Properties

Label 256.4.e.c.65.7
Level $256$
Weight $4$
Character 256.65
Analytic conductor $15.104$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,4,Mod(65,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.65"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 242x^{12} + 13297x^{8} + 201600x^{4} + 331776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{40} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 65.7
Root \(0.826679 + 0.826679i\) of defining polynomial
Character \(\chi\) \(=\) 256.65
Dual form 256.4.e.c.193.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.58521 + 3.58521i) q^{3} +(-14.4583 + 14.4583i) q^{5} -31.2516i q^{7} -1.29254i q^{9} +(-11.5113 + 11.5113i) q^{11} +(-37.5976 - 37.5976i) q^{13} -103.672 q^{15} +38.4044 q^{17} +(-14.1150 - 14.1150i) q^{19} +(112.044 - 112.044i) q^{21} +15.4625i q^{23} -293.087i q^{25} +(101.435 - 101.435i) q^{27} +(-106.334 - 106.334i) q^{29} +55.7912 q^{31} -82.5410 q^{33} +(451.846 + 451.846i) q^{35} +(41.4116 - 41.4116i) q^{37} -269.591i q^{39} +4.35221i q^{41} +(-109.547 + 109.547i) q^{43} +(18.6879 + 18.6879i) q^{45} -484.096 q^{47} -633.663 q^{49} +(137.688 + 137.688i) q^{51} +(206.253 - 206.253i) q^{53} -332.869i q^{55} -101.210i q^{57} +(-206.535 + 206.535i) q^{59} +(-450.887 - 450.887i) q^{61} -40.3938 q^{63} +1087.20 q^{65} +(-428.141 - 428.141i) q^{67} +(-55.4364 + 55.4364i) q^{69} +848.499i q^{71} -739.630i q^{73} +(1050.78 - 1050.78i) q^{75} +(359.747 + 359.747i) q^{77} +331.933 q^{79} +692.431 q^{81} +(-648.125 - 648.125i) q^{83} +(-555.264 + 555.264i) q^{85} -762.460i q^{87} +519.978i q^{89} +(-1174.99 + 1174.99i) q^{91} +(200.023 + 200.023i) q^{93} +408.159 q^{95} -1289.64 q^{97} +(14.8788 + 14.8788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{5} - 320 q^{13} - 384 q^{17} - 224 q^{21} - 928 q^{29} - 2432 q^{33} - 640 q^{37} - 896 q^{45} - 2832 q^{49} - 64 q^{53} - 1024 q^{61} + 2208 q^{65} - 32 q^{69} - 1056 q^{77} + 4208 q^{81}+ \cdots + 4480 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.58521 + 3.58521i 0.689974 + 0.689974i 0.962226 0.272252i \(-0.0877684\pi\)
−0.272252 + 0.962226i \(0.587768\pi\)
\(4\) 0 0
\(5\) −14.4583 + 14.4583i −1.29319 + 1.29319i −0.360392 + 0.932801i \(0.617357\pi\)
−0.932801 + 0.360392i \(0.882643\pi\)
\(6\) 0 0
\(7\) 31.2516i 1.68743i −0.536793 0.843714i \(-0.680364\pi\)
0.536793 0.843714i \(-0.319636\pi\)
\(8\) 0 0
\(9\) 1.29254i 0.0478717i
\(10\) 0 0
\(11\) −11.5113 + 11.5113i −0.315527 + 0.315527i −0.847046 0.531519i \(-0.821621\pi\)
0.531519 + 0.847046i \(0.321621\pi\)
\(12\) 0 0
\(13\) −37.5976 37.5976i −0.802131 0.802131i 0.181298 0.983428i \(-0.441970\pi\)
−0.983428 + 0.181298i \(0.941970\pi\)
\(14\) 0 0
\(15\) −103.672 −1.78454
\(16\) 0 0
\(17\) 38.4044 0.547908 0.273954 0.961743i \(-0.411668\pi\)
0.273954 + 0.961743i \(0.411668\pi\)
\(18\) 0 0
\(19\) −14.1150 14.1150i −0.170432 0.170432i 0.616737 0.787169i \(-0.288454\pi\)
−0.787169 + 0.616737i \(0.788454\pi\)
\(20\) 0 0
\(21\) 112.044 112.044i 1.16428 1.16428i
\(22\) 0 0
\(23\) 15.4625i 0.140181i 0.997541 + 0.0700904i \(0.0223288\pi\)
−0.997541 + 0.0700904i \(0.977671\pi\)
\(24\) 0 0
\(25\) 293.087i 2.34470i
\(26\) 0 0
\(27\) 101.435 101.435i 0.723004 0.723004i
\(28\) 0 0
\(29\) −106.334 106.334i −0.680888 0.680888i 0.279312 0.960200i \(-0.409893\pi\)
−0.960200 + 0.279312i \(0.909893\pi\)
\(30\) 0 0
\(31\) 55.7912 0.323238 0.161619 0.986853i \(-0.448328\pi\)
0.161619 + 0.986853i \(0.448328\pi\)
\(32\) 0 0
\(33\) −82.5410 −0.435411
\(34\) 0 0
\(35\) 451.846 + 451.846i 2.18217 + 2.18217i
\(36\) 0 0
\(37\) 41.4116 41.4116i 0.184001 0.184001i −0.609096 0.793097i \(-0.708468\pi\)
0.793097 + 0.609096i \(0.208468\pi\)
\(38\) 0 0
\(39\) 269.591i 1.10690i
\(40\) 0 0
\(41\) 4.35221i 0.0165781i 0.999966 + 0.00828903i \(0.00263851\pi\)
−0.999966 + 0.00828903i \(0.997361\pi\)
\(42\) 0 0
\(43\) −109.547 + 109.547i −0.388506 + 0.388506i −0.874154 0.485648i \(-0.838584\pi\)
0.485648 + 0.874154i \(0.338584\pi\)
\(44\) 0 0
\(45\) 18.6879 + 18.6879i 0.0619073 + 0.0619073i
\(46\) 0 0
\(47\) −484.096 −1.50240 −0.751199 0.660076i \(-0.770524\pi\)
−0.751199 + 0.660076i \(0.770524\pi\)
\(48\) 0 0
\(49\) −633.663 −1.84741
\(50\) 0 0
\(51\) 137.688 + 137.688i 0.378043 + 0.378043i
\(52\) 0 0
\(53\) 206.253 206.253i 0.534549 0.534549i −0.387374 0.921923i \(-0.626618\pi\)
0.921923 + 0.387374i \(0.126618\pi\)
\(54\) 0 0
\(55\) 332.869i 0.816074i
\(56\) 0 0
\(57\) 101.210i 0.235187i
\(58\) 0 0
\(59\) −206.535 + 206.535i −0.455738 + 0.455738i −0.897254 0.441515i \(-0.854441\pi\)
0.441515 + 0.897254i \(0.354441\pi\)
\(60\) 0 0
\(61\) −450.887 450.887i −0.946396 0.946396i 0.0522385 0.998635i \(-0.483364\pi\)
−0.998635 + 0.0522385i \(0.983364\pi\)
\(62\) 0 0
\(63\) −40.3938 −0.0807800
\(64\) 0 0
\(65\) 1087.20 2.07462
\(66\) 0 0
\(67\) −428.141 428.141i −0.780684 0.780684i 0.199263 0.979946i \(-0.436145\pi\)
−0.979946 + 0.199263i \(0.936145\pi\)
\(68\) 0 0
\(69\) −55.4364 + 55.4364i −0.0967211 + 0.0967211i
\(70\) 0 0
