Properties

Label 2535.1.f.b.1184.2
Level $2535$
Weight $1$
Character 2535.1184
Self dual yes
Analytic conductor $1.265$
Analytic rank $0$
Dimension $3$
Projective image $D_{7}$
CM discriminant -15
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2535,1,Mod(1184,2535)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2535.1184");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2535.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.26512980702\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.16290480375.1
Artin image: $D_7$
Artin field: Galois closure of 7.1.16290480375.1

Embedding invariants

Embedding label 1184.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 2535.1184

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.445042 q^{2} +1.00000 q^{3} -0.801938 q^{4} +1.00000 q^{5} -0.445042 q^{6} +0.801938 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-0.445042 q^{2} +1.00000 q^{3} -0.801938 q^{4} +1.00000 q^{5} -0.445042 q^{6} +0.801938 q^{8} +1.00000 q^{9} -0.445042 q^{10} -0.801938 q^{12} +1.00000 q^{15} +0.445042 q^{16} +1.24698 q^{17} -0.445042 q^{18} -1.80194 q^{19} -0.801938 q^{20} -0.445042 q^{23} +0.801938 q^{24} +1.00000 q^{25} +1.00000 q^{27} -0.445042 q^{30} +1.24698 q^{31} -1.00000 q^{32} -0.554958 q^{34} -0.801938 q^{36} +0.801938 q^{38} +0.801938 q^{40} +1.00000 q^{45} +0.198062 q^{46} -1.80194 q^{47} +0.445042 q^{48} +1.00000 q^{49} -0.445042 q^{50} +1.24698 q^{51} -1.80194 q^{53} -0.445042 q^{54} -1.80194 q^{57} -0.801938 q^{60} +1.24698 q^{61} -0.554958 q^{62} -1.00000 q^{68} -0.445042 q^{69} +0.801938 q^{72} +1.00000 q^{75} +1.44504 q^{76} -0.445042 q^{79} +0.445042 q^{80} +1.00000 q^{81} +1.24698 q^{83} +1.24698 q^{85} -0.445042 q^{90} +0.356896 q^{92} +1.24698 q^{93} +0.801938 q^{94} -1.80194 q^{95} -1.00000 q^{96} -0.445042 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 2 q^{4} + 3 q^{5} - q^{6} - 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 3 q^{3} + 2 q^{4} + 3 q^{5} - q^{6} - 2 q^{8} + 3 q^{9} - q^{10} + 2 q^{12} + 3 q^{15} + q^{16} - q^{17} - q^{18} - q^{19} + 2 q^{20} - q^{23} - 2 q^{24} + 3 q^{25} + 3 q^{27} - q^{30} - q^{31} - 3 q^{32} - 2 q^{34} + 2 q^{36} - 2 q^{38} - 2 q^{40} + 3 q^{45} + 5 q^{46} - q^{47} + q^{48} + 3 q^{49} - q^{50} - q^{51} - q^{53} - q^{54} - q^{57} + 2 q^{60} - q^{61} - 2 q^{62} - 3 q^{68} - q^{69} - 2 q^{72} + 3 q^{75} + 4 q^{76} - q^{79} + q^{80} + 3 q^{81} - q^{83} - q^{85} - q^{90} - 3 q^{92} - q^{93} - 2 q^{94} - q^{95} - 3 q^{96} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2535\mathbb{Z}\right)^\times\).

