 2.66650i
\(263\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(264\) 2.19888 0.192377i 2.19888 0.192377i
\(265\) 0.0302689 0.171663i 0.0302689 0.171663i
\(266\) 0 0
\(267\) 0 0
\(268\) 3.05712 + 1.11270i 3.05712 + 1.11270i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −1.15846 1.15846i −1.15846 1.15846i
\(271\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.342020 + 1.93969i −0.342020 + 1.93969i
\(276\) 0 0
\(277\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(278\) −1.41881 2.45746i −1.41881 2.45746i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(282\) 0 0
\(283\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(284\) 0 0
\(285\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(286\) 0.473614 + 2.68600i 0.473614 + 2.68600i
\(287\) 0 0
\(288\) −0.858480 + 0.151373i −0.858480 + 0.151373i
\(289\) −0.500000 0.866025i −0.500000 0.866025i
\(290\) 0 0
\(291\) −0.218763 + 0.469139i −0.218763 + 0.469139i
\(292\) 0 0
\(293\) 1.47988 + 1.24177i 1.47988 + 1.24177i 0.906308 + 0.422618i \(0.138889\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(294\) 1.48481 0.692377i 1.48481 0.692377i
\(295\) 0 0
\(296\) 1.28558 1.28558
\(297\) −1.96212 0.171663i −1.96212 0.171663i
\(298\) −2.10616 −2.10616
\(299\) 0 0
\(300\) −0.146774 + 1.67763i −0.146774 + 1.67763i
\(301\) 0 0
\(302\) 0 0
\(303\) −1.72546 + 0.150958i −1.72546 + 0.150958i
\(304\) −0.116402 + 0.0976725i −0.116402 + 0.0976725i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.0871557 + 0.150958i −0.0871557 + 0.150958i −0.906308 0.422618i \(-0.861111\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(308\) 0 0
\(309\) −1.15846 + 1.15846i −1.15846 + 1.15846i
\(310\) 0 0
\(311\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(312\) 0.245161 + 0.914952i 0.245161 + 0.914952i
\(313\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.08335 0.909039i 1.08335 0.909039i 0.0871557 0.996195i \(-0.472222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(318\) −0.163799 0.233930i −0.163799 0.233930i
\(319\) 0 0
\(320\) 1.21043 + 1.01567i 1.21043 + 1.01567i
\(321\) −1.63207 1.14279i −1.63207 1.14279i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.68404 −1.68404
\(325\) −0.845237 −0.845237
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 1.85083 + 2.64326i 1.85083 + 2.64326i
\(331\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(332\) 0 0
\(333\) −1.12973 0.199201i −1.12973 0.199201i
\(334\) −1.48481 + 2.57176i −1.48481 + 2.57176i
\(335\) 0.335463 + 1.90250i 0.335463 + 1.90250i
\(336\) 0 0
\(337\) −1.32893 + 0.483690i −1.32893 + 0.483690i −0.906308 0.422618i \(-0.861111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(338\) 0.439644 0.160017i 0.439644 0.160017i
\(339\) 1.36603 1.36603i 1.36603 1.36603i
\(340\) 0 0
\(341\) 0 0
\(342\) 1.41881 0.819152i 1.41881 0.819152i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.240460 + 1.36372i −0.240460 + 1.36372i
\(347\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(348\) 0 0
\(349\) 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i \(-0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(350\) 0 0
\(351\) −0.0736672 0.842020i −0.0736672 0.842020i
\(352\) 1.71696 1.71696
\(353\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.984808 1.70574i −0.984808 1.70574i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 0.939693i \(-0.611111\pi\)
\(360\) 0.720350 + 0.858480i 0.720350 + 0.858480i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) 2.78127 + 0.745240i 2.78127 + 0.745240i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.314757 1.78508i 0.314757 1.78508i −0.258819 0.965926i \(-0.583333\pi\)
0.573576 0.819152i \(-0.305556\pi\)
\(374\) 0 0
\(375\) −0.906308 + 0.422618i −0.906308 + 0.422618i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −1.58248 0.575976i −1.58248 0.575976i
\(381\) −0.168372 + 1.92450i −0.168372 + 1.92450i
\(382\) −1.92279 1.61341i −1.92279 1.61341i
