Properties

Label 2565.1.dy.d.2374.4
Level $2565$
Weight $1$
Character 2565.2374
Analytic conductor $1.280$
Analytic rank $0$
Dimension $24$
Projective image $D_{36}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2565,1,Mod(94,2565)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([8, 9, 9])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2565.94"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2565 = 3^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2565.dy (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28010175740\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{72})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{12} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{36}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{36} - \cdots)\)

Embedding invariants

Embedding label 2374.4
Root \(0.0871557 - 0.996195i\) of defining polynomial
Character \(\chi\) \(=\) 2565.2374
Dual form 2565.1.dy.d.94.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.345975 - 1.96212i) q^{2} +(-0.996195 + 0.0871557i) q^{3} +(-2.79053 - 1.01567i) q^{4} +(-0.766044 + 0.642788i) q^{5} +(-0.173648 + 1.98481i) q^{6} +(-1.96212 + 3.39849i) q^{8} +(0.984808 - 0.173648i) q^{9} +(0.996195 + 1.72546i) q^{10} +(-0.984808 - 0.826352i) q^{11} +(2.86843 + 0.768593i) q^{12} +(0.284489 + 1.61341i) q^{13} +(0.707107 - 0.707107i) q^{15} +(3.71455 + 3.11688i) q^{16} -1.99239i q^{18} +(0.500000 - 0.866025i) q^{19} +(2.79053 - 1.01567i) q^{20} +(-1.96212 + 1.64641i) q^{22} +(1.65846 - 3.55657i) q^{24} +(0.173648 - 0.984808i) q^{25} +3.26414 q^{26} +(-0.965926 + 0.258819i) q^{27} +(-1.14279 - 1.63207i) q^{30} +(4.39469 - 3.68758i) q^{32} +(1.05308 + 0.737376i) q^{33} +(-2.92450 - 0.515668i) q^{36} +(0.0871557 + 0.150958i) q^{37} +(-1.52626 - 1.28068i) q^{38} +(-0.424024 - 1.58248i) q^{39} +(-0.681437 - 3.86462i) q^{40} +(1.90883 + 3.30619i) q^{44} +(-0.642788 + 0.766044i) q^{45} +(-3.97207 - 2.78127i) q^{48} +(0.766044 - 0.642788i) q^{49} +(-1.87223 - 0.681437i) q^{50} +(0.844822 - 4.79122i) q^{52} +0.845237 q^{53} +(0.173648 + 1.98481i) q^{54} +1.28558 q^{55} +(-0.422618 + 0.906308i) q^{57} +(-2.69139 + 1.25501i) q^{60} +(-3.29053 - 5.69936i) q^{64} +(-1.25501 - 1.05308i) q^{65} +(1.81116 - 1.81116i) q^{66} +(0.0898869 + 0.509774i) q^{67} +(-1.34217 + 3.68758i) q^{72} +(0.326352 - 0.118782i) q^{74} +(-0.0871557 + 0.996195i) q^{75} +(-2.27486 + 1.90883i) q^{76} +(-3.25172 + 0.284489i) q^{78} -4.84900 q^{80} +(0.939693 - 0.342020i) q^{81} +(4.74066 - 1.72546i) q^{88} +(1.28068 + 1.52626i) q^{90} +(0.173648 + 0.984808i) q^{95} +(-4.05657 + 4.05657i) q^{96} +(1.47988 + 1.24177i) q^{97} +(-0.996195 - 1.72546i) q^{98} +(-1.11334 - 0.642788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{16} + 12 q^{19} + 12 q^{24} - 12 q^{30} - 24 q^{36} + 12 q^{44} - 12 q^{64} + 24 q^{66} + 12 q^{74} - 24 q^{80} - 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2565\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.345975 1.96212i 0.345975 1.96212i 0.0871557 0.996195i \(-0.472222\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(3\) −0.996195 + 0.0871557i −0.996195 + 0.0871557i
\(4\) −2.79053 1.01567i −2.79053 1.01567i
\(5\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(6\) −0.173648 + 1.98481i −0.173648 + 1.98481i
\(7\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(8\) −1.96212 + 3.39849i −1.96212 + 3.39849i
\(9\) 0.984808 0.173648i 0.984808 0.173648i
\(10\) 0.996195 + 1.72546i 0.996195 + 1.72546i
\(11\) −0.984808 0.826352i −0.984808 0.826352i 1.00000i \(-0.5\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(12\) 2.86843 + 0.768593i 2.86843 + 0.768593i
\(13\) 0.284489 + 1.61341i 0.284489 + 1.61341i 0.707107 + 0.707107i \(0.250000\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(14\) 0 0
\(15\) 0.707107 0.707107i 0.707107 0.707107i
\(16\) 3.71455 + 3.11688i 3.71455 + 3.11688i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 1.99239i 1.99239i
\(19\) 0.500000 0.866025i 0.500000 0.866025i
\(20\) 2.79053 1.01567i 2.79053 1.01567i
\(21\) 0 0
\(22\) −1.96212 + 1.64641i −1.96212 + 1.64641i
\(23\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(24\) 1.65846 3.55657i 1.65846 3.55657i
\(25\) 0.173648 0.984808i 0.173648 0.984808i
\(26\) 3.26414 3.26414
\(27\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(28\) 0 0
\(29\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(30\) −1.14279 1.63207i −1.14279 1.63207i
\(31\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(32\) 4.39469 3.68758i 4.39469 3.68758i
\(33\) 1.05308 + 0.737376i 1.05308 + 0.737376i
