Properties

Label 256.12.b.i
Level $256$
Weight $12$
Character orbit 256.b
Analytic conductor $196.696$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,12,Mod(129,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.129"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-409620] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(196.695854223\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{273})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 137x^{2} + 4624 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} - 3515 \beta_1 q^{5} + 33 \beta_{3} q^{7} - 102405 q^{9} + 1371 \beta_{2} q^{11} - 591033 \beta_1 q^{13} - 3515 \beta_{3} q^{15} + 5443874 q^{17} + 39675 \beta_{2} q^{19} - 9225216 \beta_1 q^{21}+ \cdots - 140397255 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 409620 q^{9} + 21775496 q^{17} - 2371100 q^{25} + 1533063168 q^{33} - 1119997288 q^{41} - 3038392924 q^{49} + 44364902400 q^{57} - 33239695920 q^{65} + 87212672472 q^{73} - 156140056476 q^{81} - 88783085800 q^{89}+ \cdots + 402812930376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 137x^{2} + 4624 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 69\nu ) / 34 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{3} + 1640\nu ) / 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 128\nu^{2} + 8768 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 16\beta_1 ) / 64 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 8768 ) / 128 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -69\beta_{2} + 3280\beta_1 ) / 64 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
7.76136i
8.76136i
8.76136i
7.76136i
0 528.727i 0 7030.00i 0 34896.0 0 −102405. 0
129.2 0 528.727i 0 7030.00i 0 −34896.0 0 −102405. 0
129.3 0 528.727i 0 7030.00i 0 −34896.0 0 −102405. 0
129.4 0 528.727i 0 7030.00i 0 34896.0 0 −102405. 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.12.b.i 4
4.b odd 2 1 inner 256.12.b.i 4
8.b even 2 1 inner 256.12.b.i 4
8.d odd 2 1 inner 256.12.b.i 4
16.e even 4 1 32.12.a.c 2
16.e even 4 1 64.12.a.i 2
16.f odd 4 1 32.12.a.c 2
16.f odd 4 1 64.12.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.12.a.c 2 16.e even 4 1
32.12.a.c 2 16.f odd 4 1
64.12.a.i 2 16.e even 4 1
64.12.a.i 2 16.f odd 4 1
256.12.b.i 4 1.a even 1 1 trivial
256.12.b.i 4 4.b odd 2 1 inner
256.12.b.i 4 8.b even 2 1 inner
256.12.b.i 4 8.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{12}^{\mathrm{new}}(256, [\chi])\):

\( T_{3}^{2} + 279552 \) Copy content Toggle raw display
\( T_{7}^{2} - 1217728512 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 279552)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 49420900)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 1217728512)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 525457400832)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1397280028356)^{2} \) Copy content Toggle raw display
$17$ \( (T - 5443874)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 440044375680000)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 43582211592192)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 26\!\cdots\!36)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 39\!\cdots\!12)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 29\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( (T + 279999322)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 91\!\cdots\!48)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 35\!\cdots\!92)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 22\!\cdots\!04)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 19\!\cdots\!88)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 55\!\cdots\!24)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 11\!\cdots\!12)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 72\!\cdots\!72)^{2} \) Copy content Toggle raw display
$73$ \( (T - 21803168118)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 11\!\cdots\!68)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 38\!\cdots\!32)^{2} \) Copy content Toggle raw display
$89$ \( (T + 22195771450)^{4} \) Copy content Toggle raw display
$97$ \( (T - 100703232594)^{4} \) Copy content Toggle raw display
show more
show less