\(71\) 848.499i 1.41829i 0.705065 + 0.709143i \(0.250918\pi\)
−0.705065 + 0.709143i \(0.749082\pi\)
\(72\) 0 0
\(73\) 739.630i 1.18585i −0.805257 0.592926i \(-0.797973\pi\)
0.805257 0.592926i \(-0.202027\pi\)
\(74\) 0 0
\(75\) 1050.78 1050.78i 1.61778 1.61778i
\(76\) 0 0
\(77\) 359.747 + 359.747i 0.532429 + 0.532429i
\(78\) 0 0
\(79\) 331.933 0.472726 0.236363 0.971665i \(-0.424045\pi\)
0.236363 + 0.971665i \(0.424045\pi\)
\(80\) 0 0
\(81\) 692.431 0.949837
\(82\) 0 0
\(83\) −648.125 648.125i −0.857119 0.857119i 0.133878 0.990998i \(-0.457257\pi\)
−0.990998 + 0.133878i \(0.957257\pi\)
\(84\) 0 0
\(85\) −555.264 + 555.264i −0.708551 + 0.708551i
\(86\) 0 0
\(87\) 762.460i 0.939590i
\(88\) 0 0
\(89\) 519.978i 0.619299i 0.950851 + 0.309649i \(0.100212\pi\)
−0.950851 + 0.309649i \(0.899788\pi\)
\(90\) 0 0
\(91\) −1174.99 + 1174.99i −1.35354 + 1.35354i
\(92\) 0 0
\(93\) 200.023 + 200.023i 0.223026 + 0.223026i
\(94\) 0 0
\(95\) 408.159 0.440802
\(96\) 0 0
\(97\) −1289.64 −1.34993 −0.674966 0.737849i \(-0.735842\pi\)
−0.674966 + 0.737849i \(0.735842\pi\)
\(98\) 0 0
\(99\) 14.8788 + 14.8788i 0.0151048 + 0.0151048i
\(100\) 0 0
\(101\) −317.277 + 317.277i −0.312576 + 0.312576i −0.845907 0.533331i \(-0.820940\pi\)
0.533331 + 0.845907i \(0.320940\pi\)
\(102\) 0 0
\(103\) 1437.94i 1.37558i 0.725912 + 0.687788i \(0.241418\pi\)
−0.725912 + 0.687788i \(0.758582\pi\)
\(104\) 0 0
\(105\) 3239.93i 3.01128i
\(106\) 0 0
\(107\) −338.313 + 338.313i −0.305663 + 0.305663i −0.843225 0.537562i \(-0.819346\pi\)
0.537562 + 0.843225i \(0.319346\pi\)
\(108\) 0 0
\(109\) 488.847 + 488.847i 0.429569 + 0.429569i 0.888482 0.458912i \(-0.151761\pi\)
−0.458912 + 0.888482i \(0.651761\pi\)
\(110\) 0 0
\(111\) 296.939 0.253912
\(112\) 0 0
\(113\) −641.182 −0.533782 −0.266891 0.963727i \(-0.585996\pi\)
−0.266891 + 0.963727i \(0.585996\pi\)
\(114\) 0 0
\(115\) −223.562 223.562i −0.181281 0.181281i
\(116\) 0 0
\(117\) −48.5962 + 48.5962i −0.0383993 + 0.0383993i
\(118\) 0 0
\(119\) 1200.20i 0.924556i
\(120\) 0 0
\(121\) 1065.98i 0.800886i
\(122\) 0 0
\(123\) −15.6036 + 15.6036i −0.0114384 + 0.0114384i
\(124\) 0 0
\(125\) 2430.26 + 2430.26i 1.73895 + 1.73895i
\(126\) 0 0
\(127\) 2454.72 1.71513 0.857565 0.514376i \(-0.171976\pi\)
0.857565 + 0.514376i \(0.171976\pi\)
\(128\) 0 0
\(129\) −785.498 −0.536118
\(130\) 0 0
\(131\) 344.205 + 344.205i 0.229568 + 0.229568i 0.812512 0.582944i \(-0.198099\pi\)
−0.582944 + 0.812512i \(0.698099\pi\)
\(132\) 0 0
\(133\) −441.117 + 441.117i −0.287591 + 0.287591i
\(134\) 0 0
\(135\) 2933.15i 1.86997i
\(136\) 0 0
\(137\) 2560.48i 1.59676i −0.602152 0.798382i \(-0.705690\pi\)
0.602152 0.798382i \(-0.294310\pi\)
\(138\) 0 0
\(139\) 1713.75 1713.75i 1.04574 1.04574i 0.0468397 0.998902i \(-0.485085\pi\)
0.998902 0.0468397i \(-0.0149150\pi\)
\(140\) 0 0
\(141\) −1735.59 1735.59i −1.03662 1.03662i
\(142\) 0 0
\(143\) 865.596 0.506187
\(144\) 0 0
\(145\) 3074.83 1.76104
\(146\) 0 0
\(147\) −2271.82 2271.82i −1.27467 1.27467i
\(148\) 0 0
\(149\) 309.595 309.595i 0.170222 0.170222i −0.616855 0.787077i \(-0.711594\pi\)
0.787077 + 0.616855i \(0.211594\pi\)
\(150\) 0 0
\(151\) 2428.54i 1.30882i 0.756139 + 0.654411i \(0.227083\pi\)
−0.756139 + 0.654411i \(0.772917\pi\)
\(152\) 0 0
\(153\) 49.6391i 0.0262293i
\(154\) 0 0
\(155\) −806.648 + 806.648i −0.418010 + 0.418010i
\(156\) 0 0
\(157\) 260.302 + 260.302i 0.132321 + 0.132321i 0.770165 0.637845i \(-0.220174\pi\)
−0.637845 + 0.770165i \(0.720174\pi\)
\(158\) 0 0
\(159\) 1478.92 0.737650
\(160\) 0 0
\(161\) 483.229 0.236545
\(162\) 0 0
\(163\) 861.313 + 861.313i 0.413885 + 0.413885i 0.883089 0.469205i \(-0.155459\pi\)
−0.469205 + 0.883089i \(0.655459\pi\)
\(164\) 0 0
\(165\) 1193.41 1193.41i 0.563070 0.563070i
\(166\) 0 0
\(167\) 3541.18i 1.64087i −0.571742 0.820434i \(-0.693732\pi\)
0.571742 0.820434i \(-0.306268\pi\)
\(168\) 0 0
\(169\) 630.160i 0.286827i
\(170\) 0 0
\(171\) −18.2441 + 18.2441i −0.00815885 + 0.00815885i
\(172\) 0 0
\(173\) 160.444 + 160.444i 0.0705106 + 0.0705106i 0.741483 0.670972i \(-0.234123\pi\)
−0.670972 + 0.741483i \(0.734123\pi\)
\(174\) 0 0
\(175\) −9159.45 −3.95651
\(176\) 0 0
\(177\) −1480.94 −0.628895
\(178\) 0 0
\(179\) −2085.04 2085.04i −0.870634 0.870634i 0.121908 0.992541i \(-0.461099\pi\)
−0.992541 + 0.121908i \(0.961099\pi\)
\(180\) 0 0
\(181\) −1452.80 + 1452.80i −0.596607 + 0.596607i −0.939408 0.342801i \(-0.888624\pi\)
0.342801 + 0.939408i \(0.388624\pi\)
\(182\) 0 0
\(183\) 3233.05i 1.30598i
\(184\) 0 0
\(185\) 1197.49i 0.475897i
\(186\) 0 0
\(187\) −442.086 + 442.086i −0.172880 + 0.172880i
\(188\) 0 0
\(189\) −3170.00 3170.00i −1.22002 1.22002i
\(190\) 0 0
\(191\) 1687.44 0.639261 0.319630 0.947542i \(-0.396441\pi\)
0.319630 + 0.947542i \(0.396441\pi\)
\(192\) 0 0
\(193\) −495.873 −0.184941 −0.0924707 0.995715i \(-0.529476\pi\)
−0.0924707 + 0.995715i \(0.529476\pi\)
\(194\) 0 0
\(195\) 3897.83 + 3897.83i 1.43143 + 1.43143i
\(196\) 0 0
\(197\) 527.200 527.200i 0.190667 0.190667i −0.605317 0.795984i \(-0.706954\pi\)