\(34\) 0 0
\(35\) 0 0
\(36\) −2.92450 0.515668i −2.92450 0.515668i
\(37\) 0.0871557 + 0.150958i 0.0871557 + 0.150958i 0.906308 0.422618i \(-0.138889\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(38\) −1.52626 1.28068i −1.52626 1.28068i
\(39\) −0.424024 1.58248i −0.424024 1.58248i
\(40\) −0.681437 3.86462i −0.681437 3.86462i
\(41\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(42\) 0 0
\(43\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(44\) 1.90883 + 3.30619i 1.90883 + 3.30619i
\(45\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(46\) 0 0
\(47\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(48\) −3.97207 2.78127i −3.97207 2.78127i
\(49\) 0.766044 0.642788i 0.766044 0.642788i
\(50\) −1.87223 0.681437i −1.87223 0.681437i
\(51\) 0 0
\(52\) 0.844822 4.79122i 0.844822 4.79122i
\(53\) 0.845237 0.845237 0.422618 0.906308i \(-0.361111\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(54\) 0.173648 + 1.98481i 0.173648 + 1.98481i
\(55\) 1.28558 1.28558
\(56\) 0 0
\(57\) −0.422618 + 0.906308i −0.422618 + 0.906308i
\(58\) 0 0
\(59\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(60\) −2.69139 + 1.25501i −2.69139 + 1.25501i
\(61\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −3.29053 5.69936i −3.29053 5.69936i
\(65\) −1.25501 1.05308i −1.25501 1.05308i
\(66\) 1.81116 1.81116i 1.81116 1.81116i
\(67\) 0.0898869 + 0.509774i 0.0898869 + 0.509774i 0.996195 + 0.0871557i \(0.0277778\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) −1.34217 + 3.68758i −1.34217 + 3.68758i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0.326352 0.118782i 0.326352 0.118782i
\(75\) −0.0871557 + 0.996195i −0.0871557 + 0.996195i
\(76\) −2.27486 + 1.90883i −2.27486 + 1.90883i
\(77\) 0 0
\(78\) −3.25172 + 0.284489i −3.25172 + 0.284489i
\(79\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(80\) −4.84900 −4.84900
\(81\) 0.939693 0.342020i 0.939693 0.342020i
\(82\) 0 0
\(83\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 4.74066 1.72546i 4.74066 1.72546i
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 1.28068 + 1.52626i 1.28068 + 1.52626i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(96\) −4.05657 + 4.05657i −4.05657 + 4.05657i
\(97\) 1.47988 + 1.24177i 1.47988 + 1.24177i 0.906308 + 0.422618i \(0.138889\pi\)
0.573576 + 0.819152i \(0.305556\pi\)
\(98\) −0.996195 1.72546i −0.996195 1.72546i
\(99\) −1.11334 0.642788i −1.11334 0.642788i
\(100\) −1.48481 + 2.57176i −1.48481 + 2.57176i
\(101\) 1.62760 0.592396i 1.62760 0.592396i 0.642788 0.766044i \(-0.277778\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(102\) 0 0
\(103\) 1.52626 1.28068i 1.52626 1.28068i 0.707107 0.707107i \(-0.250000\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(104\) −6.04138 2.19888i −6.04138 2.19888i
\(105\) 0 0
\(106\) 0.292431 1.65846i 0.292431 1.65846i
\(107\) −1.81262 −1.81262 −0.906308 0.422618i \(-0.861111\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(108\) 2.95832 + 0.258819i 2.95832 + 0.258819i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0.444777 2.52245i 0.444777 2.52245i
\(111\) −0.0999810 0.142788i −0.0999810 0.142788i
\(112\) 0 0
\(113\) 0.396534 0.332731i 0.396534 0.332731i −0.422618 0.906308i \(-0.638889\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(114\) 1.63207 + 1.14279i 1.63207 + 1.14279i
\(115\) 0 0
\(116\) 0 0
\(117\) 0.560333 + 1.53950i 0.560333 + 1.53950i
\(118\) 0 0
\(119\) 0 0
\(120\) 1.01567 + 3.79053i 1.01567 + 3.79053i
\(121\) 0.113341 + 0.642788i 0.113341 + 0.642788i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(126\) 0 0
\(127\) 0.258819 0.448288i 0.258819 0.448288i −0.707107 0.707107i \(-0.750000\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(128\) −6.93038 + 2.52245i −6.93038 + 2.52245i
\(129\) 0 0
\(130\) −2.50048 + 2.09815i −2.50048 + 2.09815i
\(131\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) −2.18972 3.12725i −2.18972 3.12725i
\(133\) 0 0
\(134\) 1.03134 1.03134
\(135\) 0.573576 0.819152i 0.573576 0.819152i
\(136\) 0 0
\(137\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(138\) 0 0
\(139\) 1.62760 + 0.592396i 1.62760 + 0.592396i 0.984808 0.173648i \(-0.0555556\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.05308 1.82399i 1.05308 1.82399i
\(144\) 4.19936 + 2.42450i 4.19936 + 2.42450i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(148\) −0.0898869 0.509774i −0.0898869 0.509774i
\(149\) 0.118782 + 0.673648i 0.118782 + 0.673648i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 1.92450 + 0.515668i 1.92450 + 0.515668i
