Newspace parameters
| Level: | \( N \) | \(=\) | \( 253 = 11 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 253.g (of order \(10\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.89375068832\) |
| Analytic rank: | \(0\) |
| Dimension: | \(176\) |
| Relative dimension: | \(44\) over \(\Q(\zeta_{10})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 24.1 | −3.66609 | − | 1.19118i | 2.03606 | − | 1.47929i | 8.78522 | + | 6.38283i | 1.27281 | + | 3.91730i | −9.22649 | + | 2.99787i | 3.33486 | − | 4.59004i | −15.5412 | − | 21.3906i | −0.823888 | + | 2.53567i | − | 15.8773i | |
| 24.2 | −3.56389 | − | 1.15798i | −4.16114 | + | 3.02325i | 8.12432 | + | 5.90266i | −0.312727 | − | 0.962476i | 18.3307 | − | 5.95601i | −2.38519 | + | 3.28293i | −13.3086 | − | 18.3177i | 5.39393 | − | 16.6008i | 3.79229i | ||
| 24.3 | −3.35117 | − | 1.08886i | 0.581295 | − | 0.422336i | 6.80866 | + | 4.94678i | −2.80322 | − | 8.62741i | −2.40788 | + | 0.782369i | −3.56198 | + | 4.90264i | −9.14607 | − | 12.5885i | −2.62162 | + | 8.06851i | 31.9642i | ||
| 24.4 | −3.33336 | − | 1.08307i | −0.631314 | + | 0.458676i | 6.70215 | + | 4.86940i | 0.676515 | + | 2.08210i | 2.60117 | − | 0.845173i | −2.94474 | + | 4.05308i | −8.82624 | − | 12.1483i | −2.59298 | + | 7.98037i | − | 7.67309i | |
| 24.5 | −3.11475 | − | 1.01204i | −1.48726 | + | 1.08056i | 5.44137 | + | 3.95339i | −1.25920 | − | 3.87543i | 5.72602 | − | 1.86050i | 6.37790 | − | 8.77843i | −5.24743 | − | 7.22247i | −1.73682 | + | 5.34537i | 13.3454i | ||
| 24.6 | −3.11063 | − | 1.01070i | 3.92768 | − | 2.85362i | 5.41841 | + | 3.93671i | 0.561936 | + | 1.72946i | −15.1017 | + | 4.90684i | −4.61408 | + | 6.35074i | −5.18592 | − | 7.13780i | 4.50232 | − | 13.8567i | − | 5.94766i | |
| 24.7 | −2.81261 | − | 0.913872i | −3.21219 | + | 2.33380i | 3.83953 | + | 2.78958i | 1.38144 | + | 4.25163i | 11.1674 | − | 3.62852i | 3.16567 | − | 4.35717i | −1.29663 | − | 1.78466i | 2.09044 | − | 6.43370i | − | 13.2206i | |
| 24.8 | −2.74723 | − | 0.892629i | 3.73742 | − | 2.71540i | 3.51442 | + | 2.55337i | −0.431955 | − | 1.32942i | −12.6914 | + | 4.12369i | −0.525097 | + | 0.722734i | −0.584171 | − | 0.804043i | 3.81380 | − | 11.7377i | 4.03780i | ||
| 24.9 | −2.57568 | − | 0.836888i | −1.71143 | + | 1.24343i | 2.69766 | + | 1.95997i | 2.68563 | + | 8.26552i | 5.44870 | − | 1.77039i | −6.08934 | + | 8.38126i | 1.05939 | + | 1.45812i | −1.39827 | + | 4.30344i | − | 23.5369i | |
| 24.10 | −2.51750 | − | 0.817984i | 1.62027 | − | 1.17720i | 2.43262 | + | 1.76740i | 2.85518 | + | 8.78734i | −5.04196 | + | 1.63823i | 3.48178 | − | 4.79226i | 1.54518 | + | 2.12676i | −1.54166 | + | 4.74475i | − | 24.4576i | |