0.795984 + 0.605317i \(0.206954\pi\)
\(198\) 0 0
\(199\) 1159.84i 0.413162i −0.978430 0.206581i \(-0.933766\pi\)
0.978430 0.206581i \(-0.0662336\pi\)
\(200\) 0 0
\(201\) 3069.95i 1.07730i
\(202\) 0 0
\(203\) −3323.11 + 3323.11i −1.14895 + 1.14895i
\(204\) 0 0
\(205\) −62.9257 62.9257i −0.0214386 0.0214386i
\(206\) 0 0
\(207\) 19.9858 0.00671069
\(208\) 0 0
\(209\) 324.965 0.107552
\(210\) 0 0
\(211\) 2944.23 + 2944.23i 0.960611 + 0.960611i 0.999253 0.0386422i \(-0.0123033\pi\)
−0.0386422 + 0.999253i \(0.512303\pi\)
\(212\) 0 0
\(213\) −3042.05 + 3042.05i −0.978581 + 0.978581i
\(214\) 0 0
\(215\) 3167.74i 1.00483i
\(216\) 0 0
\(217\) 1743.56i 0.545442i
\(218\) 0 0
\(219\) 2651.73 2651.73i 0.818207 0.818207i
\(220\) 0 0
\(221\) −1443.91 1443.91i −0.439494 0.439494i
\(222\) 0 0
\(223\) −1645.00 −0.493980 −0.246990 0.969018i \(-0.579441\pi\)
−0.246990 + 0.969018i \(0.579441\pi\)
\(224\) 0 0
\(225\) −378.825 −0.112245
\(226\) 0 0
\(227\) 2652.47 + 2652.47i 0.775555 + 0.775555i 0.979071 0.203517i \(-0.0652372\pi\)
−0.203517 + 0.979071i \(0.565237\pi\)
\(228\) 0 0
\(229\) 2840.94 2840.94i 0.819802 0.819802i −0.166277 0.986079i \(-0.553175\pi\)
0.986079 + 0.166277i \(0.0531747\pi\)
\(230\) 0 0
\(231\) 2579.54i 0.734724i
\(232\) 0 0
\(233\) 6046.31i 1.70003i −0.526758 0.850015i \(-0.676593\pi\)
0.526758 0.850015i \(-0.323407\pi\)
\(234\) 0 0
\(235\) 6999.23 6999.23i 1.94289 1.94289i
\(236\) 0 0
\(237\) 1190.05 + 1190.05i 0.326168 + 0.326168i
\(238\) 0 0
\(239\) 2919.88 0.790257 0.395128 0.918626i \(-0.370700\pi\)
0.395128 + 0.918626i \(0.370700\pi\)
\(240\) 0 0
\(241\) −2342.75 −0.626183 −0.313091 0.949723i \(-0.601365\pi\)
−0.313091 + 0.949723i \(0.601365\pi\)
\(242\) 0 0
\(243\) −256.226 256.226i −0.0676416 0.0676416i
\(244\) 0 0
\(245\) 9161.72 9161.72i 2.38906 2.38906i
\(246\) 0 0
\(247\) 1061.38i 0.273417i
\(248\) 0 0
\(249\) 4647.33i 1.18278i
\(250\) 0 0
\(251\) −4127.18 + 4127.18i −1.03787 + 1.03787i −0.0386151 + 0.999254i \(0.512295\pi\)
−0.999254 + 0.0386151i \(0.987705\pi\)
\(252\) 0 0
\(253\) −177.994 177.994i −0.0442308 0.0442308i
\(254\) 0 0
\(255\) −3981.48 −0.977764
\(256\) 0 0
\(257\) 4806.18 1.16654 0.583271 0.812278i \(-0.301773\pi\)
0.583271 + 0.812278i \(0.301773\pi\)
\(258\) 0 0
\(259\) −1294.18 1294.18i −0.310488 0.310488i
\(260\) 0 0
\(261\) −137.441 + 137.441i −0.0325952 + 0.0325952i
\(262\) 0 0
\(263\) 5267.43i 1.23499i 0.786573 + 0.617497i \(0.211853\pi\)
−0.786573 + 0.617497i \(0.788147\pi\)
\(264\) 0 0
\(265\) 5964.17i 1.38255i
\(266\) 0 0
\(267\) −1864.23 + 1864.23i −0.427300 + 0.427300i
\(268\) 0 0
\(269\) −4007.83 4007.83i −0.908408 0.908408i 0.0877362 0.996144i \(-0.472037\pi\)
−0.996144 + 0.0877362i \(0.972037\pi\)
\(270\) 0 0
\(271\) −97.0442 −0.0217528 −0.0108764 0.999941i \(-0.503462\pi\)
−0.0108764 + 0.999941i \(0.503462\pi\)
\(272\) 0 0
\(273\) −8425.14 −1.86781
\(274\) 0 0
\(275\) 3373.82 + 3373.82i 0.739815 + 0.739815i
\(276\) 0 0
\(277\) 621.277 621.277i 0.134761 0.134761i −0.636508 0.771270i \(-0.719622\pi\)
0.771270 + 0.636508i \(0.219622\pi\)
\(278\) 0 0
\(279\) 72.1120i 0.0154740i
\(280\) 0 0
\(281\) 71.5081i 0.0151808i 0.999971 + 0.00759042i \(0.00241613\pi\)
−0.999971 + 0.00759042i \(0.997584\pi\)
\(282\) 0 0
\(283\) −992.800 + 992.800i −0.208537 + 0.208537i −0.803645 0.595109i \(-0.797109\pi\)
0.595109 + 0.803645i \(0.297109\pi\)
\(284\) 0 0
\(285\) 1463.34 + 1463.34i 0.304142 + 0.304142i
\(286\) 0 0
\(287\) 136.014 0.0279743
\(288\) 0 0
\(289\) −3438.10 −0.699796
\(290\) 0 0
\(291\) −4623.64 4623.64i −0.931418 0.931418i
\(292\) 0 0
\(293\) −3877.68 + 3877.68i −0.773162 + 0.773162i −0.978658 0.205496i \(-0.934119\pi\)
0.205496 + 0.978658i \(0.434119\pi\)
\(294\) 0 0
\(295\) 5972.30i 1.17872i
\(296\) 0 0
\(297\) 2335.29i 0.456254i
\(298\) 0 0
\(299\) 581.354 581.354i 0.112443 0.112443i
\(300\) 0 0
\(301\) 3423.52 + 3423.52i 0.655576 + 0.655576i
\(302\) 0 0
\(303\) −2275.01 −0.431339
\(304\) 0 0
\(305\) 13038.2 2.44775
\(306\) 0 0
\(307\) 1878.23 + 1878.23i 0.349174 + 0.349174i 0.859802 0.510628i \(-0.170587\pi\)
−0.510628 + 0.859802i \(0.670587\pi\)
\(308\) 0 0
\(309\) −5155.31 + 5155.31i −0.949111 + 0.949111i
\(310\) 0 0
\(311\) 9649.90i 1.75947i −0.475464 0.879735i \(-0.657720\pi\)
0.475464 0.879735i \(-0.342280\pi\)
\(312\) 0 0
\(313\) 2090.02i 0.377428i −0.982032 0.188714i \(-0.939568\pi\)
0.982032 0.188714i \(-0.0604318\pi\)
\(314\) 0 0
\(315\) 584.027 584.027i 0.104464 0.104464i
\(316\) 0 0
\(317\) 2249.75 + 2249.75i 0.398608 + 0.398608i 0.877742 0.479134i \(-0.159049\pi\)
−0.479134 + 0.877742i \(0.659049\pi\)
\(318\) 0 0
\(319\) 2448.09 0.429677
\(320\) 0 0
\(321\) −2425.85 −0.421799
\(322\) 0 0
\(323\) −542.079 542.079i −0.0933810 0.0933810i
\(324\) 0 0
\(325\) −11019.4 + 11019.4i −1.88075 + 1.88075i
\(326\) 0 0
\(327\) 3505.24i 0.592783i
\(328\) 0 0
\(329\) 15128.8i 2.53519i
\(330\) 0 0
\(331\) 1104.65 1104.65i 0.183435 0.183435i −0.609416 0.792851i \(-0.708596\pi\)
0.792851 + 0.609416i \(0.208596\pi\)
\(332\) 0 0
\(333\) −53.5260 53.5260i −0.00880843 0.00880843i