\(151\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(152\) 1.96212 + 3.39849i 1.96212 + 3.39849i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.424024 + 4.84662i −0.424024 + 4.84662i
\(157\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(158\) 0 0
\(159\) −0.842020 + 0.0736672i −0.842020 + 0.0736672i
\(160\) −0.996195 + 5.64970i −0.996195 + 5.64970i
\(161\) 0 0
\(162\) −0.345975 1.96212i −0.345975 1.96212i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −1.28068 + 0.112045i −1.28068 + 0.112045i
\(166\) 0 0
\(167\) 0.878770 0.737376i 0.878770 0.737376i −0.0871557 0.996195i \(-0.527778\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(168\) 0 0
\(169\) −1.58248 + 0.575976i −1.58248 + 0.575976i
\(170\) 0 0
\(171\) 0.342020 0.939693i 0.342020 0.939693i
\(172\) 0 0
\(173\) 1.25501 + 1.05308i 1.25501 + 1.05308i 0.996195 + 0.0871557i \(0.0277778\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.08248 6.13905i −1.08248 6.13905i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 2.57176 1.48481i 2.57176 1.48481i
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.163799 0.0596180i −0.163799 0.0596180i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 1.99239 1.99239
\(191\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(192\) 3.77474 + 5.39088i 3.77474 + 5.39088i
\(193\) −0.794263 0.289088i −0.794263 0.289088i −0.0871557 0.996195i \(-0.527778\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 2.94851 2.47409i 2.94851 2.47409i
\(195\) 1.34202 + 0.939693i 1.34202 + 0.939693i
\(196\) −2.79053 + 1.01567i −2.79053 + 1.01567i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) −1.64641 + 1.96212i −1.64641 + 1.96212i
\(199\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(200\) 3.00614 + 2.52245i 3.00614 + 2.52245i
\(201\) −0.133975 0.500000i −0.133975 0.500000i
\(202\) −0.599246 3.39849i −0.599246 3.39849i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −1.98481 3.43779i −1.98481 3.43779i
\(207\) 0 0
\(208\) −3.97207 + 6.87983i −3.97207 + 6.87983i
\(209\) −1.20805 + 0.439693i −1.20805 + 0.439693i
\(210\) 0 0
\(211\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(212\) −2.35865 0.858480i −2.35865 0.858480i
\(213\) 0 0
\(214\) −0.627119 + 3.55657i −0.627119 + 3.55657i
\(215\) 0 0
\(216\) 1.01567 3.79053i 1.01567 3.79053i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −3.58743 1.30572i −3.58743 1.30572i
\(221\) 0 0
\(222\) −0.314757 + 0.146774i −0.314757 + 0.146774i
\(223\) −1.07797 + 0.392349i −1.07797 + 0.392349i −0.819152 0.573576i \(-0.805556\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) −0.515668 0.893164i −0.515668 0.893164i
\(227\) 1.08335 + 0.909039i 1.08335 + 0.909039i 0.996195 0.0871557i \(-0.0277778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(228\) 2.09984 2.09984i 2.09984 2.09984i
\(229\) −0.342020 1.93969i −0.342020 1.93969i −0.342020 0.939693i \(-0.611111\pi\)
1.00000i \(-0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 3.21455 0.566812i 3.21455 0.566812i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(240\) 4.83055 0.422618i 4.83055 0.422618i
\(241\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(242\) 1.30044 1.30044
\(243\) −0.906308 + 0.422618i −0.906308 + 0.422618i
\(244\) 0 0
\(245\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(246\) 0 0
\(247\) 1.53950 + 0.560333i 1.53950 + 0.560333i
\(248\) 0 0
\(249\) 0 0
\(250\) 1.87223 0.681437i 1.87223 0.681437i
\(251\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.790050 0.662930i −0.790050 0.662930i
\(255\) 0 0
\(256\) 1.40883 + 7.98988i 1.40883 + 7.98988i
\(257\) −0.245576 1.39273i −0.245576 1.39273i −0.819152 0.573576i \(-0.805556\pi\)
0.573576 0.819152i \(-0.305556\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2.43257 + 4.21333i 2.43257 + 4.21333i
\(261\) 0 0
\(262\) −0.345975 + 0.599246i −0.345975 + 0.599246i
\(263\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(264\) −4.57224 + 2.13207i −4.57224 + 2.13207i
\(265\) −0.647489 + 0.543308i −0.647489 + 0.543308i
\(266\) 0 0
\(267\) 0 0
\(268\) 0.266930 1.51383i 0.266930 1.51383i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −1.40883 1.40883i −1.40883 1.40883i
\(271\) 1.73205 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.984808 + 0.826352i −0.984808 + 0.826352i
\(276\) 0 0
\(277\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(278\) 1.72546 2.98858i 1.72546 2.98858i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) 0 0
\(283\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(284\) 0 0
\(285\) −0.258819 0.965926i −0.258819 0.965926i
\(286\) −3.21455 2.69733i −3.21455 2.69733i