\(383\) −0.199201 + 1.12973i −0.199201 + 1.12973i 0.707107 + 0.707107i \(0.250000\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(384\) 1.71043 0.149643i 1.71043 0.149643i
\(385\) 0 0
\(386\) 0.142788 + 0.247315i 0.142788 + 0.247315i
\(387\) 0 0
\(388\) 0.435862 0.754935i 0.435862 0.754935i
\(389\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) −0.979169 + 0.979169i −0.979169 + 0.979169i
\(391\) 0 0
\(392\) −1.05308 + 0.383290i −1.05308 + 0.383290i
\(393\) 0.486421 + 1.81535i 0.486421 + 1.81535i
\(394\) 0 0
\(395\) 0 0
\(396\) 3.26652 + 0.575976i 3.26652 + 0.575976i
\(397\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(398\) −0.435862 + 0.365731i −0.435862 + 0.365731i
\(399\) 0 0
\(400\) 0.0263861 0.149643i 0.0263861 0.149643i
\(401\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(402\) 2.59258 + 1.81535i 2.59258 + 1.81535i
\(403\) 0 0
\(404\) 2.91684 2.91684
\(405\) −0.500000 0.866025i −0.500000 0.866025i
\(406\) 0 0
\(407\) 2.12319 + 0.772777i 2.12319 + 0.772777i
\(408\) 0 0
\(409\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.11349 1.77343i 2.11349 1.77343i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.127946 + 0.725619i 0.127946 + 0.725619i
\(417\) −0.448288 1.67303i −0.448288 1.67303i
\(418\) −3.03223 + 1.10364i −3.03223 + 1.10364i
\(419\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(420\) 0 0
\(421\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.0976725 + 0.169174i 0.0976725 + 0.169174i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.57028 + 2.15672i 2.57028 + 2.15672i
\(429\) −0.145096 + 1.65846i −0.145096 + 1.65846i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0.151373 + 0.0132434i 0.151373 + 0.0132434i
\(433\) 0.517638 0.517638 0.258819 0.965926i \(-0.416667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(440\) −1.10364 1.91156i −1.10364 1.91156i
\(441\) 0.984808 0.173648i 0.984808 0.173648i
\(442\) 0 0
\(443\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(444\) 1.86603 + 0.500000i 1.86603 + 0.500000i
\(445\) 0 0
\(446\) −2.79053 + 1.01567i −2.79053 + 1.01567i
\(447\) −1.24177 0.332731i −1.24177 0.332731i
\(448\) 0 0
\(449\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) −0.560333 + 1.53950i −0.560333 + 1.53950i
\(451\) 0 0
\(452\) −2.49218 + 2.09119i −2.49218 + 2.09119i
\(453\) 0 0
\(454\) 0.402328 2.28171i 0.402328 2.28171i
\(455\) 0 0
\(456\) −1.01567 + 0.473614i −1.01567 + 0.473614i
\(457\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(458\) −1.12067 −1.12067
\(459\) 0 0
\(460\) 0 0
\(461\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(462\) 0 0
\(463\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 1.42341i 1.42341i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.173648 0.984808i −0.173648 0.984808i
\(476\) 0 0
\(477\) −0.0596180 0.163799i −0.0596180 0.163799i
\(478\) −1.25501 2.17375i −1.25501 2.17375i
\(479\) −0.984808 + 0.826352i −0.984808 + 0.826352i −0.984808 0.173648i \(-0.944444\pi\)
1.00000i \(0.5\pi\)
\(480\) 0.500000 + 0.714074i 0.500000 + 0.714074i
\(481\) −0.168372 + 0.954885i −0.168372 + 0.954885i
\(482\) 0 0
\(483\) 0 0
\(484\) −4.55657 1.65846i −4.55657 1.65846i
\(485\) 0.517638 0.517638
\(486\) −1.58248 0.424024i −1.58248 0.424024i
\(487\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.25501 1.05308i −1.25501 1.05308i
\(491\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i \(0.111111\pi\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.692377 1.19923i −0.692377 1.19923i
\(495\) 0.673648 + 1.85083i 0.673648 + 1.85083i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.20805 + 0.439693i −1.20805 + 0.439693i −0.866025 0.500000i \(-0.833333\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(500\) 1.58248 0.575976i 1.58248 0.575976i
\(501\) −1.28171 + 1.28171i −1.28171 + 1.28171i
\(502\) 0.534664 + 3.03223i 0.534664 + 3.03223i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0 0
\(505\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(506\) 0 0
\(507\) 0.284489 0.0248895i 0.284489 0.0248895i
\(508\) 0.564932 3.20389i 0.564932 3.20389i
