Properties

Label 256.12.a.i.1.3
Level $256$
Weight $12$
Character 256.1
Self dual yes
Analytic conductor $196.696$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,12,Mod(1,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,21040,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(196.695854223\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9138x^{2} + 12641832 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{17} \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(41.2252\) of defining polynomial
Character \(\chi\) \(=\) 256.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+329.802 q^{3} +12216.3 q^{5} -87187.3 q^{7} -68377.9 q^{9} -343802. q^{11} +774529. q^{13} +4.02896e6 q^{15} -2.60742e6 q^{17} +1.33083e7 q^{19} -2.87545e7 q^{21} -4.56234e7 q^{23} +1.00410e8 q^{25} -8.09745e7 q^{27} +1.15036e8 q^{29} -3.59943e7 q^{31} -1.13386e8 q^{33} -1.06511e9 q^{35} -3.36790e8 q^{37} +2.55441e8 q^{39} +5.13921e8 q^{41} -4.70170e8 q^{43} -8.35326e8 q^{45} +2.11278e9 q^{47} +5.62429e9 q^{49} -8.59932e8 q^{51} +4.25150e9 q^{53} -4.20000e9 q^{55} +4.38910e9 q^{57} +3.15524e8 q^{59} +4.85644e8 q^{61} +5.96168e9 q^{63} +9.46189e9 q^{65} +4.92012e9 q^{67} -1.50467e10 q^{69} +2.43357e10 q^{71} +1.87316e10 q^{73} +3.31155e10 q^{75} +2.99751e10 q^{77} -2.54101e10 q^{79} -1.45926e10 q^{81} +4.47849e10 q^{83} -3.18531e10 q^{85} +3.79392e10 q^{87} -7.21926e10 q^{89} -6.75290e10 q^{91} -1.18710e10 q^{93} +1.62579e11 q^{95} -3.03613e9 q^{97} +2.35084e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 21040 q^{5} + 461076 q^{9} - 981072 q^{13} - 15482760 q^{17} - 14846976 q^{21} + 108919500 q^{25} + 597997232 q^{29} - 41842944 q^{33} + 353870704 q^{37} + 1861173400 q^{41} - 2684766480 q^{45} + 9205489060 q^{49}+ \cdots + 273341582264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 329.802 0.783585 0.391792 0.920054i \(-0.371855\pi\)
0.391792 + 0.920054i \(0.371855\pi\)
\(4\) 0 0
\(5\) 12216.3 1.74826 0.874129 0.485694i \(-0.161433\pi\)
0.874129 + 0.485694i \(0.161433\pi\)
\(6\) 0 0
\(7\) −87187.3 −1.96071 −0.980356 0.197237i \(-0.936803\pi\)
−0.980356 + 0.197237i \(0.936803\pi\)
\(8\) 0 0
\(9\) −68377.9 −0.385995
\(10\) 0 0
\(11\) −343802. −0.643648 −0.321824 0.946799i \(-0.604296\pi\)
−0.321824 + 0.946799i \(0.604296\pi\)
\(12\) 0 0
\(13\) 774529. 0.578561 0.289280 0.957244i \(-0.406584\pi\)
0.289280 + 0.957244i \(0.406584\pi\)
\(14\) 0 0
\(15\) 4.02896e6 1.36991
\(16\) 0 0
\(17\) −2.60742e6 −0.445392 −0.222696 0.974888i \(-0.571486\pi\)
−0.222696 + 0.974888i \(0.571486\pi\)
\(18\) 0 0
\(19\) 1.33083e7 1.23304 0.616522 0.787338i \(-0.288541\pi\)
0.616522 + 0.787338i \(0.288541\pi\)
\(20\) 0 0
\(21\) −2.87545e7 −1.53638
\(22\) 0 0
\(23\) −4.56234e7 −1.47803 −0.739017 0.673686i \(-0.764710\pi\)
−0.739017 + 0.673686i \(0.764710\pi\)
\(24\) 0 0
\(25\) 1.00410e8 2.05640
\(26\) 0 0
\(27\) −8.09745e7 −1.08604
\(28\) 0 0
\(29\) 1.15036e8 1.04147 0.520734 0.853719i \(-0.325658\pi\)
0.520734 + 0.853719i \(0.325658\pi\)
\(30\) 0 0
\(31\) −3.59943e7 −0.225810 −0.112905 0.993606i \(-0.536016\pi\)
−0.112905 + 0.993606i \(0.536016\pi\)
\(32\) 0 0
\(33\) −1.13386e8 −0.504353
\(34\) 0 0
\(35\) −1.06511e9 −3.42783
\(36\) 0 0
\(37\) −3.36790e8 −0.798454 −0.399227 0.916852i \(-0.630722\pi\)
−0.399227 + 0.916852i \(0.630722\pi\)
\(38\) 0 0
\(39\) 2.55441e8 0.453351
\(40\) 0 0
\(41\) 5.13921e8 0.692763 0.346382 0.938094i \(-0.387410\pi\)
0.346382 + 0.938094i \(0.387410\pi\)
\(42\) 0 0
\(43\) −4.70170e8 −0.487729 −0.243865 0.969809i \(-0.578415\pi\)
−0.243865 + 0.969809i \(0.578415\pi\)
\(44\) 0 0
\(45\) −8.35326e8 −0.674819
\(46\) 0 0
\(47\) 2.11278e9 1.34374 0.671871 0.740668i \(-0.265491\pi\)
0.671871 + 0.740668i \(0.265491\pi\)
\(48\) 0 0
\(49\) 5.62429e9 2.84439
\(50\) 0 0
\(51\) −8.59932e8 −0.349002
\(52\) 0 0
\(53\) 4.25150e9 1.39645 0.698224 0.715879i \(-0.253974\pi\)
0.698224 + 0.715879i \(0.253974\pi\)
\(54\) 0 0
\(55\) −4.20000e9 −1.12526
\(56\) 0 0
\(57\) 4.38910e9 0.966194
\(58\) 0 0
\(59\) 3.15524e8 0.0574574 0.0287287 0.999587i \(-0.490854\pi\)
0.0287287 + 0.999587i \(0.490854\pi\)
\(60\) 0 0
\(61\) 4.85644e8 0.0736214 0.0368107 0.999322i \(-0.488280\pi\)
0.0368107 + 0.999322i \(0.488280\pi\)
\(62\) 0 0
\(63\) 5.96168e9 0.756825
\(64\) 0 0
\(65\) 9.46189e9 1.01147
\(66\) 0 0
\(67\) 4.92012e9 0.445209 0.222605 0.974909i \(-0.428544\pi\)
0.222605 + 0.974909i \(0.428544\pi\)
\(68\) 0 0