\(287\) 0 0
\(288\) 3.68758 4.39469i 3.68758 4.39469i
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) −1.58248 1.10806i −1.58248 1.10806i
\(292\) 0 0
\(293\) 0.486421 + 0.177043i 0.486421 + 0.177043i 0.573576 0.819152i \(-0.305556\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(294\) 1.14279 + 1.63207i 1.14279 + 1.63207i
\(295\) 0 0
\(296\) −0.684040 −0.684040
\(297\) 1.16513 + 0.543308i 1.16513 + 0.543308i
\(298\) 1.36287 1.36287
\(299\) 0 0
\(300\) 1.25501 2.69139i 1.25501 2.69139i
\(301\) 0 0
\(302\) 0 0
\(303\) −1.56977 + 0.731996i −1.56977 + 0.731996i
\(304\) 4.55657 1.65846i 4.55657 1.65846i
\(305\) 0 0
\(306\) 0 0
\(307\) 0.422618 + 0.731996i 0.422618 + 0.731996i 0.996195 0.0871557i \(-0.0277778\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(308\) 0 0
\(309\) −1.40883 + 1.40883i −1.40883 + 1.40883i
\(310\) 0 0
\(311\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(312\) 6.21003 + 1.66397i 6.21003 + 1.66397i
\(313\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.32893 + 0.483690i −1.32893 + 0.483690i −0.906308 0.422618i \(-0.861111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(318\) −0.146774 + 1.67763i −0.146774 + 1.67763i
\(319\) 0 0
\(320\) 6.18417 + 2.25085i 6.18417 + 2.25085i
\(321\) 1.80572 0.157980i 1.80572 0.157980i
\(322\) 0 0
\(323\) 0 0
\(324\) −2.96962 −2.96962
\(325\) 1.63830 1.63830
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −0.223238 + 2.55162i −0.223238 + 2.55162i
\(331\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(332\) 0 0
\(333\) 0.112045 + 0.133530i 0.112045 + 0.133530i
\(334\) −1.14279 1.97937i −1.14279 1.97937i
\(335\) −0.396534 0.332731i −0.396534 0.332731i
\(336\) 0 0
\(337\) 0.245576 + 1.39273i 0.245576 + 1.39273i 0.819152 + 0.573576i \(0.194444\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(338\) 0.582635 + 3.30429i 0.582635 + 3.30429i
\(339\) −0.366025 + 0.366025i −0.366025 + 0.366025i
\(340\) 0 0
\(341\) 0 0
\(342\) −1.72546 0.996195i −1.72546 0.996195i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 2.50048 2.09815i 2.50048 2.09815i
\(347\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(348\) 0 0
\(349\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(350\) 0 0
\(351\) −0.692377 1.48481i −0.692377 1.48481i
\(352\) −7.37516 −7.37516
\(353\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.642788 + 1.11334i −0.642788 + 1.11334i 0.342020 + 0.939693i \(0.388889\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(360\) −1.34217 3.68758i −1.34217 3.68758i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) −0.168932 0.630463i −0.168932 0.630463i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(371\) 0 0
\(372\) 0 0
\(373\) 0.878770 0.737376i 0.878770 0.737376i −0.0871557 0.996195i \(-0.527778\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(374\) 0 0
\(375\) −0.573576 0.819152i −0.573576 0.819152i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0.515668 2.92450i 0.515668 2.92450i
\(381\) −0.218763 + 0.469139i −0.218763 + 0.469139i
\(382\) −3.51865 1.28068i −3.51865 1.28068i
\(383\) 0.133530 0.112045i 0.133530 0.112045i −0.573576 0.819152i \(-0.694444\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 6.68417 3.11688i 6.68417 3.11688i
\(385\) 0 0
\(386\) −0.842020 + 1.45842i −0.842020 + 1.45842i
\(387\) 0 0
\(388\) −2.86843 4.96826i −2.86843 4.96826i
\(389\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(390\) 2.30810 2.30810i 2.30810 2.30810i
\(391\) 0 0
\(392\) 0.681437 + 3.86462i 0.681437 + 3.86462i
\(393\) 0.335463 + 0.0898869i 0.335463 + 0.0898869i
\(394\) 0 0
\(395\) 0 0
\(396\) 2.45395 + 2.92450i 2.45395 + 2.92450i
\(397\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 2.86843 1.04402i 2.86843 1.04402i
\(399\) 0 0
\(400\) 3.71455 3.11688i 3.71455 3.11688i
\(401\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(402\) −1.02741 + 0.0898869i −1.02741 + 0.0898869i
\(403\) 0 0
\(404\) −5.14352 −5.14352
\(405\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(406\) 0 0
\(407\) 0.0389129 0.220686i 0.0389129 0.220686i
\(408\) 0 0
\(409\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −5.55981 + 2.02361i −5.55981 + 2.02361i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 7.19983 + 6.04138i 7.19983 + 6.04138i
\(417\) −1.67303 0.448288i −1.67303 0.448288i
\(418\) 0.444777 + 2.52245i 0.444777 + 2.52245i
\(419\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(420\) 0 0
\(421\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.65846 + 2.87253i −1.65846 + 2.87253i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 5.05815 + 1.84102i 5.05815 + 1.84102i