\(509\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.302746 −0.302746
\(513\) 0.965926 0.258819i 0.965926 0.258819i
\(514\) −2.31691 −2.31691
\(515\) 1.53950 + 0.560333i 1.53950 + 0.560333i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.357212 + 0.766044i −0.357212 + 0.766044i
\(520\) 0.725619 0.608866i 0.725619 0.608866i
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0.0871557 0.150958i 0.0871557 0.150958i −0.819152 0.573576i \(-0.805556\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(524\) −0.549590 3.11688i −0.549590 3.11688i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.289088 0.0774609i −0.289088 0.0774609i
\(529\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(530\) −0.142788 + 0.247315i −0.142788 + 0.247315i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.345975 + 1.96212i −0.345975 + 1.96212i
\(536\) −1.65846 1.39161i −1.65846 1.39161i
\(537\) 0 0
\(538\) 0 0
\(539\) −1.96962 −1.96962
\(540\) 0.711706 + 1.52626i 0.711706 + 1.52626i
\(541\) 1.28558 1.28558 0.642788 0.766044i \(-0.277778\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(542\) 2.66650 + 0.970525i 2.66650 + 0.970525i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.52626 + 1.28068i −1.52626 + 1.28068i −0.707107 + 0.707107i \(0.750000\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.61341 2.79452i 1.61341 2.79452i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.296905 + 1.10806i 0.296905 + 1.10806i
\(556\) 0.506505 + 2.87253i 0.506505 + 2.87253i
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.52626 1.28068i −1.52626 1.28068i −0.819152 0.573576i \(-0.805556\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(564\) 0 0
\(565\) −1.81535 0.660732i −1.81535 0.660732i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(570\) −1.34202 0.939693i −1.34202 0.939693i
\(571\) −0.524005 0.439693i −0.524005 0.439693i 0.342020 0.939693i \(-0.388889\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(572\) 0.486836 2.76098i 0.486836 2.76098i
\(573\) −0.878770 1.25501i −0.878770 1.25501i
\(574\) 0 0
\(575\) 0 0
\(576\) 1.55609 + 0.274381i 1.55609 + 0.274381i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0.284489 + 1.61341i 0.284489 + 1.61341i
\(579\) 0.0451151 + 0.168372i 0.0451151 + 0.168372i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.599661 0.599661i 0.599661 0.599661i
\(583\) 0.0596180 + 0.338111i 0.0596180 + 0.338111i
\(584\) 0 0
\(585\) −0.731996 + 0.422618i −0.731996 + 0.422618i
\(586\) −1.58248 2.74094i −1.58248 2.74094i
\(587\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(588\) −1.67763 + 0.146774i −1.67763 + 0.146774i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.163799 0.0596180i −0.163799 0.0596180i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 2.92450 + 1.36372i 2.92450 + 1.36372i
\(595\) 0 0
\(596\) 2.03440 + 0.740460i 2.03440 + 0.740460i
\(597\) −0.314757 + 0.146774i −0.314757 + 0.146774i
\(598\) 0 0
\(599\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(600\) 0.473614 1.01567i 0.473614 1.01567i
\(601\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(602\) 0 0
\(603\) 1.24177 + 1.47988i 1.24177 + 1.47988i
\(604\) 0 0
\(605\) −0.500000 2.83564i −0.500000 2.83564i
\(606\) 2.74094 + 0.734432i 2.74094 + 0.734432i
\(607\) −1.87223 + 0.681437i −1.87223 + 0.681437i −0.906308 + 0.422618i \(0.861111\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(608\) −0.819152 + 0.298147i −0.819152 + 0.298147i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) 0.218763 0.183564i 0.218763 0.183564i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(618\) 2.43257 1.13432i 2.43257 1.13432i
\(619\) 1.85083 + 0.673648i 1.85083 + 0.673648i 0.984808 + 0.173648i \(0.0555556\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.0111938 0.127946i 0.0111938 0.127946i
\(625\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(626\) 0 0
\(627\) −1.96212 + 0.171663i −1.96212 + 0.171663i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.984808 1.70574i 0.984808 1.70574i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −2.17718 + 0.792431i −2.17718 + 0.792431i