\(69\) −1.50467e10 −1.15817
\(70\) 0 0
\(71\) 2.43357e10 1.60075 0.800375 0.599500i \(-0.204634\pi\)
0.800375 + 0.599500i \(0.204634\pi\)
\(72\) 0 0
\(73\) 1.87316e10 1.05755 0.528773 0.848763i \(-0.322652\pi\)
0.528773 + 0.848763i \(0.322652\pi\)
\(74\) 0 0
\(75\) 3.31155e10 1.61137
\(76\) 0 0
\(77\) 2.99751e10 1.26201
\(78\) 0 0
\(79\) −2.54101e10 −0.929089 −0.464545 0.885550i \(-0.653782\pi\)
−0.464545 + 0.885550i \(0.653782\pi\)
\(80\) 0 0
\(81\) −1.45926e10 −0.465013
\(82\) 0 0
\(83\) 4.47849e10 1.24796 0.623982 0.781439i \(-0.285514\pi\)
0.623982 + 0.781439i \(0.285514\pi\)
\(84\) 0 0
\(85\) −3.18531e10 −0.778660
\(86\) 0 0
\(87\) 3.79392e10 0.816078
\(88\) 0 0
\(89\) −7.21926e10 −1.37040 −0.685200 0.728355i \(-0.740285\pi\)
−0.685200 + 0.728355i \(0.740285\pi\)
\(90\) 0 0
\(91\) −6.75290e10 −1.13439
\(92\) 0 0
\(93\) −1.18710e10 −0.176942
\(94\) 0 0
\(95\) 1.62579e11 2.15568
\(96\) 0 0
\(97\) −3.03613e9 −0.0358984 −0.0179492 0.999839i \(-0.505714\pi\)
−0.0179492 + 0.999839i \(0.505714\pi\)
\(98\) 0 0
\(99\) 2.35084e10 0.248445
\(100\) 0 0
\(101\) 2.00866e10 0.190168 0.0950842 0.995469i \(-0.469688\pi\)
0.0950842 + 0.995469i \(0.469688\pi\)
\(102\) 0 0
\(103\) 5.41042e10 0.459861 0.229930 0.973207i \(-0.426150\pi\)
0.229930 + 0.973207i \(0.426150\pi\)
\(104\) 0 0
\(105\) −3.51274e11 −2.68599
\(106\) 0 0
\(107\) −1.56922e11 −1.08162 −0.540808 0.841146i \(-0.681881\pi\)
−0.540808 + 0.841146i \(0.681881\pi\)
\(108\) 0 0
\(109\) 9.29760e10 0.578796 0.289398 0.957209i \(-0.406545\pi\)
0.289398 + 0.957209i \(0.406545\pi\)
\(110\) 0 0
\(111\) −1.11074e11 −0.625657
\(112\) 0 0
\(113\) 1.99483e11 1.01853 0.509266 0.860609i \(-0.329917\pi\)
0.509266 + 0.860609i \(0.329917\pi\)
\(114\) 0 0
\(115\) −5.57350e11 −2.58399
\(116\) 0 0
\(117\) −5.29606e10 −0.223322
\(118\) 0 0
\(119\) 2.27334e11 0.873285
\(120\) 0 0
\(121\) −1.67112e11 −0.585717
\(122\) 0 0
\(123\) 1.69492e11 0.542839
\(124\) 0 0
\(125\) 6.30145e11 1.84687
\(126\) 0 0
\(127\) 2.99734e11 0.805036 0.402518 0.915412i \(-0.368135\pi\)
0.402518 + 0.915412i \(0.368135\pi\)
\(128\) 0 0
\(129\) −1.55063e11 −0.382177
\(130\) 0 0
\(131\) 2.06627e11 0.467945 0.233972 0.972243i \(-0.424827\pi\)
0.233972 + 0.972243i \(0.424827\pi\)
\(132\) 0 0
\(133\) −1.16032e12 −2.41764
\(134\) 0 0
\(135\) −9.89211e11 −1.89869
\(136\) 0 0
\(137\) 5.55695e10 0.0983725 0.0491862 0.998790i \(-0.484337\pi\)
0.0491862 + 0.998790i \(0.484337\pi\)
\(138\) 0 0
\(139\) 8.41080e11 1.37485 0.687426 0.726254i \(-0.258740\pi\)
0.687426 + 0.726254i \(0.258740\pi\)
\(140\) 0 0
\(141\) 6.96798e11 1.05294
\(142\) 0 0
\(143\) −2.66284e11 −0.372390
\(144\) 0 0
\(145\) 1.40532e12 1.82075
\(146\) 0 0
\(147\) 1.85490e12 2.22882
\(148\) 0 0
\(149\) 5.74018e11 0.640326 0.320163 0.947362i \(-0.396262\pi\)
0.320163 + 0.947362i \(0.396262\pi\)
\(150\) 0 0
\(151\) 8.98713e11 0.931639 0.465820 0.884880i \(-0.345760\pi\)
0.465820 + 0.884880i \(0.345760\pi\)
\(152\) 0 0
\(153\) 1.78290e11 0.171919
\(154\) 0 0
\(155\) −4.39718e11 −0.394775
\(156\) 0 0
\(157\) 1.62105e12 1.35627 0.678136 0.734936i \(-0.262788\pi\)
0.678136 + 0.734936i \(0.262788\pi\)
\(158\) 0 0
\(159\) 1.40215e12 1.09424
\(160\) 0 0
\(161\) 3.97778e12 2.89800
\(162\) 0 0
\(163\) −1.11004e12 −0.755623 −0.377812 0.925882i \(-0.623323\pi\)
−0.377812 + 0.925882i \(0.623323\pi\)
\(164\) 0 0
\(165\) −1.38517e12 −0.881739
\(166\) 0 0
\(167\) −1.02719e12 −0.611943 −0.305972 0.952041i \(-0.598981\pi\)
−0.305972 + 0.952041i \(0.598981\pi\)
\(168\) 0 0
\(169\) −1.19227e12 −0.665267
\(170\) 0 0
\(171\) −9.09994e11 −0.475949
\(172\) 0 0
\(173\) −1.41195e12 −0.692732 −0.346366 0.938100i \(-0.612584\pi\)
−0.346366 + 0.938100i \(0.612584\pi\)
\(174\) 0 0
\(175\) −8.75450e12 −4.03202
\(176\) 0 0
\(177\) 1.04060e11 0.0450227
\(178\) 0 0
\(179\) −2.12297e12 −0.863481 −0.431740 0.901998i \(-0.642100\pi\)
−0.431740 + 0.901998i \(0.642100\pi\)
\(180\) 0 0
\(181\) 3.95208e12 1.51214 0.756072 0.654488i \(-0.227116\pi\)
0.756072 + 0.654488i \(0.227116\pi\)
\(182\) 0 0
\(183\) 1.60166e11 0.0576886
\(184\) 0 0
\(185\) −4.11434e12 −1.39590
\(186\) 0 0
\(187\) 8.96437e11 0.286676
\(188\) 0 0
\(189\) 7.05994e12 2.12942
\(190\) 0 0
\(191\) 5.07410e12 1.44436 0.722180 0.691705i \(-0.243140\pi\)
0.722180 + 0.691705i \(0.243140\pi\)
\(192\) 0 0
\(193\) −6.04183e12 −1.62406 −0.812032 0.583613i \(-0.801639\pi\)
−0.812032 + 0.583613i \(0.801639\pi\)