\(429\) −0.890103 + 1.90883i −0.890103 + 1.90883i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −4.39469 2.04928i −4.39469 2.04928i
\(433\) −1.93185 −1.93185 −0.965926 0.258819i \(-0.916667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(440\) −2.52245 + 4.36902i −2.52245 + 4.36902i
\(441\) 0.642788 0.766044i 0.642788 0.766044i
\(442\) 0 0
\(443\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(444\) 0.133975 + 0.500000i 0.133975 + 0.500000i
\(445\) 0 0
\(446\) 0.396886 + 2.25085i 0.396886 + 2.25085i
\(447\) −0.177043 0.660732i −0.177043 0.660732i
\(448\) 0 0
\(449\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) −1.96212 0.345975i −1.96212 0.345975i
\(451\) 0 0
\(452\) −1.44448 + 0.525749i −1.44448 + 0.525749i
\(453\) 0 0
\(454\) 2.15846 1.81116i 2.15846 1.81116i
\(455\) 0 0
\(456\) −2.25085 3.21455i −2.25085 3.21455i
\(457\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(458\) −3.92424 −3.92424
\(459\) 0 0
\(460\) 0 0
\(461\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(462\) 0 0
\(463\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 4.86513i 4.86513i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.766044 0.642788i −0.766044 0.642788i
\(476\) 0 0
\(477\) 0.832395 0.146774i 0.832395 0.146774i
\(478\) 1.87223 3.24280i 1.87223 3.24280i
\(479\) −0.642788 + 0.233956i −0.642788 + 0.233956i −0.642788 0.766044i \(-0.722222\pi\)
1.00000i \(0.5\pi\)
\(480\) 0.500000 5.71503i 0.500000 5.71503i
\(481\) −0.218763 + 0.183564i −0.218763 + 0.183564i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.336579 1.90883i 0.336579 1.90883i
\(485\) −1.93185 −1.93185
\(486\) 0.515668 + 1.92450i 0.515668 + 1.92450i
\(487\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 1.87223 + 0.681437i 1.87223 + 0.681437i
\(491\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.63207 2.82683i 1.63207 2.82683i
\(495\) 1.26604 0.223238i 1.26604 0.223238i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.118782 0.673648i −0.118782 0.673648i −0.984808 0.173648i \(-0.944444\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(500\) −0.515668 2.92450i −0.515668 2.92450i
\(501\) −0.811160 + 0.811160i −0.811160 + 0.811160i
\(502\) −0.530064 0.444777i −0.530064 0.444777i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(506\) 0 0
\(507\) 1.52626 0.711706i 1.52626 0.711706i
\(508\) −1.17755 + 0.988084i −1.17755 + 0.988084i
\(509\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8.78937 8.78937
\(513\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(514\) −2.81766 −2.81766
\(515\) −0.345975 + 1.96212i −0.345975 + 1.96212i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1.34202 0.939693i −1.34202 0.939693i
\(520\) 6.04138 2.19888i 6.04138 2.19888i
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −0.422618 0.731996i −0.422618 0.731996i 0.573576 0.819152i \(-0.305556\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(524\) 0.790050 + 0.662930i 0.790050 + 0.662930i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.61341 + 6.02135i 1.61341 + 6.02135i
\(529\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(530\) 0.842020 + 1.45842i 0.842020 + 1.45842i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.38854 1.16513i 1.38854 1.16513i
\(536\) −1.90883 0.694758i −1.90883 0.694758i
\(537\) 0 0
\(538\) 0 0
\(539\) −1.28558 −1.28558
\(540\) −2.43257 + 1.70330i −2.43257 + 1.70330i
\(541\) −0.684040 −0.684040 −0.342020 0.939693i \(-0.611111\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(542\) 0.599246 3.39849i 0.599246 3.39849i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −1.70330 + 0.619951i −1.70330 + 0.619951i −0.996195 0.0871557i \(-0.972222\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.28068 + 2.21821i 1.28068 + 2.21821i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.168372 + 0.0451151i 0.168372 + 0.0451151i
\(556\) −3.94017 3.30619i −3.94017 3.30619i
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.70330 0.619951i −1.70330 0.619951i −0.707107 0.707107i \(-0.750000\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(564\) 0 0
\(565\) −0.0898869 + 0.509774i −0.0898869 + 0.509774i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(570\) −1.98481 + 0.173648i −1.98481 + 0.173648i
\(571\) 1.85083 + 0.673648i 1.85083 + 0.673648i 0.984808 + 0.173648i \(0.0555556\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(572\) −4.79122 + 4.02031i −4.79122 + 4.02031i
\(573\) −0.163799 + 1.87223i −0.163799 + 1.87223i
\(574\) 0 0
\(575\) 0 0