| 24.11 | −2.13012 | − | 0.692117i | 3.32732 | − | 2.41744i | 0.822309 | + | 0.597442i | −1.58252 | − | 4.87050i | −8.76074 | + | 2.84654i | 7.61829 | − | 10.4857i | 3.92783 | + | 5.40619i | 2.44590 | − | 7.52771i | 11.4700i | ||
| 24.12 | −2.07411 | − | 0.673919i | 1.03114 | − | 0.749170i | 0.611699 | + | 0.444425i | −1.67954 | − | 5.16908i | −2.64359 | + | 0.858953i | −3.19360 | + | 4.39561i | 4.15826 | + | 5.72335i | −2.27915 | + | 7.01450i | 11.8531i | ||
| 24.13 | −1.87192 | − | 0.608222i | −1.22496 | + | 0.889986i | −0.101932 | − | 0.0740581i | −0.254234 | − | 0.782453i | 2.83433 | − | 0.920931i | −0.908239 | + | 1.25008i | 4.77340 | + | 6.57002i | −2.07270 | + | 6.37911i | 1.61932i | ||
| 24.14 | −1.66340 | − | 0.540473i | −3.78273 | + | 2.74831i | −0.761265 | − | 0.553091i | −2.93456 | − | 9.03165i | 7.77759 | − | 2.52709i | 3.11542 | − | 4.28800i | 5.07952 | + | 6.99136i | 3.97465 | − | 12.2327i | 16.6093i | ||
| 24.15 | −1.61359 | − | 0.524288i | −3.31109 | + | 2.40565i | −0.907261 | − | 0.659164i | −0.550058 | − | 1.69290i | 6.60401 | − | 2.14577i | −6.81304 | + | 9.37734i | 5.10738 | + | 7.02971i | 2.39502 | − | 7.37112i | 3.02005i | ||
| 24.16 | −1.54107 | − | 0.500724i | −4.35510 | + | 3.16417i | −1.11189 | − | 0.807838i | 1.31121 | + | 4.03550i | 8.29590 | − | 2.69550i | 4.37703 | − | 6.02447i | 5.11874 | + | 7.04534i | 6.17382 | − | 19.0011i | − | 6.87555i | |
| 24.17 | −1.29246 | − | 0.419944i | 1.60750 | − | 1.16792i | −1.74198 | − | 1.26562i | 0.782769 | + | 2.40912i | −2.56809 | + | 0.834422i | 0.433806 | − | 0.597082i | 4.91507 | + | 6.76501i | −1.56112 | + | 4.80464i | − | 3.44240i | |
| 24.18 | −1.00173 | − | 0.325481i | 4.44142 | − | 3.22688i | −2.33855 | − | 1.69906i | 2.73238 | + | 8.40940i | −5.49938 | + | 1.78686i | 1.12303 | − | 1.54572i | 4.26598 | + | 5.87162i | 6.53232 | − | 20.1044i | − | 9.31326i | |
| 24.19 | −0.601292 | − | 0.195372i | 2.06538 | − | 1.50059i | −2.91269 | − | 2.11619i | 0.860171 | + | 2.64733i | −1.53507 | + | 0.498774i | −5.31865 | + | 7.32049i | 2.82441 | + | 3.88746i | −0.767116 | + | 2.36094i | − | 1.75987i | |
| 24.20 | −0.385327 | − | 0.125200i | 4.25617 | − | 3.09229i | −3.10327 | − | 2.25465i | −2.72822 | − | 8.39661i | −2.02717 | + | 0.658668i | −7.32878 | + | 10.0872i | 1.86607 | + | 2.56842i | 5.77158 | − | 17.7631i | 3.57701i | ||
| See next 80 embeddings (of 176 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.d | odd | 10 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 253.3.g.a | ✓ | 176 |
| 11.d | odd | 10 | 1 | inner | 253.3.g.a | ✓ | 176 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 253.3.g.a | ✓ | 176 | 1.a | even | 1 | 1 | trivial |
| 253.3.g.a | ✓ | 176 | 11.d | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(253, [\chi])\).