\(n\) \(1522\) \(1691\) \(1861\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(3\) 1.00000 1.00000
\(4\) −0.801938 −0.801938
\(5\) 1.00000 1.00000
\(6\) −0.445042 −0.445042
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0.801938 0.801938
\(9\) 1.00000 1.00000
\(10\) −0.445042 −0.445042
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −0.801938 −0.801938
\(13\) 0 0
\(14\) 0 0
\(15\) 1.00000 1.00000
\(16\) 0.445042 0.445042
\(17\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(18\) −0.445042 −0.445042
\(19\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(20\) −0.801938 −0.801938
\(21\) 0 0
\(22\) 0 0
\(23\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(24\) 0.801938 0.801938
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −0.445042 −0.445042
\(31\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) −0.554958 −0.554958
\(35\) 0 0
\(36\) −0.801938 −0.801938
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0.801938 0.801938
\(39\) 0 0
\(40\) 0.801938 0.801938
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 1.00000 1.00000
\(46\) 0.198062 0.198062
\(47\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(48\) 0.445042 0.445042
\(49\) 1.00000 1.00000
\(50\) −0.445042 −0.445042
\(51\) 1.24698 1.24698
\(52\) 0 0
\(53\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(54\) −0.445042 −0.445042
\(55\) 0 0
\(56\) 0 0
\(57\) −1.80194 −1.80194
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −0.801938 −0.801938
\(61\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(62\) −0.554958 −0.554958
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −1.00000 −1.00000
\(69\) −0.445042 −0.445042
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.801938 0.801938
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 1.00000 1.00000
\(76\) 1.44504 1.44504
\(77\) 0 0
\(78\) 0 0
\(79\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(80\) 0.445042 0.445042
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(84\) 0 0
\(85\) 1.24698 1.24698
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −0.445042 −0.445042
\(91\) 0 0
\(92\) 0.356896 0.356896
\(93\) 1.24698 1.24698
\(94\) 0.801938 0.801938
\(95\) −1.80194 −1.80194
\(96\) −1.00000 −1.00000
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.445042 −0.445042
\(99\) 0 0
\(100\) −0.801938 −0.801938
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −0.554958 −0.554958
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.801938 0.801938
\(107\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(108\) −0.801938 −0.801938
\(109\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0.801938 0.801938
\(115\) −0.445042 −0.445042
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.801938 0.801938
\(121\) 1.00000 1.00000
\(122\) −0.554958 −0.554958
\(123\) 0 0
\(124\) −1.00000 −1.00000
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000 1.00000
\(136\) 1.00000 1.00000
\(137\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(138\) 0.198062 0.198062
\(139\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(140\) 0 0
\(141\) −1.80194 −1.80194
\(142\) 0 0
\(143\) 0 0
\(144\) 0.445042 0.445042
\(145\) 0 0
\(146\) 0 0
\(147\) 1.00000 1.00000
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) −0.445042 −0.445042
\(151\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(152\) −1.44504 −1.44504
\(153\) 1.24698 1.24698
\(154\) 0 0
\(155\) 1.24698 1.24698
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0.198062 0.198062
\(159\) −1.80194 −1.80194
\(160\) −1.00000 −1.00000
\(161\) 0 0
\(162\) −0.445042 −0.445042
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.554958 −0.554958
\(167\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −0.554958 −0.554958
\(171\) −1.80194 −1.80194
\(172\) 0 0
\(173\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −0.801938 −0.801938
\(181\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(182\) 0 0
\(183\) 1.24698 1.24698
\(184\) −0.356896 −0.356896
\(185\) 0 0
\(186\) −0.554958 −0.554958
\(187\) 0 0
\(188\) 1.44504 1.44504
\(189\) 0 0
\(190\) 0.801938 0.801938
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.801938 −0.801938
\(197\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(198\) 0 0
\(199\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(200\) 0.801938 0.801938
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −1.00000 −1.00000
\(205\) 0 0
\(206\) 0 0
\(207\) −0.445042 −0.445042