\(576\) −4.23022 5.04138i −4.23022 5.04138i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 1.52626 + 1.28068i 1.52626 + 1.28068i
\(579\) 0.816436 + 0.218763i 0.816436 + 0.218763i
\(580\) 0 0
\(581\) 0 0
\(582\) −2.72165 + 2.72165i −2.72165 + 2.72165i
\(583\) −0.832395 0.698463i −0.832395 0.698463i
\(584\) 0 0
\(585\) −1.41881 0.819152i −1.41881 0.819152i
\(586\) 0.515668 0.893164i 0.515668 0.893164i
\(587\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(588\) 2.69139 1.25501i 2.69139 1.25501i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.146774 + 0.832395i −0.146774 + 0.832395i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 1.46914 2.09815i 1.46914 2.09815i
\(595\) 0 0
\(596\) 0.352738 2.00048i 0.352738 2.00048i
\(597\) −0.878770 1.25501i −0.878770 1.25501i
\(598\) 0 0
\(599\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(600\) −3.21455 2.25085i −3.21455 2.25085i
\(601\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(602\) 0 0
\(603\) 0.177043 + 0.486421i 0.177043 + 0.486421i
\(604\) 0 0
\(605\) −0.500000 0.419550i −0.500000 0.419550i
\(606\) 0.893164 + 3.33333i 0.893164 + 3.33333i
\(607\) −0.314757 1.78508i −0.314757 1.78508i −0.573576 0.819152i \(-0.694444\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(608\) −0.996195 5.64970i −0.996195 5.64970i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 1.58248 0.575976i 1.58248 0.575976i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(618\) 2.27688 + 3.25172i 2.27688 + 3.25172i
\(619\) −0.223238 + 1.26604i −0.223238 + 1.26604i 0.642788 + 0.766044i \(0.277778\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 3.35734 7.19983i 3.35734 7.19983i
\(625\) −0.939693 0.342020i −0.939693 0.342020i
\(626\) 0 0
\(627\) 1.16513 0.543308i 1.16513 0.543308i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.642788 + 1.11334i 0.642788 + 1.11334i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.489282 + 2.77486i 0.489282 + 2.77486i
\(635\) 0.0898869 + 0.509774i 0.0898869 + 0.509774i
\(636\) 2.42450 + 0.649643i 2.42450 + 0.649643i
\(637\) 1.25501 + 1.05308i 1.25501 + 1.05308i
\(638\) 0 0
\(639\) 0 0
\(640\) 3.68758 6.38708i 3.68758 6.38708i
\(641\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(642\) 0.314757 3.59769i 0.314757 3.59769i
\(643\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.681437 + 3.86462i −0.681437 + 3.86462i
\(649\) 0 0
\(650\) 0.566812 3.21455i 0.566812 3.21455i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(654\) 0 0
\(655\) 0.326352 0.118782i 0.326352 0.118782i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(660\) 3.68758 + 0.988084i 3.68758 + 0.988084i
\(661\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.300767 0.173648i 0.300767 0.173648i
\(667\) 0 0
\(668\) −3.20116 + 1.16513i −3.20116 + 1.16513i
\(669\) 1.03967 0.484808i 1.03967 0.484808i
\(670\) −0.790050 + 0.662930i −0.790050 + 0.662930i
\(671\) 0 0
\(672\) 0 0
\(673\) 0.345975 1.96212i 0.345975 1.96212i 0.0871557 0.996195i \(-0.472222\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(674\) 2.81766 2.81766
\(675\) 0.0871557 + 0.996195i 0.0871557 + 0.996195i
\(676\) 5.00095 5.00095
\(677\) −0.0302689 + 0.171663i −0.0302689 + 0.171663i −0.996195 0.0871557i \(-0.972222\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(678\) 0.591550 + 0.844822i 0.591550 + 0.844822i
\(679\) 0 0
\(680\) 0 0
\(681\) −1.15846 0.811160i −1.15846 0.811160i
\(682\) 0 0
\(683\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(684\) −1.90883 + 2.27486i −1.90883 + 2.27486i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.509774 + 1.90250i 0.509774 + 1.90250i
\(688\) 0 0
\(689\) 0.240460 + 1.36372i 0.240460 + 1.36372i
\(690\) 0 0
\(691\) 0.524005 + 0.439693i 0.524005 + 0.439693i 0.866025 0.500000i \(-0.166667\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(692\) −2.43257 4.21333i −2.43257 4.21333i
\(693\) 0 0
\(694\) 0 0
\(695\) −1.62760 + 0.592396i −1.62760 + 0.592396i
\(696\) 0 0
\(697\) 0 0
\(698\) 2.86843 + 1.04402i 2.86843 + 1.04402i
\(699\) 0 0
\(700\) 0 0
\(701\) 1.96962 1.96962 0.984808 0.173648i \(-0.0555556\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(702\) −3.15292 + 0.844822i −3.15292 + 0.844822i
\(703\) 0.174311 0.174311
\(704\) −1.46914 + 8.33190i −1.46914 + 8.33190i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0.365731 + 2.07417i 0.365731 + 2.07417i
\(716\) 0 0
\(717\) −1.81535 0.486421i −1.81535 0.486421i
\(718\) 1.96212 + 1.64641i 1.96212 + 1.64641i
\(719\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(720\) −4.77533 + 0.842020i −4.77533 + 0.842020i
\(721\) 0 0