\(635\) 1.81535 0.660732i 1.81535 0.660732i
\(636\) 0.0759757 + 0.283545i 0.0759757 + 0.283545i
\(637\) −0.146774 0.832395i −0.146774 0.832395i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.858480 1.48693i −0.858480 1.48693i
\(641\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(642\) 1.87223 + 2.67383i 1.87223 + 2.67383i
\(643\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 1.05308 + 0.383290i 1.05308 + 0.383290i
\(649\) 0 0
\(650\) 1.30124 + 0.473614i 1.30124 + 0.473614i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(654\) 0 0
\(655\) 1.43969 1.20805i 1.43969 1.20805i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(660\) −0.858480 3.20389i −0.858480 3.20389i
\(661\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.62760 + 0.939693i 1.62760 + 0.939693i
\(667\) 0 0
\(668\) 2.33836 1.96212i 2.33836 1.96212i
\(669\) −1.80572 + 0.157980i −1.80572 + 0.157980i
\(670\) 0.549590 3.11688i 0.549590 3.11688i
\(671\) 0 0
\(672\) 0 0
\(673\) −1.53950 0.560333i −1.53950 0.560333i −0.573576 0.819152i \(-0.694444\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(674\) 2.31691 2.31691
\(675\) −0.573576 + 0.819152i −0.573576 + 0.819152i
\(676\) −0.480920 −0.480920
\(677\) −1.07797 0.392349i −1.07797 0.392349i −0.258819 0.965926i \(-0.583333\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(678\) −2.86843 + 1.33757i −2.86843 + 1.33757i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.597672 1.28171i 0.597672 1.28171i
\(682\) 0 0
\(683\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(684\) −1.65846 + 0.292431i −1.65846 + 0.292431i
\(685\) 0 0
\(686\) 0 0
\(687\) −0.660732 0.177043i −0.660732 0.177043i
\(688\) 0 0
\(689\) −0.138449 + 0.0503913i −0.138449 + 0.0503913i
\(690\) 0 0
\(691\) −0.223238 1.26604i −0.223238 1.26604i −0.866025 0.500000i \(-0.833333\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(692\) 0.711706 1.23271i 0.711706 1.23271i
\(693\) 0 0
\(694\) 0 0
\(695\) −1.32683 + 1.11334i −1.32683 + 1.11334i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.435862 0.365731i −0.435862 0.365731i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.684040 0.684040 0.342020 0.939693i \(-0.388889\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(702\) −0.358401 + 1.33757i −0.358401 + 1.33757i
\(703\) −1.14715 −1.14715
\(704\) −2.92450 1.06443i −2.92450 1.06443i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 1.56439 0.569392i 1.56439 0.569392i
\(716\) 0 0
\(717\) −0.396534 1.47988i −0.396534 1.47988i
\(718\) 0.560333 + 3.17781i 0.560333 + 3.17781i
\(719\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −0.0519704 0.142788i −0.0519704 0.142788i
\(721\) 0 0
\(722\) 1.25501 1.05308i 1.25501 1.05308i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −3.86419 2.70574i −3.86419 2.70574i
\(727\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(728\) 0 0
\(729\) −0.866025 0.500000i −0.866025 0.500000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(734\) 0 0
\(735\) −0.573576 0.819152i −0.573576 0.819152i
\(736\) 0 0
\(737\) −1.90250 3.29523i −1.90250 3.29523i
\(738\) 0 0
\(739\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(740\) −0.335463 1.90250i −0.335463 1.90250i
\(741\) −0.218763 0.816436i −0.218763 0.816436i
\(742\) 0 0
\(743\) 1.53950 0.560333i 1.53950 0.560333i 0.573576 0.819152i \(-0.305556\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(744\) 0 0
\(745\) 0.223238 + 1.26604i 0.223238 + 1.26604i
\(746\) −1.48481 + 2.57176i −1.48481 + 2.57176i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 1.63207 0.142788i 1.63207 0.142788i
\(751\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(752\) 0 0
\(753\) −0.163799 + 1.87223i −0.163799 + 1.87223i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.858480 + 0.720350i 0.858480 + 0.720350i
\(761\) 0.223238 1.26604i 0.223238 1.26604i −0.642788 0.766044i \(-0.722222\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(762\) 1.33757 2.86843i 1.33757 2.86843i