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(212\) 1.44504 1.44504
\(213\) 0 0
\(214\) 0.801938 0.801938
\(215\) 0 0
\(216\) 0.801938 0.801938
\(217\) 0 0
\(218\) 0.198062 0.198062
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) 0.198062 0.198062
\(227\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(228\) 1.44504 1.44504
\(229\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(230\) 0.198062 0.198062
\(231\) 0 0
\(232\) 0 0
\(233\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(234\) 0 0
\(235\) −1.80194 −1.80194
\(236\) 0 0
\(237\) −0.445042 −0.445042
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0.445042 0.445042
\(241\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(242\) −0.445042 −0.445042
\(243\) 1.00000 1.00000
\(244\) −1.00000 −1.00000
\(245\) 1.00000 1.00000
\(246\) 0 0
\(247\) 0 0
\(248\) 1.00000 1.00000
\(249\) 1.24698 1.24698
\(250\) −0.445042 −0.445042
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.24698 1.24698
\(256\) −0.445042 −0.445042
\(257\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(264\) 0 0
\(265\) −1.80194 −1.80194
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −0.445042 −0.445042
\(271\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(272\) 0.554958 0.554958
\(273\) 0 0
\(274\) −0.554958 −0.554958
\(275\) 0 0
\(276\) 0.356896 0.356896
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0.198062 0.198062
\(279\) 1.24698 1.24698
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0.801938 0.801938
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) −1.80194 −1.80194
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) 0.554958 0.554958
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(294\) −0.445042 −0.445042
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.801938 −0.801938
\(301\) 0 0
\(302\) 0.198062 0.198062
\(303\) 0 0
\(304\) −0.801938 −0.801938
\(305\) 1.24698 1.24698
\(306\) −0.554958 −0.554958
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.554958 −0.554958
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.356896 0.356896
\(317\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(318\) 0.801938 0.801938
\(319\) 0 0
\(320\) 0 0
\(321\) −1.80194 −1.80194
\(322\) 0 0
\(323\) −2.24698 −2.24698
\(324\) −0.801938 −0.801938
\(325\) 0 0
\(326\) 0 0
\(327\) −0.445042 −0.445042
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(332\) −1.00000 −1.00000
\(333\) 0 0
\(334\) −0.554958 −0.554958
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) −0.445042 −0.445042
\(340\) −1.00000 −1.00000
\(341\) 0 0
\(342\) 0.801938 0.801938
\(343\) 0 0
\(344\) 0 0
\(345\) −0.445042 −0.445042
\(346\) 0.198062 0.198062
\(347\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(348\) 0 0
\(349\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0.801938 0.801938
\(361\) 2.24698 2.24698
\(362\) 0.801938 0.801938
\(363\) 1.00000 1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) −0.554958 −0.554958
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −0.198062 −0.198062
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −1.00000 −1.00000
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 1.00000 1.00000
\(376\) −1.44504 −1.44504
\(377\) 0 0
\(378\) 0 0
\(379\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(380\) 1.44504 1.44504
\(381\) 0 0
\(382\) 0 0
\(383\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(384\) 1.00000 1.00000
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −0.554958 −0.554958
\(392\) 0.801938 0.801938
\(393\) 0 0
\(394\) 0.801938 0.801938
\(395\) −0.445042 −0.445042
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −0.554958 −0.554958
\(399\) 0 0
\(400\) 0.445042 0.445042
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000 1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) 1.00000 1.00000
\(409\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(410\) 0 0
\(411\) 1.24698 1.24698
\(412\) 0 0
\(413\) 0 0
\(414\) 0.198062 0.198062
\(415\) 1.24698 1.24698
\(416\) 0 0
\(417\) −0.445042 −0.445042
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(422\) 0.801938 0.801938
\(423\) −1.80194 −1.80194
\(424\) −1.44504 −1.44504
\(425\) 1.24698 1.24698
\(426\) 0 0
\(427\) 0 0
\(428\) 1.44504 1.44504
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0.445042 0.445042
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.356896 0.356896
\(437\) 0.801938 0.801938
\(438\) 0 0