\(334\) 0 0
\(335\) 12380.4 2.01915
\(336\) 0 0
\(337\) −1420.03 −0.229537 −0.114768 0.993392i \(-0.536613\pi\)
−0.114768 + 0.993392i \(0.536613\pi\)
\(338\) 0 0
\(339\) −2298.77 2298.77i −0.368295 0.368295i
\(340\) 0 0
\(341\) −642.230 + 642.230i −0.101990 + 0.101990i
\(342\) 0 0
\(343\) 9083.69i 1.42995i
\(344\) 0 0
\(345\) 1603.04i 0.250158i
\(346\) 0 0
\(347\) −3385.23 + 3385.23i −0.523713 + 0.523713i −0.918691 0.394977i \(-0.870752\pi\)
0.394977 + 0.918691i \(0.370752\pi\)
\(348\) 0 0
\(349\) −7539.70 7539.70i −1.15642 1.15642i −0.985239 0.171182i \(-0.945241\pi\)
−0.171182 0.985239i \(-0.554759\pi\)
\(350\) 0 0
\(351\) −7627.40 −1.15989
\(352\) 0 0
\(353\) 10875.4 1.63977 0.819886 0.572527i \(-0.194037\pi\)
0.819886 + 0.572527i \(0.194037\pi\)
\(354\) 0 0
\(355\) −12267.9 12267.9i −1.83412 1.83412i
\(356\) 0 0
\(357\) 4302.97 4302.97i 0.637920 0.637920i
\(358\) 0 0
\(359\) 1421.25i 0.208943i −0.994528 0.104472i \(-0.966685\pi\)
0.994528 0.104472i \(-0.0333151\pi\)
\(360\) 0 0
\(361\) 6460.53i 0.941906i
\(362\) 0 0
\(363\) −3821.76 + 3821.76i −0.552590 + 0.552590i
\(364\) 0 0
\(365\) 10693.8 + 10693.8i 1.53353 + 1.53353i
\(366\) 0 0
\(367\) 6698.17 0.952703 0.476351 0.879255i \(-0.341959\pi\)
0.476351 + 0.879255i \(0.341959\pi\)
\(368\) 0 0
\(369\) 5.62538 0.000793620
\(370\) 0 0
\(371\) −6445.75 6445.75i −0.902013 0.902013i
\(372\) 0 0
\(373\) 7317.01 7317.01i 1.01571 1.01571i 0.0158368 0.999875i \(-0.494959\pi\)
0.999875 0.0158368i \(-0.00504123\pi\)
\(374\) 0 0
\(375\) 17426.0i 2.39967i
\(376\) 0 0
\(377\) 7995.82i 1.09232i
\(378\) 0 0
\(379\) 8591.26 8591.26i 1.16439 1.16439i 0.180885 0.983504i \(-0.442104\pi\)
0.983504 0.180885i \(-0.0578961\pi\)
\(380\) 0 0
\(381\) 8800.70 + 8800.70i 1.18339 + 1.18339i
\(382\) 0 0
\(383\) −2209.21 −0.294740 −0.147370 0.989081i \(-0.547081\pi\)
−0.147370 + 0.989081i \(0.547081\pi\)
\(384\) 0 0
\(385\) −10402.7 −1.37707
\(386\) 0 0
\(387\) 141.593 + 141.593i 0.0185984 + 0.0185984i
\(388\) 0 0
\(389\) 7477.19 7477.19i 0.974572 0.974572i −0.0251129 0.999685i \(-0.507995\pi\)
0.999685 + 0.0251129i \(0.00799451\pi\)
\(390\) 0 0
\(391\) 593.829i 0.0768062i
\(392\) 0 0
\(393\) 2468.10i 0.316791i
\(394\) 0 0
\(395\) −4799.19 + 4799.19i −0.611326 + 0.611326i
\(396\) 0 0
\(397\) −7759.12 7759.12i −0.980905 0.980905i 0.0189162 0.999821i \(-0.493978\pi\)
−0.999821 + 0.0189162i \(0.993978\pi\)
\(398\) 0 0
\(399\) −3162.99 −0.396861
\(400\) 0 0
\(401\) −5034.84 −0.627002 −0.313501 0.949588i \(-0.601502\pi\)
−0.313501 + 0.949588i \(0.601502\pi\)
\(402\) 0 0
\(403\) −2097.61 2097.61i −0.259279 0.259279i
\(404\) 0 0
\(405\) −10011.4 + 10011.4i −1.22832 + 1.22832i
\(406\) 0 0
\(407\) 953.405i 0.116114i
\(408\) 0 0
\(409\) 14670.4i 1.77360i 0.462149 + 0.886802i \(0.347079\pi\)
−0.462149 + 0.886802i \(0.652921\pi\)
\(410\) 0 0
\(411\) 9179.86 9179.86i 1.10173 1.10173i
\(412\) 0 0
\(413\) 6454.55 + 6454.55i 0.769026 + 0.769026i
\(414\) 0 0
\(415\) 18741.6 2.21684
\(416\) 0 0
\(417\) 12288.3 1.44307
\(418\) 0 0
\(419\) 9049.09 + 9049.09i 1.05508 + 1.05508i 0.998392 + 0.0566847i \(0.0180530\pi\)
0.0566847 + 0.998392i \(0.481947\pi\)
\(420\) 0 0
\(421\) −178.482 + 178.482i −0.0206619 + 0.0206619i −0.717362 0.696700i \(-0.754651\pi\)
0.696700 + 0.717362i \(0.254651\pi\)
\(422\) 0 0
\(423\) 625.711i 0.0719223i
\(424\) 0 0
\(425\) 11255.8i 1.28468i
\(426\) 0 0
\(427\) −14090.9 + 14090.9i −1.59698 + 1.59698i
\(428\) 0 0
\(429\) 3103.34 + 3103.34i 0.349256 + 0.349256i
\(430\) 0 0
\(431\) 7682.25 0.858564 0.429282 0.903171i \(-0.358767\pi\)
0.429282 + 0.903171i \(0.358767\pi\)
\(432\) 0 0
\(433\) −7152.63 −0.793842 −0.396921 0.917853i \(-0.629921\pi\)
−0.396921 + 0.917853i \(0.629921\pi\)
\(434\) 0 0
\(435\) 11023.9 + 11023.9i 1.21507 + 1.21507i
\(436\) 0 0
\(437\) 218.253 218.253i 0.0238913 0.0238913i
\(438\) 0 0
\(439\) 6415.61i 0.697495i 0.937217 + 0.348747i \(0.113393\pi\)
−0.937217 + 0.348747i \(0.886607\pi\)
\(440\) 0 0
\(441\) 819.032i 0.0884388i
\(442\) 0 0
\(443\) 5614.25 5614.25i 0.602124 0.602124i −0.338752 0.940876i \(-0.610005\pi\)
0.940876 + 0.338752i \(0.110005\pi\)
\(444\) 0 0
\(445\) −7518.02 7518.02i −0.800873 0.800873i
\(446\) 0 0
\(447\) 2219.93 0.234897
\(448\) 0 0
\(449\) −8911.67 −0.936676 −0.468338 0.883549i \(-0.655147\pi\)
−0.468338 + 0.883549i \(0.655147\pi\)
\(450\) 0 0
\(451\) −50.0997 50.0997i −0.00523082 0.00523082i
\(452\) 0 0
\(453\) −8706.84 + 8706.84i −0.903053 + 0.903053i
\(454\) 0 0
\(455\) 33976.7i 3.50077i
\(456\) 0 0
\(457\) 3476.75i 0.355876i −0.984042 0.177938i \(-0.943057\pi\)
0.984042 0.177938i \(-0.0569427\pi\)
\(458\) 0 0
\(459\) 3895.54 3895.54i 0.396140 0.396140i
\(460\) 0 0
\(461\) 3791.45 + 3791.45i 0.383049 + 0.383049i 0.872199 0.489150i \(-0.162693\pi\)
−0.489150 + 0.872199i \(0.662693\pi\)
\(462\) 0 0
\(463\) −11450.8 −1.14938 −0.574690 0.818371i \(-0.694877\pi\)
−0.574690 + 0.818371i \(0.694877\pi\)
\(464\) 0 0
\(465\) −5784.00 −0.576832
\(466\) 0 0
\(467\) 1190.26 + 1190.26i 0.117942 + 0.117942i 0.763614 0.645673i \(-0.223423\pi\)