\(722\) −1.87223 + 0.681437i −1.87223 + 0.681437i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −1.29549 + 0.113341i −1.29549 + 0.113341i
\(727\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(728\) 0 0
\(729\) 0.866025 0.500000i 0.866025 0.500000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(734\) 0 0
\(735\) 0.0871557 0.996195i 0.0871557 0.996195i
\(736\) 0 0
\(737\) 0.332731 0.576308i 0.332731 0.576308i
\(738\) 0 0
\(739\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(740\) 0.396534 + 0.332731i 0.396534 + 0.332731i
\(741\) −1.58248 0.424024i −1.58248 0.424024i
\(742\) 0 0
\(743\) −0.345975 1.96212i −0.345975 1.96212i −0.258819 0.965926i \(-0.583333\pi\)
−0.0871557 0.996195i \(-0.527778\pi\)
\(744\) 0 0
\(745\) −0.524005 0.439693i −0.524005 0.439693i
\(746\) −1.14279 1.97937i −1.14279 1.97937i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −1.80572 + 0.842020i −1.80572 + 0.842020i
\(751\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(752\) 0 0
\(753\) −0.146774 + 0.314757i −0.146774 + 0.314757i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −3.68758 1.34217i −3.68758 1.34217i
\(761\) −0.524005 + 0.439693i −0.524005 + 0.439693i −0.866025 0.500000i \(-0.833333\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(762\) 0.844822 + 0.591550i 0.844822 + 0.591550i
\(763\) 0 0
\(764\) −2.79053 + 4.83333i −2.79053 + 4.83333i
\(765\) 0 0
\(766\) −0.173648 0.300767i −0.173648 0.300767i
\(767\) 0 0
\(768\) −2.09984 7.83669i −2.09984 7.83669i
\(769\) −0.300767 1.70574i −0.300767 1.70574i −0.642788 0.766044i \(-0.722222\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(770\) 0 0
\(771\) 0.366025 + 1.36603i 0.366025 + 1.36603i
\(772\) 1.92279 + 1.61341i 1.92279 + 1.61341i
\(773\) 0.906308 + 1.56977i 0.906308 + 1.56977i 0.819152 + 0.573576i \(0.194444\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −7.12386 + 2.59287i −7.12386 + 2.59287i
\(777\) 0 0
\(778\) −2.86843 + 2.40690i −2.86843 + 2.40690i
\(779\) 0 0
\(780\) −2.79053 3.98528i −2.79053 3.98528i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 4.84900 4.84900
\(785\) 0 0
\(786\) 0.292431 0.627119i 0.292431 0.627119i
\(787\) 1.32893 + 0.483690i 1.32893 + 0.483690i 0.906308 0.422618i \(-0.138889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 4.36902 2.52245i 4.36902 2.52245i
\(793\) 0 0
\(794\) 0 0
\(795\) 0.597672 0.597672i 0.597672 0.597672i
\(796\) −0.790050 4.48059i −0.790050 4.48059i
\(797\) 0.314757 + 1.78508i 0.314757 + 1.78508i 0.573576 + 0.819152i \(0.305556\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.86843 4.96826i −2.86843 4.96826i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.133975 + 1.53134i −0.133975 + 1.53134i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −1.18028 + 6.69372i −1.18028 + 6.69372i
\(809\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(810\) 1.52626 + 1.28068i 1.52626 + 1.28068i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −1.72546 + 0.150958i −1.72546 + 0.150958i
\(814\) −0.419550 0.152704i −0.419550 0.152704i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(822\) 0 0
\(823\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) 1.35769 + 7.69983i 1.35769 + 7.69983i
\(825\) 0.909039 0.909039i 0.909039 0.909039i
\(826\) 0 0
\(827\) 0.258819 + 0.448288i 0.258819 + 0.448288i 0.965926 0.258819i \(-0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 8.25931 6.93038i 8.25931 6.93038i
\(833\) 0 0
\(834\) −1.45842 + 3.12760i −1.45842 + 3.12760i
\(835\) −0.199201 + 1.12973i −0.199201 + 1.12973i
\(836\) 3.81766 3.81766
\(837\) 0 0
\(838\) −1.99239 −1.99239
\(839\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(840\) 0 0
\(841\) −0.939693 0.342020i −0.939693 0.342020i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.842020 1.45842i 0.842020 1.45842i
\(846\) 0 0
\(847\) 0 0
\(848\) 3.13967 + 2.63450i 3.13967 + 2.63450i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(854\) 0 0
\(855\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(856\) 3.55657 6.16016i 3.55657 6.16016i
\(857\) 1.87223 0.681437i 1.87223 0.681437i 0.906308 0.422618i \(-0.138889\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(858\) 3.43741 + 2.40690i 3.43741 + 2.40690i
\(859\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.81262 1.81262 0.906308 0.422618i \(-0.138889\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(864\) −3.29053 + 4.69936i −3.29053 + 4.69936i
\(865\) −1.63830 −1.63830
\(866\) −0.668372 + 3.79053i −0.668372 + 3.79053i
\(867\) 0.422618 0.906308i 0.422618 0.906308i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −0.796905 + 0.290050i −0.796905 + 0.290050i