\(439\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −0.445042 −0.445042
\(451\) 0 0
\(452\) 0.356896 0.356896
\(453\) −0.445042 −0.445042
\(454\) 0.801938 0.801938
\(455\) 0 0
\(456\) −1.44504 −1.44504
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −0.890084 −0.890084
\(459\) 1.24698 1.24698
\(460\) 0.356896 0.356896
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 1.24698 1.24698
\(466\) 0.801938 0.801938
\(467\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.801938 0.801938
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.198062 0.198062
\(475\) −1.80194 −1.80194
\(476\) 0 0
\(477\) −1.80194 −1.80194
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −1.00000 −1.00000
\(481\) 0 0
\(482\) 0.198062 0.198062
\(483\) 0 0
\(484\) −0.801938 −0.801938
\(485\) 0 0
\(486\) −0.445042 −0.445042
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 1.00000 1.00000
\(489\) 0 0
\(490\) −0.445042 −0.445042
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.554958 0.554958
\(497\) 0 0
\(498\) −0.554958 −0.554958
\(499\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(500\) −0.801938 −0.801938
\(501\) 1.24698 1.24698
\(502\) 0 0
\(503\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) −0.554958 −0.554958
\(511\) 0 0
\(512\) −0.801938 −0.801938
\(513\) −1.80194 −1.80194
\(514\) 0.801938 0.801938
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.445042 −0.445042
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.554958 −0.554958
\(527\) 1.55496 1.55496
\(528\) 0 0
\(529\) −0.801938 −0.801938
\(530\) 0.801938 0.801938
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.80194 −1.80194
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) −0.801938 −0.801938
\(541\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(542\) 0.198062 0.198062
\(543\) −1.80194 −1.80194
\(544\) −1.24698 −1.24698
\(545\) −0.445042 −0.445042
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −1.00000 −1.00000
\(549\) 1.24698 1.24698
\(550\) 0 0
\(551\) 0 0
\(552\) −0.356896 −0.356896
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.356896 0.356896
\(557\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(558\) −0.554958 −0.554958
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(564\) 1.44504 1.44504
\(565\) −0.445042 −0.445042
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0.801938 0.801938
\(571\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.445042 −0.445042
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.246980 −0.246980
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0.801938 0.801938
\(587\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(588\) −0.801938 −0.801938
\(589\) −2.24698 −2.24698
\(590\) 0 0
\(591\) −1.80194 −1.80194
\(592\) 0 0
\(593\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.24698 1.24698
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0.801938 0.801938
\(601\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.356896 0.356896
\(605\) 1.00000 1.00000
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 1.80194 1.80194
\(609\) 0 0
\(610\) −0.554958 −0.554958
\(611\) 0 0
\(612\) −1.00000 −1.00000
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(618\) 0 0
\(619\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(620\) −1.00000 −1.00000
\(621\) −0.445042 −0.445042
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(632\) −0.356896 −0.356896
\(633\) −1.80194 −1.80194
\(634\) 0.198062 0.198062
\(635\) 0 0
\(636\) 1.44504 1.44504
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 1.00000
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0.801938 0.801938
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.00000 1.00000
\(647\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(648\) 0.801938 0.801938
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(654\) 0.198062 0.198062
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(662\) −0.554958 −0.554958
\(663\) 0 0
\(664\) 1.00000 1.00000
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.00000 −1.00000
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 1.00000 1.00000
\(676\) 0 0
\(677\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(678\) 0.198062 0.198062
\(679\) 0 0
\(680\) 1.00000 1.00000
\(681\) −1.80194 −1.80194
\(682\) 0 0
\(683\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(684\) 1.44504 1.44504
\(685\) 1.24698 1.24698
\(686\) 0 0
\(687\) 2.00000 2.00000
\(688\) 0 0
\(689\) 0 0