−0.645673 + 0.763614i \(0.723423\pi\)
\(468\) 0 0
\(469\) −13380.1 + 13380.1i −1.31735 + 1.31735i
\(470\) 0 0
\(471\) 1866.47i 0.182596i
\(472\) 0 0
\(473\) 2522.06i 0.245168i
\(474\) 0 0
\(475\) −4136.93 + 4136.93i −0.399611 + 0.399611i
\(476\) 0 0
\(477\) −266.590 266.590i −0.0255897 0.0255897i
\(478\) 0 0
\(479\) −18640.5 −1.77810 −0.889048 0.457814i \(-0.848632\pi\)
−0.889048 + 0.457814i \(0.848632\pi\)
\(480\) 0 0
\(481\) −3113.96 −0.295185
\(482\) 0 0
\(483\) 1732.48 + 1732.48i 0.163210 + 0.163210i
\(484\) 0 0
\(485\) 18646.1 18646.1i 1.74572 1.74572i
\(486\) 0 0
\(487\) 757.113i 0.0704477i −0.999379 0.0352239i \(-0.988786\pi\)
0.999379 0.0352239i \(-0.0112144\pi\)
\(488\) 0 0
\(489\) 6175.97i 0.571139i
\(490\) 0 0
\(491\) −3595.27 + 3595.27i −0.330452 + 0.330452i −0.852758 0.522306i \(-0.825072\pi\)
0.522306 + 0.852758i \(0.325072\pi\)
\(492\) 0 0
\(493\) −4083.70 4083.70i −0.373064 0.373064i
\(494\) 0 0
\(495\) −430.245 −0.0390668
\(496\) 0 0
\(497\) 26517.0 2.39326
\(498\) 0 0
\(499\) 5604.26 + 5604.26i 0.502768 + 0.502768i 0.912297 0.409529i \(-0.134307\pi\)
−0.409529 + 0.912297i \(0.634307\pi\)
\(500\) 0 0
\(501\) 12695.9 12695.9i 1.13216 1.13216i
\(502\) 0 0
\(503\) 10028.1i 0.888926i 0.895797 + 0.444463i \(0.146605\pi\)
−0.895797 + 0.444463i \(0.853395\pi\)
\(504\) 0 0
\(505\) 9174.58i 0.808443i
\(506\) 0 0
\(507\) −2259.26 + 2259.26i −0.197904 + 0.197904i
\(508\) 0 0
\(509\) −4748.13 4748.13i −0.413472 0.413472i 0.469474 0.882946i \(-0.344444\pi\)
−0.882946 + 0.469474i \(0.844444\pi\)
\(510\) 0 0
\(511\) −23114.6 −2.00104
\(512\) 0 0
\(513\) −2863.50 −0.246446
\(514\) 0 0
\(515\) −20790.2 20790.2i −1.77888 1.77888i
\(516\) 0 0
\(517\) 5572.59 5572.59i 0.474047 0.474047i
\(518\) 0 0
\(519\) 1150.45i 0.0973010i
\(520\) 0 0
\(521\) 16542.9i 1.39109i −0.718481 0.695547i \(-0.755162\pi\)
0.718481 0.695547i \(-0.244838\pi\)
\(522\) 0 0
\(523\) 7076.26 7076.26i 0.591631 0.591631i −0.346441 0.938072i \(-0.612610\pi\)
0.938072 + 0.346441i \(0.112610\pi\)
\(524\) 0 0
\(525\) −32838.5 32838.5i −2.72989 2.72989i
\(526\) 0 0
\(527\) 2142.63 0.177105
\(528\) 0 0
\(529\) 11927.9 0.980349
\(530\) 0 0
\(531\) 266.954 + 266.954i 0.0218169 + 0.0218169i
\(532\) 0 0
\(533\) 163.633 163.633i 0.0132978 0.0132978i
\(534\) 0 0
\(535\) 9782.89i 0.790563i
\(536\) 0 0
\(537\) 14950.6i 1.20143i
\(538\) 0 0
\(539\) 7294.30 7294.30i 0.582909 0.582909i
\(540\) 0 0
\(541\) 3432.45 + 3432.45i 0.272778 + 0.272778i 0.830217 0.557440i \(-0.188216\pi\)
−0.557440 + 0.830217i \(0.688216\pi\)
\(542\) 0 0
\(543\) −10417.2 −0.823287
\(544\) 0 0
\(545\) −14135.8 −1.11103
\(546\) 0 0
\(547\) 8378.40 + 8378.40i 0.654908 + 0.654908i 0.954171 0.299263i \(-0.0967408\pi\)
−0.299263 + 0.954171i \(0.596741\pi\)
\(548\) 0 0
\(549\) −582.787 + 582.787i −0.0453056 + 0.0453056i
\(550\) 0 0
\(551\) 3001.81i 0.232090i
\(552\) 0 0
\(553\) 10373.4i 0.797691i
\(554\) 0 0
\(555\) −4293.24 + 4293.24i −0.328357 + 0.328357i
\(556\) 0 0
\(557\) 12185.0 + 12185.0i 0.926923 + 0.926923i 0.997506 0.0705830i \(-0.0224860\pi\)
−0.0705830 + 0.997506i \(0.522486\pi\)
\(558\) 0 0
\(559\) 8237.41 0.623265
\(560\) 0 0
\(561\) −3169.94 −0.238565
\(562\) 0 0
\(563\) 12700.4 + 12700.4i 0.950727 + 0.950727i 0.998842 0.0481149i \(-0.0153214\pi\)
−0.0481149 + 0.998842i \(0.515321\pi\)
\(564\) 0 0
\(565\) 9270.43 9270.43i 0.690283 0.690283i
\(566\) 0 0
\(567\) 21639.6i 1.60278i
\(568\) 0 0
\(569\) 14986.1i 1.10413i −0.833800 0.552066i \(-0.813840\pi\)
0.833800 0.552066i \(-0.186160\pi\)
\(570\) 0 0
\(571\) 9169.09 9169.09i 0.672005 0.672005i −0.286173 0.958178i \(-0.592383\pi\)
0.958178 + 0.286173i \(0.0923833\pi\)
\(572\) 0 0
\(573\) 6049.82 + 6049.82i 0.441073 + 0.441073i
\(574\) 0 0
\(575\) 4531.87 0.328682
\(576\) 0 0
\(577\) 19502.4 1.40710 0.703549 0.710647i \(-0.251598\pi\)
0.703549 + 0.710647i \(0.251598\pi\)
\(578\) 0 0
\(579\) −1777.81 1777.81i −0.127605 0.127605i
\(580\) 0 0
\(581\) −20254.9 + 20254.9i −1.44633 + 1.44633i
\(582\) 0 0
\(583\) 4748.50i 0.337329i
\(584\) 0 0
\(585\) 1405.24i 0.0993155i
\(586\) 0 0
\(587\) −3621.91 + 3621.91i −0.254672 + 0.254672i −0.822883 0.568211i \(-0.807636\pi\)
0.568211 + 0.822883i \(0.307636\pi\)
\(588\) 0 0
\(589\) −787.492 787.492i −0.0550901 0.0550901i
\(590\) 0 0
\(591\) 3780.24 0.263111
\(592\) 0 0
\(593\) 2431.22 0.168361 0.0841807 0.996451i \(-0.473173\pi\)
0.0841807 + 0.996451i \(0.473173\pi\)
\(594\) 0 0
\(595\) 17352.9 + 17352.9i 1.19563 + 1.19563i
\(596\) 0 0
\(597\) 4158.28 4158.28i 0.285071 0.285071i
\(598\) 0 0
\(599\) 2435.10i 0.166102i 0.996545 + 0.0830512i \(0.0264665\pi\)
−0.996545 + 0.0830512i \(0.973533\pi\)
\(600\) 0 0
\(601\) 13113.4i 0.890029i 0.895523 + 0.445014i \(0.146801\pi\)
−0.895523 + 0.445014i \(0.853199\pi\)
\(602\) 0 0
\(603\) −553.388 + 553.388i −0.0373726 + 0.0373726i
\(604\) 0 0
\(605\) −15412.3 15412.3i −1.03570 1.03570i
\(606\) 0 0
\(607\) −13954.6 −0.933111 −0.466555 0.884492i \(-0.654505\pi\)
−0.466555 + 0.884492i \(0.654505\pi\)