\(872\) 0 0
\(873\) 1.67303 + 0.965926i 1.67303 + 0.965926i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.245576 1.39273i −0.245576 1.39273i −0.819152 0.573576i \(-0.805556\pi\)
0.573576 0.819152i \(-0.305556\pi\)
\(878\) 0 0
\(879\) −0.500000 0.133975i −0.500000 0.133975i
\(880\) 4.77533 + 4.00698i 4.77533 + 4.00698i
\(881\) 0.984808 + 1.70574i 0.984808 + 1.70574i 0.642788 + 0.766044i \(0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(882\) −1.28068 1.52626i −1.28068 1.52626i
\(883\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.486421 0.177043i −0.486421 0.177043i 0.0871557 0.996195i \(-0.472222\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(888\) 0.681437 0.0596180i 0.681437 0.0596180i
\(889\) 0 0
\(890\) 0 0
\(891\) −1.20805 0.439693i −1.20805 0.439693i
\(892\) 3.40660 3.40660
\(893\) 0 0
\(894\) −1.35769 + 0.118782i −1.35769 + 0.118782i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.01567 + 2.79053i −1.01567 + 2.79053i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.352738 + 2.00048i 0.352738 + 2.00048i
\(905\) 0 0
\(906\) 0 0
\(907\) −1.38854 1.16513i −1.38854 1.16513i −0.965926 0.258819i \(-0.916667\pi\)
−0.422618 0.906308i \(-0.638889\pi\)
\(908\) −2.09984 3.63702i −2.09984 3.63702i
\(909\) 1.50000 0.866025i 1.50000 0.866025i
\(910\) 0 0
\(911\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(912\) −4.39469 + 2.04928i −4.39469 + 2.04928i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −1.01567 + 5.76014i −1.01567 + 5.76014i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(920\) 0 0
\(921\) −0.484808 0.692377i −0.484808 0.692377i
\(922\) 1.87223 + 0.681437i 1.87223 + 0.681437i
\(923\) 0 0
\(924\) 0 0
\(925\) 0.163799 0.0596180i 0.163799 0.0596180i
\(926\) 0 0
\(927\) 1.28068 1.52626i 1.28068 1.52626i
\(928\) 0 0
\(929\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −0.173648 0.984808i −0.173648 0.984808i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −6.33143 1.11640i −6.33143 1.11640i
\(937\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.52626 + 1.28068i −1.52626 + 1.28068i
\(951\) 1.28171 0.597672i 1.28171 0.597672i
\(952\) 0 0
\(953\) 0.258819 0.448288i 0.258819 0.448288i −0.707107 0.707107i \(-0.750000\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(954\) 1.68404i 1.68404i
\(955\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(956\) −4.27533 3.58743i −4.27533 3.58743i
\(957\) 0 0
\(958\) 0.236661 + 1.34217i 0.236661 + 1.34217i
\(959\) 0 0
\(960\) −6.35681 1.70330i −6.35681 1.70330i
\(961\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(962\) 0.284489 + 0.492749i 0.284489 + 0.492749i
\(963\) −1.78508 + 0.314757i −1.78508 + 0.314757i
\(964\) 0 0
\(965\) 0.794263 0.289088i 0.794263 0.289088i
\(966\) 0 0
\(967\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(968\) −2.40690 0.876039i −2.40690 0.876039i
\(969\) 0 0
\(970\) −0.668372 + 3.79053i −0.668372 + 3.79053i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 2.95832 0.258819i 2.95832 0.258819i
\(973\) 0 0
\(974\) 0.489282 2.77486i 0.489282 2.77486i
\(975\) −1.63207 + 0.142788i −1.63207 + 0.142788i
\(976\) 0 0
\(977\) −0.878770 + 0.737376i −0.878770 + 0.737376i −0.965926 0.258819i \(-0.916667\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.48481 2.57176i 1.48481 2.57176i
\(981\) 0 0
\(982\) 1.52626 + 2.64356i 1.52626 + 2.64356i
\(983\) −0.878770 0.737376i −0.878770 0.737376i 0.0871557 0.996195i \(-0.472222\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −3.72691 3.12725i −3.72691 3.12725i
\(989\) 0 0
\(990\) 2.56137i 2.56137i
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.43969 0.524005i −1.43969 0.524005i
\(996\) 0 0
\(997\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(998\) −1.36287 −1.36287
\(999\) −0.123257 0.123257i −0.123257 0.123257i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2565.1.dy.d.2374.4 yes 24
5.4 even 2 inner 2565.1.dy.d.2374.1 yes 24
19.18 odd 2 inner 2565.1.dy.d.2374.1 yes 24
27.13 even 9 inner 2565.1.dy.d.94.4 yes 24
95.94 odd 2 CM 2565.1.dy.d.2374.4 yes 24
135.94 even 18 inner 2565.1.dy.d.94.1 24
513.94 odd 18 inner 2565.1.dy.d.94.1 24
2565.94 odd 18 inner 2565.1.dy.d.94.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2565.1.dy.d.94.1 24 135.94 even 18 inner
2565.1.dy.d.94.1 24 513.94 odd 18 inner
2565.1.dy.d.94.4 yes 24 27.13 even 9 inner
2565.1.dy.d.94.4 yes 24 2565.94 odd 18 inner
2565.1.dy.d.2374.1 yes 24 5.4 even 2 inner
2565.1.dy.d.2374.1 yes 24 19.18 odd 2 inner
2565.1.dy.d.2374.4 yes 24 1.1 even 1 trivial
2565.1.dy.d.2374.4 yes 24 95.94 odd 2 CM