\(194\) 0 0
\(195\) 3.12055e12 0.792575
\(196\) 0 0
\(197\) −2.26540e12 −0.543977 −0.271988 0.962301i \(-0.587681\pi\)
−0.271988 + 0.962301i \(0.587681\pi\)
\(198\) 0 0
\(199\) −1.90553e12 −0.432836 −0.216418 0.976301i \(-0.569437\pi\)
−0.216418 + 0.976301i \(0.569437\pi\)
\(200\) 0 0
\(201\) 1.62266e12 0.348859
\(202\) 0 0
\(203\) −1.00297e13 −2.04202
\(204\) 0 0
\(205\) 6.27822e12 1.21113
\(206\) 0 0
\(207\) 3.11963e12 0.570514
\(208\) 0 0
\(209\) −4.57542e12 −0.793646
\(210\) 0 0
\(211\) −5.51515e12 −0.907828 −0.453914 0.891045i \(-0.649973\pi\)
−0.453914 + 0.891045i \(0.649973\pi\)
\(212\) 0 0
\(213\) 8.02596e12 1.25432
\(214\) 0 0
\(215\) −5.74375e12 −0.852676
\(216\) 0 0
\(217\) 3.13824e12 0.442749
\(218\) 0 0
\(219\) 6.17771e12 0.828677
\(220\) 0 0
\(221\) −2.01952e12 −0.257686
\(222\) 0 0
\(223\) 7.92520e11 0.0962352 0.0481176 0.998842i \(-0.484678\pi\)
0.0481176 + 0.998842i \(0.484678\pi\)
\(224\) 0 0
\(225\) −6.86585e12 −0.793762
\(226\) 0 0
\(227\) −2.98398e12 −0.328589 −0.164295 0.986411i \(-0.552535\pi\)
−0.164295 + 0.986411i \(0.552535\pi\)
\(228\) 0 0
\(229\) −1.31479e12 −0.137962 −0.0689811 0.997618i \(-0.521975\pi\)
−0.0689811 + 0.997618i \(0.521975\pi\)
\(230\) 0 0
\(231\) 9.88585e12 0.988891
\(232\) 0 0
\(233\) −9.18610e12 −0.876342 −0.438171 0.898892i \(-0.644374\pi\)
−0.438171 + 0.898892i \(0.644374\pi\)
\(234\) 0 0
\(235\) 2.58104e13 2.34921
\(236\) 0 0
\(237\) −8.38030e12 −0.728020
\(238\) 0 0
\(239\) 7.02201e12 0.582469 0.291235 0.956652i \(-0.405934\pi\)
0.291235 + 0.956652i \(0.405934\pi\)
\(240\) 0 0
\(241\) −3.97192e12 −0.314707 −0.157354 0.987542i \(-0.550296\pi\)
−0.157354 + 0.987542i \(0.550296\pi\)
\(242\) 0 0
\(243\) 9.53173e12 0.721668
\(244\) 0 0
\(245\) 6.87081e13 4.97273
\(246\) 0 0
\(247\) 1.03077e13 0.713390
\(248\) 0 0
\(249\) 1.47701e13 0.977886
\(250\) 0 0
\(251\) 2.09269e12 0.132586 0.0662931 0.997800i \(-0.478883\pi\)
0.0662931 + 0.997800i \(0.478883\pi\)
\(252\) 0 0
\(253\) 1.56854e13 0.951335
\(254\) 0 0
\(255\) −1.05052e13 −0.610146
\(256\) 0 0
\(257\) 2.39680e13 1.33352 0.666761 0.745271i \(-0.267680\pi\)
0.666761 + 0.745271i \(0.267680\pi\)
\(258\) 0 0
\(259\) 2.93638e13 1.56554
\(260\) 0 0
\(261\) −7.86594e12 −0.402002
\(262\) 0 0
\(263\) 7.29414e11 0.0357452 0.0178726 0.999840i \(-0.494311\pi\)
0.0178726 + 0.999840i \(0.494311\pi\)
\(264\) 0 0
\(265\) 5.19377e13 2.44135
\(266\) 0 0
\(267\) −2.38092e13 −1.07382
\(268\) 0 0
\(269\) −6.09880e12 −0.264002 −0.132001 0.991250i \(-0.542140\pi\)
−0.132001 + 0.991250i \(0.542140\pi\)
\(270\) 0 0
\(271\) 4.32582e13 1.79779 0.898893 0.438169i \(-0.144373\pi\)
0.898893 + 0.438169i \(0.144373\pi\)
\(272\) 0 0
\(273\) −2.22712e13 −0.888891
\(274\) 0 0
\(275\) −3.45213e13 −1.32360
\(276\) 0 0
\(277\) 3.57553e13 1.31735 0.658675 0.752427i \(-0.271117\pi\)
0.658675 + 0.752427i \(0.271117\pi\)
\(278\) 0 0
\(279\) 2.46121e12 0.0871617
\(280\) 0 0
\(281\) 1.76325e13 0.600384 0.300192 0.953879i \(-0.402949\pi\)
0.300192 + 0.953879i \(0.402949\pi\)
\(282\) 0 0
\(283\) −4.45842e13 −1.46001 −0.730005 0.683441i \(-0.760482\pi\)
−0.730005 + 0.683441i \(0.760482\pi\)
\(284\) 0 0
\(285\) 5.36187e13 1.68916
\(286\) 0 0
\(287\) −4.48073e13 −1.35831
\(288\) 0 0
\(289\) −2.74732e13 −0.801626
\(290\) 0 0
\(291\) −1.00132e12 −0.0281295
\(292\) 0 0
\(293\) 4.87336e13 1.31843 0.659214 0.751955i \(-0.270889\pi\)
0.659214 + 0.751955i \(0.270889\pi\)
\(294\) 0 0
\(295\) 3.85454e12 0.100450
\(296\) 0 0
\(297\) 2.78392e13 0.699031
\(298\) 0 0
\(299\) −3.53366e13 −0.855133
\(300\) 0 0
\(301\) 4.09929e13 0.956296
\(302\) 0 0
\(303\) 6.62458e12 0.149013
\(304\) 0 0
\(305\) 5.93279e12 0.128709
\(306\) 0 0
\(307\) −3.59860e13 −0.753134 −0.376567 0.926389i \(-0.622896\pi\)
−0.376567 + 0.926389i \(0.622896\pi\)
\(308\) 0 0
\(309\) 1.78437e13 0.360340
\(310\) 0 0
\(311\) 3.80512e13 0.741627 0.370814 0.928707i \(-0.379079\pi\)
0.370814 + 0.928707i \(0.379079\pi\)
\(312\) 0 0
\(313\) 1.18672e13 0.223282 0.111641 0.993749i \(-0.464389\pi\)
0.111641 + 0.993749i \(0.464389\pi\)
\(314\) 0 0
\(315\) 7.28298e13 1.32313
\(316\) 0 0
\(317\) −1.04037e13 −0.182541 −0.0912705 0.995826i \(-0.529093\pi\)
−0.0912705 + 0.995826i \(0.529093\pi\)
\(318\) 0 0
\(319\) −3.95497e13 −0.670339
\(320\) 0 0
\(321\) −5.17531e13 −0.847537
\(322\) 0 0
\(323\) −3.47004e13 −0.549187
\(324\) 0 0
\(325\) 7.77707e13 1.18976
\(326\) 0 0
\(327\) 3.06636e13 0.453535