\(608\) 0 0
\(609\) −23828.1 −1.58549
\(610\) 0 0
\(611\) 18200.9 + 18200.9i 1.20512 + 1.20512i
\(612\) 0 0
\(613\) −3230.00 + 3230.00i −0.212820 + 0.212820i −0.805464 0.592644i \(-0.798084\pi\)
0.592644 + 0.805464i \(0.298084\pi\)
\(614\) 0 0
\(615\) 451.204i 0.0295842i
\(616\) 0 0
\(617\) 21209.6i 1.38390i 0.721944 + 0.691951i \(0.243249\pi\)
−0.721944 + 0.691951i \(0.756751\pi\)
\(618\) 0 0
\(619\) 7408.86 7408.86i 0.481078 0.481078i −0.424398 0.905476i \(-0.639514\pi\)
0.905476 + 0.424398i \(0.139514\pi\)
\(620\) 0 0
\(621\) 1568.44 + 1568.44i 0.101351 + 0.101351i
\(622\) 0 0
\(623\) 16250.2 1.04502
\(624\) 0 0
\(625\) −33639.2 −2.15291
\(626\) 0 0
\(627\) 1165.07 + 1165.07i 0.0742078 + 0.0742078i
\(628\) 0 0
\(629\) 1590.39 1590.39i 0.100816 0.100816i
\(630\) 0 0
\(631\) 2254.96i 0.142264i −0.997467 0.0711319i \(-0.977339\pi\)
0.997467 0.0711319i \(-0.0226611\pi\)
\(632\) 0 0
\(633\) 21111.3i 1.32559i
\(634\) 0 0
\(635\) −35491.2 + 35491.2i −2.21799 + 2.21799i
\(636\) 0 0
\(637\) 23824.2 + 23824.2i 1.48187 + 1.48187i
\(638\) 0 0
\(639\) 1096.71 0.0678957
\(640\) 0 0
\(641\) −860.858 −0.0530450 −0.0265225 0.999648i \(-0.508443\pi\)
−0.0265225 + 0.999648i \(0.508443\pi\)
\(642\) 0 0
\(643\) −5562.62 5562.62i −0.341164 0.341164i 0.515641 0.856805i \(-0.327554\pi\)
−0.856805 + 0.515641i \(0.827554\pi\)
\(644\) 0 0
\(645\) 11357.0 11357.0i 0.693305 0.693305i
\(646\) 0 0
\(647\) 12046.5i 0.731990i −0.930617 0.365995i \(-0.880729\pi\)
0.930617 0.365995i \(-0.119271\pi\)
\(648\) 0 0
\(649\) 4754.98i 0.287595i
\(650\) 0 0
\(651\) 6251.04 6251.04i 0.376341 0.376341i
\(652\) 0 0
\(653\) −8140.02 8140.02i −0.487816 0.487816i 0.419801 0.907616i \(-0.362100\pi\)
−0.907616 + 0.419801i \(0.862100\pi\)
\(654\) 0 0
\(655\) −9953.28 −0.593751
\(656\) 0 0
\(657\) −955.998 −0.0567687
\(658\) 0 0
\(659\) −9068.51 9068.51i −0.536053 0.536053i 0.386314 0.922367i \(-0.373748\pi\)
−0.922367 + 0.386314i \(0.873748\pi\)
\(660\) 0 0
\(661\) −2394.88 + 2394.88i −0.140923 + 0.140923i −0.774049 0.633126i \(-0.781771\pi\)
0.633126 + 0.774049i \(0.281771\pi\)
\(662\) 0 0
\(663\) 10353.5i 0.606479i
\(664\) 0 0
\(665\) 12755.6i 0.743822i
\(666\) 0 0
\(667\) 1644.19 1644.19i 0.0954474 0.0954474i
\(668\) 0 0
\(669\) −5897.68 5897.68i −0.340833 0.340833i
\(670\) 0 0
\(671\) 10380.6 0.597227
\(672\) 0 0
\(673\) 7432.84 0.425728 0.212864 0.977082i \(-0.431721\pi\)
0.212864 + 0.977082i \(0.431721\pi\)
\(674\) 0 0
\(675\) −29729.2 29729.2i −1.69523 1.69523i
\(676\) 0 0
\(677\) 13532.2 13532.2i 0.768221 0.768221i −0.209572 0.977793i \(-0.567207\pi\)
0.977793 + 0.209572i \(0.0672072\pi\)
\(678\) 0 0
\(679\) 40303.4i 2.27791i
\(680\) 0 0
\(681\) 19019.4i 1.07022i
\(682\) 0 0
\(683\) 10404.7 10404.7i 0.582907 0.582907i −0.352794 0.935701i \(-0.614768\pi\)
0.935701 + 0.352794i \(0.114768\pi\)
\(684\) 0 0
\(685\) 37020.3 + 37020.3i 2.06492 + 2.06492i
\(686\) 0 0
\(687\) 20370.7 1.13128
\(688\) 0 0
\(689\) −15509.3 −0.857556
\(690\) 0 0
\(691\) −10759.5 10759.5i −0.592347 0.592347i 0.345918 0.938265i \(-0.387568\pi\)
−0.938265 + 0.345918i \(0.887568\pi\)
\(692\) 0 0
\(693\) 464.986 464.986i 0.0254883 0.0254883i
\(694\) 0 0
\(695\) 49555.9i 2.70469i
\(696\) 0 0
\(697\) 167.144i 0.00908326i
\(698\) 0 0
\(699\) 21677.3 21677.3i 1.17298 1.17298i
\(700\) 0 0
\(701\) −23974.2 23974.2i −1.29172 1.29172i −0.933726 0.357990i \(-0.883462\pi\)
−0.357990 0.933726i \(-0.616538\pi\)
\(702\) 0 0
\(703\) −1169.05 −0.0627192
\(704\) 0 0
\(705\) 50187.4 2.68109
\(706\) 0 0
\(707\) 9915.40 + 9915.40i 0.527450 + 0.527450i
\(708\) 0 0
\(709\) −12606.4 + 12606.4i −0.667762 + 0.667762i −0.957198 0.289435i \(-0.906532\pi\)
0.289435 + 0.957198i \(0.406532\pi\)
\(710\) 0 0
\(711\) 429.034i 0.0226302i
\(712\) 0 0
\(713\) 862.672i 0.0453118i
\(714\) 0 0
\(715\) −12515.1 + 12515.1i −0.654598 + 0.654598i
\(716\) 0 0
\(717\) 10468.4 + 10468.4i 0.545257 + 0.545257i
\(718\) 0 0
\(719\) −27256.0 −1.41374 −0.706868 0.707345i \(-0.749893\pi\)
−0.706868 + 0.707345i \(0.749893\pi\)
\(720\) 0 0
\(721\) 44937.9 2.32119
\(722\) 0 0
\(723\) −8399.26 8399.26i −0.432050 0.432050i
\(724\) 0 0
\(725\) −31165.2 + 31165.2i −1.59648 + 1.59648i
\(726\) 0 0
\(727\) 20743.7i 1.05824i −0.848547 0.529120i \(-0.822522\pi\)
0.848547 0.529120i \(-0.177478\pi\)
\(728\) 0 0
\(729\) 20532.9i 1.04318i
\(730\) 0 0
\(731\) −4207.09 + 4207.09i −0.212866 + 0.212866i
\(732\) 0 0
\(733\) −4775.28 4775.28i −0.240626 0.240626i 0.576483 0.817109i \(-0.304425\pi\)
−0.817109 + 0.576483i \(0.804425\pi\)
\(734\) 0 0
\(735\) 65693.4 3.29678
\(736\) 0 0
\(737\) 9856.95 0.492653
\(738\) 0 0
\(739\) −13408.3 13408.3i −0.667431 0.667431i 0.289689 0.957121i \(-0.406448\pi\)
−0.957121 + 0.289689i \(0.906448\pi\)
\(740\) 0 0
\(741\) −3805.27 + 3805.27i −0.188651 + 0.188651i
\(742\) 0 0
\(743\) 495.531i 0.0244674i 0.999925 + 0.0122337i \(0.00389420\pi\)
−0.999925 + 0.0122337i \(0.996106\pi\)
\(744\) 0 0
\(745\) 8952.46i 0.440259i
\(746\) 0 0
\(747\) −837.724 + 837.724i −0.0410317 + 0.0410317i
\(748\) 0 0