\(690\) 0.198062 0.198062
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0.356896 0.356896
\(693\) 0 0
\(694\) −0.554958 −0.554958
\(695\) −0.445042 −0.445042
\(696\) 0 0
\(697\) 0 0
\(698\) 0.801938 0.801938
\(699\) −1.80194 −1.80194
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.80194 −1.80194
\(706\) 0.198062 0.198062
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(710\) 0 0
\(711\) −0.445042 −0.445042
\(712\) 0 0
\(713\) −0.554958 −0.554958
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0.445042 0.445042
\(721\) 0 0
\(722\) −1.00000 −1.00000
\(723\) −0.445042 −0.445042
\(724\) 1.44504 1.44504
\(725\) 0 0
\(726\) −0.445042 −0.445042
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −1.00000 −1.00000
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 1.00000 1.00000
\(736\) 0.445042 0.445042
\(737\) 0 0
\(738\) 0 0
\(739\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(744\) 1.00000 1.00000
\(745\) 0 0
\(746\) 0 0
\(747\) 1.24698 1.24698
\(748\) 0 0
\(749\) 0 0
\(750\) −0.445042 −0.445042
\(751\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(752\) −0.801938 −0.801938
\(753\) 0 0
\(754\) 0 0
\(755\) −0.445042 −0.445042
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0.198062 0.198062
\(759\) 0 0
\(760\) −1.44504 −1.44504
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.24698 1.24698
\(766\) 0.198062 0.198062
\(767\) 0 0
\(768\) −0.445042 −0.445042
\(769\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(770\) 0 0
\(771\) −1.80194 −1.80194
\(772\) 0 0
\(773\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(774\) 0 0
\(775\) 1.24698 1.24698
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0.246980 0.246980
\(783\) 0 0
\(784\) 0.445042 0.445042
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 1.44504 1.44504
\(789\) 1.24698 1.24698
\(790\) 0.198062 0.198062
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1.80194 −1.80194
\(796\) −1.00000 −1.00000
\(797\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(798\) 0 0
\(799\) −2.24698 −2.24698
\(800\) −1.00000 −1.00000
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.445042 −0.445042
\(811\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(812\) 0 0
\(813\) −0.445042 −0.445042
\(814\) 0 0
\(815\) 0 0
\(816\) 0.554958 0.554958
\(817\) 0 0
\(818\) −0.890084 −0.890084
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −0.554958 −0.554958
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(828\) 0.356896 0.356896
\(829\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(830\) −0.554958 −0.554958
\(831\) 0 0
\(832\) 0 0
\(833\) 1.24698 1.24698
\(834\) 0.198062 0.198062
\(835\) 1.24698 1.24698
\(836\) 0 0
\(837\) 1.24698 1.24698
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0.198062 0.198062
\(843\) 0 0
\(844\) 1.44504 1.44504
\(845\) 0 0
\(846\) 0.801938 0.801938
\(847\) 0 0
\(848\) −0.801938 −0.801938
\(849\) 0 0
\(850\) −0.554958 −0.554958
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) −1.80194 −1.80194
\(856\) −1.44504 −1.44504
\(857\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(858\) 0 0
\(859\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(864\) −1.00000 −1.00000
\(865\) −0.445042 −0.445042
\(866\) 0 0
\(867\) 0.554958 0.554958
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.356896 −0.356896
\(873\) 0 0
\(874\) −0.356896 −0.356896
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0.801938 0.801938
\(879\) −1.80194 −1.80194
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.445042 −0.445042
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.198062 0.198062
\(887\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.24698 3.24698
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.801938 −0.801938
\(901\) −2.24698 −2.24698
\(902\) 0 0
\(903\) 0 0
\(904\) −0.356896 −0.356896
\(905\) −1.80194 −1.80194
\(906\) 0.198062 0.198062
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 1.44504 1.44504
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −0.801938 −0.801938
\(913\) 0 0
\(914\) 0 0
\(915\) 1.24698 1.24698
\(916\) −1.60388 −1.60388
\(917\) 0 0
\(918\) −0.554958 −0.554958
\(919\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(920\) −0.356896 −0.356896
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) −0.554958 −0.554958
\(931\) −1.80194 −1.80194
\(932\) 1.44504 1.44504
\(933\) 0 0
\(934\) 0.801938 0.801938
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.44504 1.44504