\(328\) 0 0
\(329\) −1.84207e14 −2.63469
\(330\) 0 0
\(331\) 7.18424e13 0.993864 0.496932 0.867789i \(-0.334460\pi\)
0.496932 + 0.867789i \(0.334460\pi\)
\(332\) 0 0
\(333\) 2.30290e13 0.308199
\(334\) 0 0
\(335\) 6.01057e13 0.778340
\(336\) 0 0
\(337\) 8.66988e13 1.08655 0.543274 0.839556i \(-0.317185\pi\)
0.543274 + 0.839556i \(0.317185\pi\)
\(338\) 0 0
\(339\) 6.57899e13 0.798106
\(340\) 0 0
\(341\) 1.23749e13 0.145343
\(342\) 0 0
\(343\) −3.17969e14 −3.61632
\(344\) 0 0
\(345\) −1.83815e14 −2.02477
\(346\) 0 0
\(347\) 3.44960e13 0.368093 0.184046 0.982918i \(-0.441080\pi\)
0.184046 + 0.982918i \(0.441080\pi\)
\(348\) 0 0
\(349\) 1.00311e14 1.03707 0.518533 0.855057i \(-0.326478\pi\)
0.518533 + 0.855057i \(0.326478\pi\)
\(350\) 0 0
\(351\) −6.27171e13 −0.628343
\(352\) 0 0
\(353\) −6.53687e13 −0.634759 −0.317379 0.948299i \(-0.602803\pi\)
−0.317379 + 0.948299i \(0.602803\pi\)
\(354\) 0 0
\(355\) 2.97293e14 2.79852
\(356\) 0 0
\(357\) 7.49751e13 0.684293
\(358\) 0 0
\(359\) −4.45057e13 −0.393909 −0.196955 0.980413i \(-0.563105\pi\)
−0.196955 + 0.980413i \(0.563105\pi\)
\(360\) 0 0
\(361\) 6.06210e13 0.520395
\(362\) 0 0
\(363\) −5.51138e13 −0.458959
\(364\) 0 0
\(365\) 2.28831e14 1.84886
\(366\) 0 0
\(367\) −6.03017e12 −0.0472788 −0.0236394 0.999721i \(-0.507525\pi\)
−0.0236394 + 0.999721i \(0.507525\pi\)
\(368\) 0 0
\(369\) −3.51408e13 −0.267403
\(370\) 0 0
\(371\) −3.70677e14 −2.73803
\(372\) 0 0
\(373\) −2.17811e14 −1.56200 −0.780999 0.624532i \(-0.785290\pi\)
−0.780999 + 0.624532i \(0.785290\pi\)
\(374\) 0 0
\(375\) 2.07823e14 1.44718
\(376\) 0 0
\(377\) 8.90989e13 0.602553
\(378\) 0 0
\(379\) 1.29514e14 0.850749 0.425375 0.905017i \(-0.360142\pi\)
0.425375 + 0.905017i \(0.360142\pi\)
\(380\) 0 0
\(381\) 9.88527e13 0.630814
\(382\) 0 0
\(383\) 1.06806e13 0.0662218 0.0331109 0.999452i \(-0.489459\pi\)
0.0331109 + 0.999452i \(0.489459\pi\)
\(384\) 0 0
\(385\) 3.66186e14 2.20632
\(386\) 0 0
\(387\) 3.21492e13 0.188261
\(388\) 0 0
\(389\) −1.43137e14 −0.814761 −0.407381 0.913258i \(-0.633558\pi\)
−0.407381 + 0.913258i \(0.633558\pi\)
\(390\) 0 0
\(391\) 1.18960e14 0.658305
\(392\) 0 0
\(393\) 6.81459e13 0.366674
\(394\) 0 0
\(395\) −3.10418e14 −1.62429
\(396\) 0 0
\(397\) 1.67555e14 0.852725 0.426362 0.904552i \(-0.359795\pi\)
0.426362 + 0.904552i \(0.359795\pi\)
\(398\) 0 0
\(399\) −3.82674e14 −1.89443
\(400\) 0 0
\(401\) 3.37877e13 0.162729 0.0813644 0.996684i \(-0.474072\pi\)
0.0813644 + 0.996684i \(0.474072\pi\)
\(402\) 0 0
\(403\) −2.78786e13 −0.130645
\(404\) 0 0
\(405\) −1.78268e14 −0.812962
\(406\) 0 0
\(407\) 1.15789e14 0.513924
\(408\) 0 0
\(409\) 7.46538e13 0.322533 0.161266 0.986911i \(-0.448442\pi\)
0.161266 + 0.986911i \(0.448442\pi\)
\(410\) 0 0
\(411\) 1.83269e13 0.0770832
\(412\) 0 0
\(413\) −2.75096e13 −0.112657
\(414\) 0 0
\(415\) 5.47107e14 2.18176
\(416\) 0 0
\(417\) 2.77390e14 1.07731
\(418\) 0 0
\(419\) −1.38266e14 −0.523043 −0.261522 0.965198i \(-0.584224\pi\)
−0.261522 + 0.965198i \(0.584224\pi\)
\(420\) 0 0
\(421\) 3.57094e14 1.31593 0.657963 0.753050i \(-0.271418\pi\)
0.657963 + 0.753050i \(0.271418\pi\)
\(422\) 0 0
\(423\) −1.44467e14 −0.518678
\(424\) 0 0
\(425\) −2.61812e14 −0.915906
\(426\) 0 0
\(427\) −4.23420e13 −0.144350
\(428\) 0 0
\(429\) −8.78211e13 −0.291799
\(430\) 0 0
\(431\) −1.31241e14 −0.425055 −0.212527 0.977155i \(-0.568169\pi\)
−0.212527 + 0.977155i \(0.568169\pi\)
\(432\) 0 0
\(433\) 5.07589e14 1.60261 0.801307 0.598253i \(-0.204138\pi\)
0.801307 + 0.598253i \(0.204138\pi\)
\(434\) 0 0
\(435\) 4.63477e14 1.42672
\(436\) 0 0
\(437\) −6.07171e14 −1.82248
\(438\) 0 0
\(439\) 4.24766e14 1.24336 0.621678 0.783273i \(-0.286451\pi\)
0.621678 + 0.783273i \(0.286451\pi\)
\(440\) 0 0
\(441\) −3.84577e14 −1.09792
\(442\) 0 0
\(443\) −5.86227e14 −1.63247 −0.816235 0.577720i \(-0.803943\pi\)
−0.816235 + 0.577720i \(0.803943\pi\)
\(444\) 0 0
\(445\) −8.81927e14 −2.39581
\(446\) 0 0
\(447\) 1.89312e14 0.501750
\(448\) 0 0
\(449\) −5.48965e14 −1.41968 −0.709839 0.704364i \(-0.751232\pi\)
−0.709839 + 0.704364i \(0.751232\pi\)
\(450\) 0 0
\(451\) −1.76687e14 −0.445896
\(452\) 0 0
\(453\) 2.96397e14 0.730018
\(454\) 0 0
\(455\) −8.24956e14 −1.98321
\(456\) 0 0
\(457\) 5.19789e14 1.21980 0.609899 0.792479i \(-0.291210\pi\)
0.609899 + 0.792479i \(0.291210\pi\)
\(458\) 0 0
\(459\) 2.11135e14 0.483715
\(460\) 0 0
\(461\) 8.03876e13 0.179818 0.0899092 0.995950i \(-0.471342\pi\)