\(749\) 10572.8 + 10572.8i 0.515784 + 0.515784i
\(750\) 0 0
\(751\) −4249.85 −0.206497 −0.103248 0.994656i \(-0.532924\pi\)
−0.103248 + 0.994656i \(0.532924\pi\)
\(752\) 0 0
\(753\) −29593.6 −1.43221
\(754\) 0 0
\(755\) −35112.7 35112.7i −1.69256 1.69256i
\(756\) 0 0
\(757\) 16351.7 16351.7i 0.785091 0.785091i −0.195594 0.980685i \(-0.562663\pi\)
0.980685 + 0.195594i \(0.0626633\pi\)
\(758\) 0 0
\(759\) 1276.29i 0.0610362i
\(760\) 0 0
\(761\) 29572.7i 1.40869i 0.709860 + 0.704343i \(0.248758\pi\)
−0.709860 + 0.704343i \(0.751242\pi\)
\(762\) 0 0
\(763\) 15277.3 15277.3i 0.724868 0.724868i
\(764\) 0 0
\(765\) 717.699 + 717.699i 0.0339195 + 0.0339195i
\(766\) 0 0
\(767\) 15530.4 0.731123
\(768\) 0 0
\(769\) −10459.3 −0.490471 −0.245235 0.969464i \(-0.578865\pi\)
−0.245235 + 0.969464i \(0.578865\pi\)
\(770\) 0 0
\(771\) 17231.2 + 17231.2i 0.804884 + 0.804884i
\(772\) 0 0
\(773\) −25046.5 + 25046.5i −1.16541 + 1.16541i −0.182132 + 0.983274i \(0.558300\pi\)
−0.983274 + 0.182132i \(0.941700\pi\)
\(774\) 0 0
\(775\) 16351.7i 0.757896i
\(776\) 0 0
\(777\) 9279.82i 0.428458i
\(778\) 0 0
\(779\) 61.4314 61.4314i 0.00282543 0.00282543i
\(780\) 0 0
\(781\) −9767.35 9767.35i −0.447507 0.447507i
\(782\) 0 0
\(783\) −21571.9 −0.984570
\(784\) 0 0
\(785\) −7527.06 −0.342232
\(786\) 0 0
\(787\) −25779.4 25779.4i −1.16765 1.16765i −0.982760 0.184886i \(-0.940808\pi\)
−0.184886 0.982760i \(-0.559192\pi\)
\(788\) 0 0
\(789\) −18884.8 + 18884.8i −0.852114 + 0.852114i
\(790\) 0 0
\(791\) 20038.0i 0.900718i
\(792\) 0 0
\(793\) 33904.5i 1.51827i
\(794\) 0 0
\(795\) −21382.8 + 21382.8i −0.953924 + 0.953924i
\(796\) 0 0
\(797\) 22655.8 + 22655.8i 1.00691 + 1.00691i 0.999976 + 0.00693604i \(0.00220783\pi\)
0.00693604 + 0.999976i \(0.497792\pi\)
\(798\) 0 0
\(799\) −18591.4 −0.823176
\(800\) 0 0
\(801\) 672.090 0.0296469
\(802\) 0 0
\(803\) 8514.12 + 8514.12i 0.374168 + 0.374168i
\(804\) 0 0
\(805\) −6986.68 + 6986.68i −0.305898 + 0.305898i
\(806\) 0 0
\(807\) 28737.8i 1.25356i
\(808\) 0 0
\(809\) 37498.5i 1.62964i 0.579715 + 0.814819i \(0.303164\pi\)
−0.579715 + 0.814819i \(0.696836\pi\)
\(810\) 0 0
\(811\) −26165.2 + 26165.2i −1.13290 + 1.13290i −0.143210 + 0.989692i \(0.545742\pi\)
−0.989692 + 0.143210i \(0.954258\pi\)
\(812\) 0 0
\(813\) −347.924 347.924i −0.0150089 0.0150089i
\(814\) 0 0
\(815\) −24906.3 −1.07047
\(816\) 0 0
\(817\) 3092.51 0.132428
\(818\) 0 0
\(819\) 1518.71 + 1518.71i 0.0647961 + 0.0647961i
\(820\) 0 0
\(821\) 18365.4 18365.4i 0.780701 0.780701i −0.199248 0.979949i \(-0.563850\pi\)
0.979949 + 0.199248i \(0.0638501\pi\)
\(822\) 0 0
\(823\) 26807.9i 1.13544i −0.823222 0.567719i \(-0.807826\pi\)
0.823222 0.567719i \(-0.192174\pi\)
\(824\) 0 0
\(825\) 24191.7i 1.02091i
\(826\) 0 0
\(827\) −12688.0 + 12688.0i −0.533501 + 0.533501i −0.921612 0.388112i \(-0.873127\pi\)
0.388112 + 0.921612i \(0.373127\pi\)
\(828\) 0 0
\(829\) 7118.03 + 7118.03i 0.298214 + 0.298214i 0.840314 0.542100i \(-0.182371\pi\)
−0.542100 + 0.840314i \(0.682371\pi\)
\(830\) 0 0
\(831\) 4454.82 0.185964
\(832\) 0 0
\(833\) −24335.5 −1.01221
\(834\) 0 0
\(835\) 51199.6 + 51199.6i 2.12196 + 2.12196i
\(836\) 0 0
\(837\) 5659.16 5659.16i 0.233703 0.233703i
\(838\) 0 0
\(839\) 44827.5i 1.84460i 0.386480 + 0.922298i \(0.373691\pi\)
−0.386480 + 0.922298i \(0.626309\pi\)
\(840\) 0 0
\(841\) 1775.12i 0.0727836i
\(842\) 0 0
\(843\) −256.372 + 256.372i −0.0104744 + 0.0104744i
\(844\) 0 0
\(845\) −9111.07 9111.07i −0.370923 0.370923i
\(846\) 0 0
\(847\) 33313.6 1.35144
\(848\) 0 0
\(849\) −7118.80 −0.287770
\(850\) 0 0
\(851\) 640.328 + 640.328i 0.0257934 + 0.0257934i
\(852\) 0 0
\(853\) 10377.2 10377.2i 0.416540 0.416540i −0.467469 0.884009i \(-0.654834\pi\)
0.884009 + 0.467469i \(0.154834\pi\)
\(854\) 0 0
\(855\) 527.560i 0.0211019i
\(856\) 0 0
\(857\) 33750.1i 1.34525i −0.739982 0.672626i \(-0.765166\pi\)
0.739982 0.672626i \(-0.234834\pi\)
\(858\) 0 0
\(859\) −1575.08 + 1575.08i −0.0625625 + 0.0625625i −0.737696 0.675133i \(-0.764086\pi\)
0.675133 + 0.737696i \(0.264086\pi\)
\(860\) 0 0
\(861\) 487.637 + 487.637i 0.0193015 + 0.0193015i
\(862\) 0 0
\(863\) 4666.15 0.184053 0.0920264 0.995757i \(-0.470666\pi\)
0.0920264 + 0.995757i \(0.470666\pi\)
\(864\) 0 0
\(865\) −4639.51 −0.182368
\(866\) 0 0
\(867\) −12326.3 12326.3i −0.482841 0.482841i
\(868\) 0 0
\(869\) −3820.98 + 3820.98i −0.149158 + 0.149158i
\(870\) 0 0
\(871\) 32194.2i 1.25242i
\(872\) 0 0
\(873\) 1666.91i 0.0646235i
\(874\) 0 0
\(875\) 75949.6 75949.6i 2.93436 2.93436i
\(876\) 0 0
\(877\) −5252.69 5252.69i −0.202247 0.202247i 0.598715 0.800962i \(-0.295678\pi\)
−0.800962 + 0.598715i \(0.795678\pi\)
\(878\) 0 0
\(879\) −27804.6 −1.06692
\(880\) 0 0
\(881\) 68.4502 0.00261764 0.00130882 0.999999i \(-0.499583\pi\)
0.00130882 + 0.999999i \(0.499583\pi\)
\(882\) 0 0
\(883\) −14434.2 14434.2i −0.550112 0.550112i 0.376361 0.926473i \(-0.377175\pi\)
−0.926473 + 0.376361i \(0.877175\pi\)
\(884\) 0 0
\(885\) 21412.0 21412.0i 0.813283 0.813283i
\(886\) 0 0