\(763\) 0 0
\(764\) 1.29005 + 2.23443i 1.29005 + 2.23443i
\(765\) 0 0
\(766\) 0.939693 1.62760i 0.939693 1.62760i
\(767\) 0 0
\(768\) −1.19080 0.319073i −1.19080 0.319073i
\(769\) −1.62760 + 0.592396i −1.62760 + 0.592396i −0.984808 0.173648i \(-0.944444\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(770\) 0 0
\(771\) −1.36603 0.366025i −1.36603 0.366025i
\(772\) −0.0509740 0.289088i −0.0509740 0.289088i
\(773\) −0.996195 + 1.72546i −0.996195 + 1.72546i −0.422618 + 0.906308i \(0.638889\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.444382 + 0.372881i −0.444382 + 0.372881i
\(777\) 0 0
\(778\) 0.435862 2.47189i 0.435862 2.47189i
\(779\) 0 0
\(780\) 1.29005 0.601560i 1.29005 0.601560i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.151951 0.151951
\(785\) 0 0
\(786\) 0.268353 3.06729i 0.268353 3.06729i
\(787\) −1.08335 0.909039i −1.08335 0.909039i −0.0871557 0.996195i \(-0.527778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −1.91156 1.10364i −1.91156 1.10364i
\(793\) 0 0
\(794\) 0 0
\(795\) −0.123257 + 0.123257i −0.123257 + 0.123257i
\(796\) 0.549590 0.200034i 0.549590 0.200034i
\(797\) 1.87223 0.681437i 1.87223 0.681437i 0.906308 0.422618i \(-0.138889\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.435862 0.754935i 0.435862 0.754935i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.86603 2.66496i −1.86603 2.66496i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −1.82399 0.663878i −1.82399 0.663878i
\(809\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(810\) 0.284489 + 1.61341i 0.284489 + 1.61341i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 1.41881 + 0.993464i 1.41881 + 0.993464i
\(814\) −2.83564 2.37939i −2.83564 2.37939i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(822\) 0 0
\(823\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(824\) −1.72527 + 0.627946i −1.72527 + 0.627946i
\(825\) 1.39273 1.39273i 1.39273 1.39273i
\(826\) 0 0
\(827\) −0.965926 + 1.67303i −0.965926 + 1.67303i −0.258819 + 0.965926i \(0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.231917 1.31527i 0.231917 1.31527i
\(833\) 0 0
\(834\) −0.247315 + 2.82683i −0.247315 + 2.82683i
\(835\) 1.70330 + 0.619951i 1.70330 + 0.619951i
\(836\) 3.31691 3.31691
\(837\) 0 0
\(838\) −1.63830 −1.63830
\(839\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(840\) 0 0
\(841\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.142788 0.247315i −0.142788 0.247315i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.00459940 0.0260845i −0.00459940 0.0260845i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(854\) 0 0
\(855\) −0.642788 0.766044i −0.642788 0.766044i
\(856\) −1.11640 1.93366i −1.11640 1.93366i
\(857\) −1.25501 + 1.05308i −1.25501 + 1.05308i −0.258819 + 0.965926i \(0.583333\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(858\) 1.15266 2.47189i 1.15266 2.47189i
\(859\) −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i \(0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.99239 −1.99239 −0.996195 0.0871557i \(-0.972222\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(864\) 0.790050 + 0.368406i 0.790050 + 0.368406i
\(865\) 0.845237 0.845237
\(866\) −0.796905 0.290050i −0.796905 0.290050i
\(867\) −0.0871557 + 0.996195i −0.0871557 + 0.996195i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 1.25085 1.04959i 1.25085 1.04959i
\(872\) 0 0
\(873\) 0.448288 0.258819i 0.448288 0.258819i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.32893 0.483690i 1.32893 0.483690i 0.422618 0.906308i \(-0.361111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(878\) 0 0
\(879\) −0.500000 1.86603i −0.500000 1.86603i
\(880\) 0.0519704 + 0.294739i 0.0519704 + 0.294739i
\(881\) 0.342020 0.592396i 0.342020 0.592396i −0.642788 0.766044i \(-0.722222\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(882\) −1.61341 0.284489i −1.61341 0.284489i