0.0899092 + 0.995950i \(0.471342\pi\)
\(462\) 0 0
\(463\) −7.27623e13 −0.158932 −0.0794659 0.996838i \(-0.525321\pi\)
−0.0794659 + 0.996838i \(0.525321\pi\)
\(464\) 0 0
\(465\) −1.45020e14 −0.309339
\(466\) 0 0
\(467\) −6.33095e14 −1.31894 −0.659472 0.751729i \(-0.729220\pi\)
−0.659472 + 0.751729i \(0.729220\pi\)
\(468\) 0 0
\(469\) −4.28972e14 −0.872927
\(470\) 0 0
\(471\) 5.34623e14 1.06275
\(472\) 0 0
\(473\) 1.61646e14 0.313926
\(474\) 0 0
\(475\) 1.33629e15 2.53564
\(476\) 0 0
\(477\) −2.90708e14 −0.539022
\(478\) 0 0
\(479\) 7.86403e14 1.42495 0.712475 0.701697i \(-0.247574\pi\)
0.712475 + 0.701697i \(0.247574\pi\)
\(480\) 0 0
\(481\) −2.60854e14 −0.461954
\(482\) 0 0
\(483\) 1.31188e15 2.27083
\(484\) 0 0
\(485\) −3.70903e13 −0.0627597
\(486\) 0 0
\(487\) 9.62029e14 1.59140 0.795699 0.605693i \(-0.207104\pi\)
0.795699 + 0.605693i \(0.207104\pi\)
\(488\) 0 0
\(489\) −3.66092e14 −0.592095
\(490\) 0 0
\(491\) 1.11508e15 1.76343 0.881715 0.471783i \(-0.156389\pi\)
0.881715 + 0.471783i \(0.156389\pi\)
\(492\) 0 0
\(493\) −2.99948e14 −0.463861
\(494\) 0 0
\(495\) 2.87187e14 0.434346
\(496\) 0 0
\(497\) −2.12176e15 −3.13861
\(498\) 0 0
\(499\) −9.02155e14 −1.30535 −0.652677 0.757636i \(-0.726354\pi\)
−0.652677 + 0.757636i \(0.726354\pi\)
\(500\) 0 0
\(501\) −3.38770e14 −0.479509
\(502\) 0 0
\(503\) −6.31803e14 −0.874899 −0.437450 0.899243i \(-0.644118\pi\)
−0.437450 + 0.899243i \(0.644118\pi\)
\(504\) 0 0
\(505\) 2.45384e14 0.332463
\(506\) 0 0
\(507\) −3.93211e14 −0.521293
\(508\) 0 0
\(509\) 3.66995e13 0.0476115 0.0238058 0.999717i \(-0.492422\pi\)
0.0238058 + 0.999717i \(0.492422\pi\)
\(510\) 0 0
\(511\) −1.63316e15 −2.07354
\(512\) 0 0
\(513\) −1.07763e15 −1.33914
\(514\) 0 0
\(515\) 6.60955e14 0.803955
\(516\) 0 0
\(517\) −7.26377e14 −0.864897
\(518\) 0 0
\(519\) −4.65663e14 −0.542814
\(520\) 0 0
\(521\) 6.54478e14 0.746943 0.373471 0.927642i \(-0.378167\pi\)
0.373471 + 0.927642i \(0.378167\pi\)
\(522\) 0 0
\(523\) −1.55382e15 −1.73637 −0.868184 0.496243i \(-0.834713\pi\)
−0.868184 + 0.496243i \(0.834713\pi\)
\(524\) 0 0
\(525\) −2.88725e15 −3.15943
\(526\) 0 0
\(527\) 9.38523e13 0.100574
\(528\) 0 0
\(529\) 1.12869e15 1.18459
\(530\) 0 0
\(531\) −2.15748e13 −0.0221783
\(532\) 0 0
\(533\) 3.98046e14 0.400806
\(534\) 0 0
\(535\) −1.91701e15 −1.89094
\(536\) 0 0
\(537\) −7.00160e14 −0.676610
\(538\) 0 0
\(539\) −1.93364e15 −1.83079
\(540\) 0 0
\(541\) −2.04067e15 −1.89316 −0.946580 0.322469i \(-0.895487\pi\)
−0.946580 + 0.322469i \(0.895487\pi\)
\(542\) 0 0
\(543\) 1.30340e15 1.18489
\(544\) 0 0
\(545\) 1.13582e15 1.01188
\(546\) 0 0
\(547\) −1.88570e15 −1.64642 −0.823212 0.567734i \(-0.807820\pi\)
−0.823212 + 0.567734i \(0.807820\pi\)
\(548\) 0 0
\(549\) −3.32073e13 −0.0284175
\(550\) 0 0
\(551\) 1.53094e15 1.28417
\(552\) 0 0
\(553\) 2.21544e15 1.82168
\(554\) 0 0
\(555\) −1.35692e15 −1.09381
\(556\) 0 0
\(557\) −1.19371e15 −0.943398 −0.471699 0.881760i \(-0.656359\pi\)
−0.471699 + 0.881760i \(0.656359\pi\)
\(558\) 0 0
\(559\) −3.64160e14 −0.282181
\(560\) 0 0
\(561\) 2.95646e14 0.224635
\(562\) 0 0
\(563\) 1.20186e15 0.895486 0.447743 0.894162i \(-0.352228\pi\)
0.447743 + 0.894162i \(0.352228\pi\)
\(564\) 0 0
\(565\) 2.43695e15 1.78066
\(566\) 0 0
\(567\) 1.27229e15 0.911756
\(568\) 0 0
\(569\) 7.09317e14 0.498567 0.249283 0.968431i \(-0.419805\pi\)
0.249283 + 0.968431i \(0.419805\pi\)
\(570\) 0 0
\(571\) 1.56094e15 1.07619 0.538093 0.842885i \(-0.319145\pi\)
0.538093 + 0.842885i \(0.319145\pi\)
\(572\) 0 0
\(573\) 1.67345e15 1.13178
\(574\) 0 0
\(575\) −4.58106e15 −3.03944
\(576\) 0 0
\(577\) 1.00933e15 0.657003 0.328501 0.944504i \(-0.393456\pi\)
0.328501 + 0.944504i \(0.393456\pi\)
\(578\) 0 0
\(579\) −1.99260e15 −1.27259
\(580\) 0 0
\(581\) −3.90467e15 −2.44690
\(582\) 0 0
\(583\) −1.46167e15 −0.898821
\(584\) 0 0
\(585\) −6.46984e14 −0.390424
\(586\) 0 0
\(587\) 3.08654e15 1.82794 0.913969 0.405783i \(-0.133001\pi\)
0.913969 + 0.405783i \(0.133001\pi\)
\(588\) 0 0
\(589\) −4.79023e14 −0.278434
\(590\) 0 0
\(591\) −7.47132e14 −0.426252
\(592\) 0 0
\(593\) 8.19038e14 0.458673 0.229337 0.973347i \(-0.426344\pi\)
0.229337 + 0.973347i \(0.426344\pi\)
\(594\) 0 0
\(595\) 2.77718e15 1.52673
\(596\) 0 0
\(597\) −6.28446e14 −0.339163
\(598\) 0 0
\(599\) −1.57478e15 −0.834395 −0.417197 0.908816i \(-0.636988\pi\)
−0.417197 + 0.908816i \(0.636988\pi\)
\(600\) 0 0