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(948\) 0.356896 0.356896
\(949\) 0 0
\(950\) 0.801938 0.801938
\(951\) −0.445042 −0.445042
\(952\) 0 0
\(953\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(954\) 0.801938 0.801938
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.554958 0.554958
\(962\) 0 0
\(963\) −1.80194 −1.80194
\(964\) 0.356896 0.356896
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0.801938 0.801938
\(969\) −2.24698 −2.24698
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −0.801938 −0.801938
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.554958 0.554958
\(977\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.801938 −0.801938
\(981\) −0.445042 −0.445042
\(982\) 0 0
\(983\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(984\) 0 0
\(985\) −1.80194 −1.80194
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(992\) −1.24698 −1.24698
\(993\) 1.24698 1.24698
\(994\) 0 0
\(995\) 1.24698 1.24698
\(996\) −1.00000 −1.00000
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −0.554958 −0.554958
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2535.1.f.b.1184.2 yes 3
3.2 odd 2 2535.1.f.c.1184.2 yes 3
5.4 even 2 2535.1.f.c.1184.2 yes 3
13.2 odd 12 2535.1.y.b.1499.3 12
13.3 even 3 2535.1.x.c.2219.2 6
13.4 even 6 2535.1.x.a.2174.2 6
13.5 odd 4 2535.1.e.b.2534.4 6
13.6 odd 12 2535.1.y.b.1544.4 12
13.7 odd 12 2535.1.y.b.1544.3 12
13.8 odd 4 2535.1.e.b.2534.3 6
13.9 even 3 2535.1.x.c.2174.2 6
13.10 even 6 2535.1.x.a.2219.2 6
13.11 odd 12 2535.1.y.b.1499.4 12
13.12 even 2 2535.1.f.d.1184.2 yes 3
15.14 odd 2 CM 2535.1.f.b.1184.2 yes 3
39.2 even 12 2535.1.y.c.1499.4 12
39.5 even 4 2535.1.e.a.2534.3 6
39.8 even 4 2535.1.e.a.2534.4 6
39.11 even 12 2535.1.y.c.1499.3 12
39.17 odd 6 2535.1.x.d.2174.2 6
39.20 even 12 2535.1.y.c.1544.4 12
39.23 odd 6 2535.1.x.d.2219.2 6
39.29 odd 6 2535.1.x.b.2219.2 6
39.32 even 12 2535.1.y.c.1544.3 12
39.35 odd 6 2535.1.x.b.2174.2 6
39.38 odd 2 2535.1.f.a.1184.2 3
65.4 even 6 2535.1.x.d.2174.2 6
65.9 even 6 2535.1.x.b.2174.2 6
65.19 odd 12 2535.1.y.c.1544.3 12
65.24 odd 12 2535.1.y.c.1499.3 12
65.29 even 6 2535.1.x.b.2219.2 6
65.34 odd 4 2535.1.e.a.2534.4 6
65.44 odd 4 2535.1.e.a.2534.3 6
65.49 even 6 2535.1.x.d.2219.2 6
65.54 odd 12 2535.1.y.c.1499.4 12
65.59 odd 12 2535.1.y.c.1544.4 12
65.64 even 2 2535.1.f.a.1184.2 3
195.29 odd 6 2535.1.x.c.2219.2 6
195.44 even 4 2535.1.e.b.2534.4 6
195.59 even 12 2535.1.y.b.1544.3 12
195.74 odd 6 2535.1.x.c.2174.2 6
195.89 even 12 2535.1.y.b.1499.4 12
195.119 even 12 2535.1.y.b.1499.3 12
195.134 odd 6 2535.1.x.a.2174.2 6
195.149 even 12 2535.1.y.b.1544.4 12
195.164 even 4 2535.1.e.b.2534.3 6
195.179 odd 6 2535.1.x.a.2219.2 6
195.194 odd 2 2535.1.f.d.1184.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2535.1.e.a.2534.3 6 39.5 even 4
2535.1.e.a.2534.3 6 65.44 odd 4
2535.1.e.a.2534.4 6 39.8 even 4
2535.1.e.a.2534.4 6 65.34 odd 4
2535.1.e.b.2534.3 6 13.8 odd 4
2535.1.e.b.2534.3 6 195.164 even 4
2535.1.e.b.2534.4 6 13.5 odd 4
2535.1.e.b.2534.4 6 195.44 even 4
2535.1.f.a.1184.2 3 39.38 odd 2
2535.1.f.a.1184.2 3 65.64 even 2
2535.1.f.b.1184.2 yes 3 1.1 even 1 trivial
2535.1.f.b.1184.2 yes 3 15.14 odd 2 CM
2535.1.f.c.1184.2 yes 3 3.2 odd 2
2535.1.f.c.1184.2 yes 3 5.4 even 2
2535.1.f.d.1184.2 yes 3 13.12 even 2
2535.1.f.d.1184.2 yes 3 195.194 odd 2
2535.1.x.a.2174.2 6 13.4 even 6
2535.1.x.a.2174.2 6 195.134 odd 6
2535.1.x.a.2219.2 6 13.10 even 6
2535.1.x.a.2219.2 6 195.179 odd 6
2535.1.x.b.2174.2 6 39.35 odd 6
2535.1.x.b.2174.2 6 65.9 even 6
2535.1.x.b.2219.2 6 39.29 odd 6
2535.1.x.b.2219.2 6 65.29 even 6
2535.1.x.c.2174.2 6 13.9 even 3
2535.1.x.c.2174.2 6 195.74 odd 6
2535.1.x.c.2219.2 6 13.3 even 3
2535.1.x.c.2219.2 6 195.29 odd 6
2535.1.x.d.2174.2 6 39.17 odd 6
2535.1.x.d.2174.2 6 65.4 even 6
2535.1.x.d.2219.2 6 39.23 odd 6
2535.1.x.d.2219.2 6 65.49 even 6
2535.1.y.b.1499.3 12 13.2 odd 12
2535.1.y.b.1499.3 12 195.119 even 12
2535.1.y.b.1499.4 12 13.11 odd 12
2535.1.y.b.1499.4 12 195.89 even 12
2535.1.y.b.1544.3 12 13.7 odd 12
2535.1.y.b.1544.3 12 195.59 even 12
2535.1.y.b.1544.4 12 13.6 odd 12
2535.1.y.b.1544.4 12 195.149 even 12
2535.1.y.c.1499.3 12 39.11 even 12
2535.1.y.c.1499.3 12 65.24 odd 12
2535.1.y.c.1499.4 12 39.2 even 12
2535.1.y.c.1499.4 12 65.54 odd 12
2535.1.y.c.1544.3 12 39.32 even 12
2535.1.y.c.1544.3 12 65.19 odd 12
2535.1.y.c.1544.4 12 39.20 even 12
2535.1.y.c.1544.4 12 65.59 odd 12