\(883\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.47988 1.24177i −1.47988 1.24177i −0.906308 0.422618i \(-0.861111\pi\)
−0.573576 0.819152i \(-0.694444\pi\)
\(888\) −1.05308 0.737376i −1.05308 0.737376i
\(889\) 0 0
\(890\) 0 0
\(891\) 1.50881 + 1.26604i 1.50881 + 1.26604i
\(892\) 3.05252 3.05252
\(893\) 0 0
\(894\) 1.72527 + 1.20805i 1.72527 + 1.20805i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.08248 1.29005i 1.08248 1.29005i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 2.03440 0.740460i 2.03440 0.740460i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.345975 + 1.96212i 0.345975 + 1.96212i 0.258819 + 0.965926i \(0.416667\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(908\) −1.19080 + 2.06252i −1.19080 + 2.06252i
\(909\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(910\) 0 0
\(911\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(912\) 0.151373 0.0132434i 0.151373 0.0132434i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.08248 + 0.393991i 1.08248 + 0.393991i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(920\) 0 0
\(921\) 0.157980 0.0736672i 0.157980 0.0736672i
\(922\) −1.25501 1.05308i −1.25501 1.05308i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.878770 0.737376i 0.878770 0.737376i
\(926\) 0 0
\(927\) 1.61341 0.284489i 1.61341 0.284489i
\(928\) 0 0
\(929\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0.939693 0.342020i 0.939693 0.342020i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.323971 0.890103i 0.323971 0.890103i
\(937\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.284489 + 1.61341i −0.284489 + 1.61341i
\(951\) −1.40883 + 0.123257i −1.40883 + 0.123257i
\(952\) 0 0
\(953\) −0.965926 1.67303i −0.965926 1.67303i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(954\) 0.285575i 0.285575i
\(955\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(956\) 0.448030 + 2.54090i 0.448030 + 2.54090i
\(957\) 0 0
\(958\) 1.97915 0.720350i 1.97915 0.720350i
\(959\) 0 0
\(960\) −0.408960 1.52626i −0.408960 1.52626i
\(961\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(962\) 0.794263 1.37570i 0.794263 1.37570i
\(963\) 0.681437 + 1.87223i 0.681437 + 1.87223i
\(964\) 0 0
\(965\) 0.133530 0.112045i 0.133530 0.112045i
\(966\) 0 0
\(967\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(968\) 2.47189 + 2.07417i 2.47189 + 2.07417i
\(969\) 0 0
\(970\) −0.796905 0.290050i −0.796905 0.290050i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 1.37949 + 0.965926i 1.37949 + 0.965926i
\(973\) 0 0
\(974\) −2.17718 0.792431i −2.17718 0.792431i
\(975\) 0.692377 + 0.484808i 0.692377 + 0.484808i
\(976\) 0 0
\(977\) −0.314757 + 1.78508i −0.314757 + 1.78508i 0.258819 + 0.965926i \(0.416667\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.842020 + 1.45842i 0.842020 + 1.45842i
\(981\) 0 0
\(982\) 0.284489 0.492749i 0.284489 0.492749i
\(983\) −0.314757 1.78508i −0.314757 1.78508i −0.573576 0.819152i \(-0.694444\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0.247173 + 1.40179i 0.247173 + 1.40179i
\(989\) 0 0
\(990\) 3.22683i 3.22683i
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(996\) 0 0
\(997\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(998\) 2.10616 2.10616
\(999\) 0.811160 + 0.811160i 0.811160 + 0.811160i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2565.1.dy.d.949.1 24
5.4 even 2 inner 2565.1.dy.d.949.4 yes 24
19.18 odd 2 inner 2565.1.dy.d.949.4 yes 24
27.7 even 9 inner 2565.1.dy.d.1519.1 yes 24
95.94 odd 2 CM 2565.1.dy.d.949.1 24
135.34 even 18 inner 2565.1.dy.d.1519.4 yes 24
513.493 odd 18 inner 2565.1.dy.d.1519.4 yes 24
2565.1519 odd 18 inner 2565.1.dy.d.1519.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2565.1.dy.d.949.1 24 1.1 even 1 trivial
2565.1.dy.d.949.1 24 95.94 odd 2 CM
2565.1.dy.d.949.4 yes 24 5.4 even 2 inner
2565.1.dy.d.949.4 yes 24 19.18 odd 2 inner
2565.1.dy.d.1519.1 yes 24 27.7 even 9 inner
2565.1.dy.d.1519.1 yes 24 2565.1519 odd 18 inner
2565.1.dy.d.1519.4 yes 24 135.34 even 18 inner
2565.1.dy.d.1519.4 yes 24 513.493 odd 18 inner