\(601\) 2.82611e15 1.47021 0.735104 0.677954i \(-0.237133\pi\)
0.735104 + 0.677954i \(0.237133\pi\)
\(602\) 0 0
\(603\) −3.36427e14 −0.171849
\(604\) 0 0
\(605\) −2.04149e15 −1.02398
\(606\) 0 0
\(607\) 1.49123e15 0.734525 0.367262 0.930117i \(-0.380295\pi\)
0.367262 + 0.930117i \(0.380295\pi\)
\(608\) 0 0
\(609\) −3.30781e15 −1.60009
\(610\) 0 0
\(611\) 1.63641e15 0.777436
\(612\) 0 0
\(613\) −2.41453e15 −1.12668 −0.563338 0.826226i \(-0.690483\pi\)
−0.563338 + 0.826226i \(0.690483\pi\)
\(614\) 0 0
\(615\) 2.07057e15 0.949022
\(616\) 0 0
\(617\) −1.05127e15 −0.473312 −0.236656 0.971593i \(-0.576051\pi\)
−0.236656 + 0.971593i \(0.576051\pi\)
\(618\) 0 0
\(619\) −1.16435e15 −0.514973 −0.257486 0.966282i \(-0.582894\pi\)
−0.257486 + 0.966282i \(0.582894\pi\)
\(620\) 0 0
\(621\) 3.69433e15 1.60521
\(622\) 0 0
\(623\) 6.29427e15 2.68696
\(624\) 0 0
\(625\) 2.79521e15 1.17239
\(626\) 0 0
\(627\) −1.50898e15 −0.621889
\(628\) 0 0
\(629\) 8.78154e14 0.355625
\(630\) 0 0
\(631\) −2.63120e14 −0.104711 −0.0523556 0.998629i \(-0.516673\pi\)
−0.0523556 + 0.998629i \(0.516673\pi\)
\(632\) 0 0
\(633\) −1.81891e15 −0.711360
\(634\) 0 0
\(635\) 3.66165e15 1.40741
\(636\) 0 0
\(637\) 4.35617e15 1.64565
\(638\) 0 0
\(639\) −1.66402e15 −0.617881
\(640\) 0 0
\(641\) −1.52056e14 −0.0554988 −0.0277494 0.999615i \(-0.508834\pi\)
−0.0277494 + 0.999615i \(0.508834\pi\)
\(642\) 0 0
\(643\) 1.44509e15 0.518483 0.259242 0.965813i \(-0.416527\pi\)
0.259242 + 0.965813i \(0.416527\pi\)
\(644\) 0 0
\(645\) −1.89430e15 −0.668144
\(646\) 0 0
\(647\) −1.89856e15 −0.658339 −0.329170 0.944271i \(-0.606769\pi\)
−0.329170 + 0.944271i \(0.606769\pi\)
\(648\) 0 0
\(649\) −1.08478e14 −0.0369824
\(650\) 0 0
\(651\) 1.03500e15 0.346931
\(652\) 0 0
\(653\) −1.32626e15 −0.437127 −0.218563 0.975823i \(-0.570137\pi\)
−0.218563 + 0.975823i \(0.570137\pi\)
\(654\) 0 0
\(655\) 2.52422e15 0.818088
\(656\) 0 0
\(657\) −1.28083e15 −0.408208
\(658\) 0 0
\(659\) 2.07026e15 0.648867 0.324433 0.945909i \(-0.394826\pi\)
0.324433 + 0.945909i \(0.394826\pi\)
\(660\) 0 0
\(661\) 9.26477e14 0.285579 0.142790 0.989753i \(-0.454393\pi\)
0.142790 + 0.989753i \(0.454393\pi\)
\(662\) 0 0
\(663\) −6.66042e14 −0.201919
\(664\) 0 0
\(665\) −1.41748e16 −4.22666
\(666\) 0 0
\(667\) −5.24835e15 −1.53933
\(668\) 0 0
\(669\) 2.61375e14 0.0754084
\(670\) 0 0
\(671\) −1.66966e14 −0.0473863
\(672\) 0 0
\(673\) −2.59168e14 −0.0723599 −0.0361800 0.999345i \(-0.511519\pi\)
−0.0361800 + 0.999345i \(0.511519\pi\)
\(674\) 0 0
\(675\) −8.13068e15 −2.23335
\(676\) 0 0
\(677\) 3.41525e15 0.922964 0.461482 0.887150i \(-0.347318\pi\)
0.461482 + 0.887150i \(0.347318\pi\)
\(678\) 0 0
\(679\) 2.64712e14 0.0703865
\(680\) 0 0
\(681\) −9.84120e14 −0.257477
\(682\) 0 0
\(683\) 2.59376e15 0.667752 0.333876 0.942617i \(-0.391643\pi\)
0.333876 + 0.942617i \(0.391643\pi\)
\(684\) 0 0
\(685\) 6.78855e14 0.171980
\(686\) 0 0
\(687\) −4.33619e14 −0.108105
\(688\) 0 0
\(689\) 3.29291e15 0.807930
\(690\) 0 0
\(691\) 9.78422e14 0.236264 0.118132 0.992998i \(-0.462309\pi\)
0.118132 + 0.992998i \(0.462309\pi\)
\(692\) 0 0
\(693\) −2.04964e15 −0.487129
\(694\) 0 0
\(695\) 1.02749e16 2.40360
\(696\) 0 0
\(697\) −1.34001e15 −0.308551
\(698\) 0 0
\(699\) −3.02959e15 −0.686688
\(700\) 0 0
\(701\) 5.65457e15 1.26168 0.630842 0.775911i \(-0.282709\pi\)
0.630842 + 0.775911i \(0.282709\pi\)
\(702\) 0 0
\(703\) −4.48211e15 −0.984529
\(704\) 0 0
\(705\) 8.51230e15 1.84080
\(706\) 0 0
\(707\) −1.75129e15 −0.372865
\(708\) 0 0
\(709\) −5.15753e15 −1.08115 −0.540577 0.841294i \(-0.681794\pi\)
−0.540577 + 0.841294i \(0.681794\pi\)
\(710\) 0 0
\(711\) 1.73749e15 0.358624
\(712\) 0 0
\(713\) 1.64218e15 0.333756
\(714\) 0 0
\(715\) −3.25302e15 −0.651033
\(716\) 0 0
\(717\) 2.31587e15 0.456414
\(718\) 0 0
\(719\) −8.70637e15 −1.68977 −0.844887 0.534945i \(-0.820332\pi\)
−0.844887 + 0.534945i \(0.820332\pi\)
\(720\) 0 0
\(721\) −4.71720e15 −0.901655
\(722\) 0 0
\(723\) −1.30994e15 −0.246600
\(724\) 0 0
\(725\) 1.15508e16 2.14168
\(726\) 0 0
\(727\) −5.72086e15 −1.04477 −0.522386 0.852709i \(-0.674958\pi\)
−0.522386 + 0.852709i \(0.674958\pi\)
\(728\) 0 0
\(729\) 5.72861e15 1.03050
\(730\) 0 0
\(731\) 1.22593e15 0.217231
\(732\) 0 0
\(733\) 6.79839e15 1.18668 0.593341 0.804952i \(-0.297809\pi\)
0.593341 + 0.804952i \(0.297809\pi\)
\(734\) 0 0
\(735\) 2.26601e16 3.89655
\(736\) 0 0
\(737\) −1.69155e15 −0.286558