\(887\) 32526.1i 1.23125i −0.788038 0.615626i \(-0.788903\pi\)
0.788038 0.615626i \(-0.211097\pi\)
\(888\) 0 0
\(889\) 76714.1i 2.89416i
\(890\) 0 0
\(891\) −7970.80 + 7970.80i −0.299699 + 0.299699i
\(892\) 0 0
\(893\) 6833.02 + 6833.02i 0.256056 + 0.256056i
\(894\) 0 0
\(895\) 60292.5 2.25180
\(896\) 0 0
\(897\) 4168.55 0.155166
\(898\) 0 0
\(899\) −5932.50 5932.50i −0.220089 0.220089i
\(900\) 0 0
\(901\) 7921.05 7921.05i 0.292884 0.292884i
\(902\) 0 0
\(903\) 24548.1i 0.904661i
\(904\) 0 0
\(905\) 42010.2i 1.54306i
\(906\) 0 0
\(907\) −25769.0 + 25769.0i −0.943379 + 0.943379i −0.998481 0.0551015i \(-0.982452\pi\)
0.0551015 + 0.998481i \(0.482452\pi\)
\(908\) 0 0
\(909\) 410.091 + 410.091i 0.0149635 + 0.0149635i
\(910\) 0 0
\(911\) 5427.50 0.197389 0.0986944 0.995118i \(-0.468533\pi\)
0.0986944 + 0.995118i \(0.468533\pi\)
\(912\) 0 0
\(913\) 14921.5 0.540888
\(914\) 0 0
\(915\) 46744.5 + 46744.5i 1.68888 + 1.68888i
\(916\) 0 0
\(917\) 10757.0 10757.0i 0.387379 0.387379i
\(918\) 0 0
\(919\) 5669.76i 0.203513i −0.994809 0.101756i \(-0.967554\pi\)
0.994809 0.101756i \(-0.0324462\pi\)
\(920\) 0 0
\(921\) 13467.7i 0.481842i
\(922\) 0 0
\(923\) 31901.5 31901.5i 1.13765 1.13765i
\(924\) 0 0
\(925\) −12137.2 12137.2i −0.431426 0.431426i
\(926\) 0 0
\(927\) 1858.59 0.0658511
\(928\) 0 0
\(929\) −39311.6 −1.38835 −0.694173 0.719808i \(-0.744230\pi\)
−0.694173 + 0.719808i \(0.744230\pi\)
\(930\) 0 0
\(931\) 8944.16 + 8944.16i 0.314858 + 0.314858i
\(932\) 0 0
\(933\) 34596.9 34596.9i 1.21399 1.21399i
\(934\) 0 0
\(935\) 12783.7i 0.447134i
\(936\) 0 0
\(937\) 11500.8i 0.400977i −0.979696 0.200489i \(-0.935747\pi\)
0.979696 0.200489i \(-0.0642530\pi\)
\(938\) 0 0
\(939\) 7493.15 7493.15i 0.260415 0.260415i
\(940\) 0 0
\(941\) −20955.0 20955.0i −0.725945 0.725945i 0.243865 0.969809i \(-0.421585\pi\)
−0.969809 + 0.243865i \(0.921585\pi\)
\(942\) 0 0
\(943\) −67.2961 −0.00232393
\(944\) 0 0
\(945\) 91665.8 3.15544
\(946\) 0 0
\(947\) 13425.8 + 13425.8i 0.460698 + 0.460698i 0.898884 0.438186i \(-0.144379\pi\)
−0.438186 + 0.898884i \(0.644379\pi\)
\(948\) 0 0
\(949\) −27808.3 + 27808.3i −0.951208 + 0.951208i
\(950\) 0 0
\(951\) 16131.7i 0.550058i
\(952\) 0 0
\(953\) 9285.90i 0.315635i −0.987468 0.157817i \(-0.949554\pi\)
0.987468 0.157817i \(-0.0504457\pi\)
\(954\) 0 0
\(955\) −24397.6 + 24397.6i −0.826688 + 0.826688i
\(956\) 0 0
\(957\) 8776.92 + 8776.92i 0.296466 + 0.296466i
\(958\) 0 0
\(959\) −80019.1 −2.69442
\(960\) 0 0
\(961\) −26678.3 −0.895517
\(962\) 0 0
\(963\) 437.281 + 437.281i 0.0146326 + 0.0146326i
\(964\) 0 0
\(965\) 7169.50 7169.50i 0.239165 0.239165i
\(966\) 0 0
\(967\) 986.542i 0.0328077i −0.999865 0.0164039i \(-0.994778\pi\)
0.999865 0.0164039i \(-0.00522175\pi\)
\(968\) 0 0
\(969\) 3886.93i 0.128861i
\(970\) 0 0
\(971\) 39698.5 39698.5i 1.31203 1.31203i 0.392119 0.919914i \(-0.371742\pi\)
0.919914 0.392119i \(-0.128258\pi\)
\(972\) 0 0
\(973\) −53557.4 53557.4i −1.76461 1.76461i
\(974\) 0 0
\(975\) −79013.6 −2.59534
\(976\) 0 0
\(977\) −29110.8 −0.953261 −0.476630 0.879104i \(-0.658142\pi\)
−0.476630 + 0.879104i \(0.658142\pi\)
\(978\) 0 0
\(979\) −5985.64 5985.64i −0.195405 0.195405i
\(980\) 0 0
\(981\) 631.852 631.852i 0.0205642 0.0205642i
\(982\) 0 0
\(983\) 22518.4i 0.730646i −0.930881 0.365323i \(-0.880959\pi\)
0.930881 0.365323i \(-0.119041\pi\)
\(984\) 0 0
\(985\) 15244.9i 0.493139i
\(986\) 0 0
\(987\) −54239.9 + 54239.9i −1.74921 + 1.74921i
\(988\) 0 0
\(989\) −1693.87 1693.87i −0.0544611 0.0544611i
\(990\) 0 0
\(991\) 1836.28 0.0588613 0.0294306 0.999567i \(-0.490631\pi\)
0.0294306 + 0.999567i \(0.490631\pi\)
\(992\) 0 0
\(993\) 7920.78 0.253130
\(994\) 0 0
\(995\) 16769.4 + 16769.4i 0.534298 + 0.534298i
\(996\) 0 0
\(997\) 37880.7 37880.7i 1.20331 1.20331i 0.230150 0.973155i \(-0.426078\pi\)
0.973155 0.230150i \(-0.0739216\pi\)
\(998\) 0 0
\(999\) 8401.15i 0.266067i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.e.c.65.7 yes 16
4.3 odd 2 inner 256.4.e.c.65.2 16
8.3 odd 2 256.4.e.d.65.7 yes 16
8.5 even 2 256.4.e.d.65.2 yes 16
16.3 odd 4 256.4.e.d.193.7 yes 16
16.5 even 4 inner 256.4.e.c.193.7 yes 16
16.11 odd 4 inner 256.4.e.c.193.2 yes 16
16.13 even 4 256.4.e.d.193.2 yes 16
32.3 odd 8 1024.4.b.l.513.3 16
32.5 even 8 1024.4.a.k.1.1 8
32.11 odd 8 1024.4.a.k.1.2 8
32.13 even 8 1024.4.b.l.513.4 16
32.19 odd 8 1024.4.b.l.513.14 16
32.21 even 8 1024.4.a.l.1.8 8
32.27 odd 8 1024.4.a.l.1.7 8
32.29 even 8 1024.4.b.l.513.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
256.4.e.c.65.2 16 4.3 odd 2 inner
256.4.e.c.65.7 yes 16 1.1 even 1 trivial
256.4.e.c.193.2 yes 16 16.11 odd 4 inner
256.4.e.c.193.7 yes 16 16.5 even 4 inner
256.4.e.d.65.2 yes 16 8.5 even 2
256.4.e.d.65.7 yes 16 8.3 odd 2
256.4.e.d.193.2 yes 16 16.13 even 4
256.4.e.d.193.7 yes 16 16.3 odd 4
1024.4.a.k.1.1 8 32.5 even 8
1024.4.a.k.1.2 8 32.11 odd 8
1024.4.a.l.1.7 8 32.27 odd 8
1024.4.a.l.1.8 8 32.21 even 8
1024.4.b.l.513.3 16 32.3 odd 8
1024.4.b.l.513.4 16 32.13 even 8
1024.4.b.l.513.13 16 32.29 even 8
1024.4.b.l.513.14 16 32.19 odd 8