\(738\) 0 0
\(739\) 1.30629e15 0.218019 0.109010 0.994041i \(-0.465232\pi\)
0.109010 + 0.994041i \(0.465232\pi\)
\(740\) 0 0
\(741\) 3.39949e15 0.559002
\(742\) 0 0
\(743\) 6.49965e14 0.105306 0.0526528 0.998613i \(-0.483232\pi\)
0.0526528 + 0.998613i \(0.483232\pi\)
\(744\) 0 0
\(745\) 7.01239e15 1.11945
\(746\) 0 0
\(747\) −3.06230e15 −0.481708
\(748\) 0 0
\(749\) 1.36816e16 2.12074
\(750\) 0 0
\(751\) −5.74255e15 −0.877173 −0.438587 0.898689i \(-0.644521\pi\)
−0.438587 + 0.898689i \(0.644521\pi\)
\(752\) 0 0
\(753\) 6.90171e14 0.103893
\(754\) 0 0
\(755\) 1.09790e16 1.62875
\(756\) 0 0
\(757\) −5.29523e15 −0.774208 −0.387104 0.922036i \(-0.626525\pi\)
−0.387104 + 0.922036i \(0.626525\pi\)
\(758\) 0 0
\(759\) 5.17308e15 0.745451
\(760\) 0 0
\(761\) −1.07060e15 −0.152059 −0.0760296 0.997106i \(-0.524224\pi\)
−0.0760296 + 0.997106i \(0.524224\pi\)
\(762\) 0 0
\(763\) −8.10632e15 −1.13485
\(764\) 0 0
\(765\) 2.17805e15 0.300559
\(766\) 0 0
\(767\) 2.44382e14 0.0332426
\(768\) 0 0
\(769\) −9.93161e15 −1.33176 −0.665878 0.746061i \(-0.731943\pi\)
−0.665878 + 0.746061i \(0.731943\pi\)
\(770\) 0 0
\(771\) 7.90470e15 1.04493
\(772\) 0 0
\(773\) 4.99261e15 0.650640 0.325320 0.945604i \(-0.394528\pi\)
0.325320 + 0.945604i \(0.394528\pi\)
\(774\) 0 0
\(775\) −3.61420e15 −0.464358
\(776\) 0 0
\(777\) 9.68424e15 1.22673
\(778\) 0 0
\(779\) 6.83942e15 0.854207
\(780\) 0 0
\(781\) −8.36667e15 −1.03032
\(782\) 0 0
\(783\) −9.31501e15 −1.13108
\(784\) 0 0
\(785\) 1.98032e16 2.37111
\(786\) 0 0
\(787\) −7.77761e15 −0.918301 −0.459151 0.888358i \(-0.651846\pi\)
−0.459151 + 0.888358i \(0.651846\pi\)
\(788\) 0 0
\(789\) 2.40562e14 0.0280094
\(790\) 0 0
\(791\) −1.73924e16 −1.99705
\(792\) 0 0
\(793\) 3.76146e14 0.0425945
\(794\) 0 0
\(795\) 1.71291e16 1.91301
\(796\) 0 0
\(797\) −6.99888e15 −0.770917 −0.385458 0.922725i \(-0.625957\pi\)
−0.385458 + 0.922725i \(0.625957\pi\)
\(798\) 0 0
\(799\) −5.50890e15 −0.598491
\(800\) 0 0
\(801\) 4.93637e15 0.528968
\(802\) 0 0
\(803\) −6.43996e15 −0.680688
\(804\) 0 0
\(805\) 4.85938e16 5.06645
\(806\) 0 0
\(807\) −2.01139e15 −0.206868
\(808\) 0 0
\(809\) 1.13614e16 1.15270 0.576349 0.817204i \(-0.304477\pi\)
0.576349 + 0.817204i \(0.304477\pi\)
\(810\) 0 0
\(811\) 1.88346e16 1.88513 0.942565 0.334023i \(-0.108406\pi\)
0.942565 + 0.334023i \(0.108406\pi\)
\(812\) 0 0
\(813\) 1.42666e16 1.40872
\(814\) 0 0
\(815\) −1.35606e16 −1.32102
\(816\) 0 0
\(817\) −6.25718e15 −0.601391
\(818\) 0 0
\(819\) 4.61749e15 0.437869
\(820\) 0 0
\(821\) −1.01440e16 −0.949124 −0.474562 0.880222i \(-0.657394\pi\)
−0.474562 + 0.880222i \(0.657394\pi\)
\(822\) 0 0
\(823\) 1.69907e16 1.56860 0.784302 0.620380i \(-0.213022\pi\)
0.784302 + 0.620380i \(0.213022\pi\)
\(824\) 0 0
\(825\) −1.13852e16 −1.03715
\(826\) 0 0
\(827\) −8.28965e15 −0.745171 −0.372585 0.927998i \(-0.621529\pi\)
−0.372585 + 0.927998i \(0.621529\pi\)
\(828\) 0 0
\(829\) −1.12816e16 −1.00074 −0.500371 0.865811i \(-0.666803\pi\)
−0.500371 + 0.865811i \(0.666803\pi\)
\(830\) 0 0
\(831\) 1.17921e16 1.03226
\(832\) 0 0
\(833\) −1.46649e16 −1.26687
\(834\) 0 0
\(835\) −1.25485e16 −1.06983
\(836\) 0 0
\(837\) 2.91462e15 0.245240
\(838\) 0 0
\(839\) −1.63246e16 −1.35566 −0.677831 0.735218i \(-0.737080\pi\)
−0.677831 + 0.735218i \(0.737080\pi\)
\(840\) 0 0
\(841\) 1.03284e15 0.0846556
\(842\) 0 0
\(843\) 5.81523e15 0.470452
\(844\) 0 0
\(845\) −1.45651e16 −1.16306
\(846\) 0 0
\(847\) 1.45700e16 1.14842
\(848\) 0 0
\(849\) −1.47040e16 −1.14404
\(850\) 0 0
\(851\) 1.53655e16 1.18014
\(852\) 0 0
\(853\) 3.95556e15 0.299908 0.149954 0.988693i \(-0.452087\pi\)
0.149954 + 0.988693i \(0.452087\pi\)
\(854\) 0 0
\(855\) −1.11168e16 −0.832081
\(856\) 0 0
\(857\) −1.65618e15 −0.122381 −0.0611905 0.998126i \(-0.519490\pi\)
−0.0611905 + 0.998126i \(0.519490\pi\)
\(858\) 0 0
\(859\) −1.44522e16 −1.05432 −0.527158 0.849767i \(-0.676742\pi\)
−0.527158 + 0.849767i \(0.676742\pi\)
\(860\) 0 0
\(861\) −1.47775e16 −1.06435
\(862\) 0 0
\(863\) −1.30297e16 −0.926563 −0.463282 0.886211i \(-0.653328\pi\)
−0.463282 + 0.886211i \(0.653328\pi\)
\(864\) 0 0
\(865\) −1.72488e16 −1.21107
\(866\) 0 0
\(867\) −9.06072e15 −0.628142
\(868\) 0 0
\(869\) 8.73605e15 0.598007
\(870\) 0 0
\(871\) 3.81077e15 0.257581
\(872\) 0 0
\(873\) 2.07604e14 0.0138566
\(874\) 0 0
\(875\) −5.49406e16 −3.62117
\(876\) 0 0
\(877\) 1.96397e16 1.27831 0.639156 0.769077i \(-0.279284\pi\)
0.639156 + 0.769077i \(0.279284\pi\)
\(878\) 0 0
\(879\) 1.60724e16 1.03310
\(880\) 0 0
\(881\) −1.63850e16 −1.04011 −0.520053 0.854134i \(-0.674088\pi\)
−0.520053 + 0.854134i \(0.674088\pi\)
\(882\) 0 0
\(883\) −2.44046e16 −1.52999 −0.764994 0.644038i \(-0.777258\pi\)
−0.764994 + 0.644038i \(0.777258\pi\)
\(884\) 0 0
\(885\) 1.27123e15 0.0787113
\(886\) 0 0
\(887\) 1.97735e15 0.120921 0.0604607 0.998171i \(-0.480743\pi\)
0.0604607 + 0.998171i \(0.480743\pi\)
\(888\) 0 0
\(889\) −2.61330e16 −1.57844
\(890\) 0 0
\(891\) 5.01696e15 0.299305
\(892\) 0 0
\(893\) 2.81175e16 1.65689
\(894\) 0 0
\(895\) −2.59349e16 −1.50959
\(896\) 0 0
\(897\) −1.16541e16 −0.670069
\(898\) 0 0
\(899\) −4.14065e15 −0.235174
\(900\) 0 0
\(901\) −1.10855e16 −0.621967
\(902\) 0 0
\(903\) 1.35195e16 0.749339
\(904\) 0 0
\(905\) 4.82798e16 2.64362
\(906\) 0 0
\(907\) 2.16469e15 0.117099 0.0585497 0.998284i \(-0.481352\pi\)
0.0585497 + 0.998284i \(0.481352\pi\)
\(908\) 0 0
\(909\) −1.37348e15 −0.0734040
\(910\) 0 0
\(911\) 2.47285e16 1.30571 0.652856 0.757482i \(-0.273571\pi\)
0.652856 + 0.757482i \(0.273571\pi\)
\(912\) 0 0
\(913\) −1.53971e16 −0.803250
\(914\) 0 0
\(915\) 1.95664e15 0.100855
\(916\) 0 0
\(917\) −1.80152e16 −0.917505
\(918\) 0 0
\(919\) 1.86239e16 0.937208 0.468604 0.883408i \(-0.344757\pi\)
0.468604 + 0.883408i \(0.344757\pi\)
\(920\) 0 0
\(921\) −1.18682e16 −0.590145
\(922\) 0 0
\(923\) 1.88487e16 0.926131
\(924\) 0 0
\(925\) −3.38172e16 −1.64195
\(926\) 0 0
\(927\) −3.69953e15 −0.177504
\(928\) 0 0
\(929\) 8.59493e15 0.407527 0.203763 0.979020i \(-0.434683\pi\)
0.203763 + 0.979020i \(0.434683\pi\)
\(930\) 0 0
\(931\) 7.48498e16 3.50726
\(932\) 0 0
\(933\) 1.25493e16 0.581128
\(934\) 0 0
\(935\) 1.09512e16 0.501183
\(936\) 0 0
\(937\) 1.18734e16 0.537041 0.268521 0.963274i \(-0.413465\pi\)
0.268521 + 0.963274i \(0.413465\pi\)
\(938\) 0 0
\(939\) 3.91382e15 0.174961
\(940\) 0 0
\(941\) 1.39439e16 0.616088 0.308044 0.951372i \(-0.400326\pi\)
0.308044 + 0.951372i \(0.400326\pi\)
\(942\) 0 0
\(943\) −2.34468e16 −1.02393
\(944\) 0 0
\(945\) 8.62465e16 3.72277
\(946\) 0 0
\(947\) −4.36290e16 −1.86144 −0.930722 0.365726i \(-0.880821\pi\)
−0.930722 + 0.365726i \(0.880821\pi\)
\(948\) 0 0
\(949\) 1.45082e16 0.611855
\(950\) 0 0
\(951\) −3.43115e15 −0.143036
\(952\) 0 0
\(953\) −1.16561e16 −0.480333 −0.240167 0.970732i \(-0.577202\pi\)
−0.240167 + 0.970732i \(0.577202\pi\)
\(954\) 0 0
\(955\) 6.19869e16 2.52511
\(956\) 0 0
\(957\) −1.30436e16 −0.525267
\(958\) 0 0
\(959\) −4.84495e15 −0.192880
\(960\) 0 0
\(961\) −2.41129e16 −0.949010
\(962\) 0 0
\(963\) 1.07300e16 0.417498
\(964\) 0 0
\(965\) −7.38089e16 −2.83928
\(966\) 0 0
\(967\) 4.64312e15 0.176589 0.0882946 0.996094i \(-0.471858\pi\)
0.0882946 + 0.996094i \(0.471858\pi\)
\(968\) 0 0
\(969\) −1.14442e16 −0.430335
\(970\) 0 0
\(971\) 1.80931e16 0.672677 0.336339 0.941741i \(-0.390811\pi\)
0.336339 + 0.941741i \(0.390811\pi\)
\(972\) 0 0
\(973\) −7.33315e16 −2.69569
\(974\) 0 0
\(975\) 2.56489e16 0.932274
\(976\) 0 0
\(977\) 5.09418e16 1.83086 0.915428 0.402482i \(-0.131852\pi\)
0.915428 + 0.402482i \(0.131852\pi\)
\(978\) 0 0
\(979\) 2.48199e16 0.882056
\(980\) 0 0
\(981\) −6.35750e15 −0.223412
\(982\) 0 0
\(983\) 2.37026e16 0.823666 0.411833 0.911259i \(-0.364889\pi\)
0.411833 + 0.911259i \(0.364889\pi\)
\(984\) 0 0
\(985\) −2.76748e16 −0.951012
\(986\) 0 0
\(987\) −6.07519e16 −2.06450
\(988\) 0 0
\(989\) 2.14508e16 0.720881
\(990\) 0 0
\(991\) 1.50638e16 0.500643 0.250322 0.968163i \(-0.419464\pi\)
0.250322 + 0.968163i \(0.419464\pi\)
\(992\) 0 0
\(993\) 2.36937e16 0.778777
\(994\) 0 0
\(995\) −2.32785e16 −0.756708
\(996\) 0 0
\(997\) 1.55892e16 0.501186 0.250593 0.968092i \(-0.419374\pi\)
0.250593 + 0.968092i \(0.419374\pi\)
\(998\) 0 0
\(999\) 2.72714e16 0.867157
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.12.a.i.1.3 4
4.3 odd 2 inner 256.12.a.i.1.2 4
8.3 odd 2 256.12.a.h.1.3 4
8.5 even 2 256.12.a.h.1.2 4
16.3 odd 4 128.12.b.c.65.3 8
16.5 even 4 128.12.b.c.65.4 yes 8
16.11 odd 4 128.12.b.c.65.6 yes 8
16.13 even 4 128.12.b.c.65.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.12.b.c.65.3 8 16.3 odd 4
128.12.b.c.65.4 yes 8 16.5 even 4
128.12.b.c.65.5 yes 8 16.13 even 4
128.12.b.c.65.6 yes 8 16.11 odd 4
256.12.a.h.1.2 4 8.5 even 2
256.12.a.h.1.3 4 8.3 odd 2
256.12.a.i.1.2 4 4.3 odd 2 inner
256.12.a.i.1.3 4 1.1 even 1 trivial