Properties

Label 253.2.b.a.252.1
Level $253$
Weight $2$
Character 253.252
Analytic conductor $2.020$
Analytic rank $0$
Dimension $2$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [253,2,Mod(252,253)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("253.252"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(253, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 253.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.02021517114\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 252.1
Root \(0.500000 - 1.65831i\) of defining polynomial
Character \(\chi\) \(=\) 253.252
Dual form 253.2.b.a.252.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.00000 q^{4} -3.31662i q^{5} -2.00000 q^{9} -3.31662i q^{11} -2.00000 q^{12} +3.31662i q^{15} +4.00000 q^{16} -6.63325i q^{20} +(4.50000 - 1.65831i) q^{23} -6.00000 q^{25} +5.00000 q^{27} +5.00000 q^{31} +3.31662i q^{33} -4.00000 q^{36} +9.94987i q^{37} -6.63325i q^{44} +6.63325i q^{45} -12.0000 q^{47} -4.00000 q^{48} -7.00000 q^{49} +13.2665i q^{53} -11.0000 q^{55} +15.0000 q^{59} +6.63325i q^{60} +8.00000 q^{64} +9.94987i q^{67} +(-4.50000 + 1.65831i) q^{69} +3.00000 q^{71} +6.00000 q^{75} -13.2665i q^{80} +1.00000 q^{81} -16.5831i q^{89} +(9.00000 - 3.31662i) q^{92} -5.00000 q^{93} +9.94987i q^{97} +6.63325i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 4 q^{4} - 4 q^{9} - 4 q^{12} + 8 q^{16} + 9 q^{23} - 12 q^{25} + 10 q^{27} + 10 q^{31} - 8 q^{36} - 24 q^{47} - 8 q^{48} - 14 q^{49} - 22 q^{55} + 30 q^{59} + 16 q^{64} - 9 q^{69} + 6 q^{71}+ \cdots - 10 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 2.00000 1.00000
\(5\) 3.31662i 1.48324i −0.670820 0.741620i \(-0.734058\pi\)
0.670820 0.741620i \(-0.265942\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.31662i 1.00000i
\(12\) −2.00000 −0.577350
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 3.31662i 0.856349i
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 6.63325i 1.48324i
\(21\) 0 0
\(22\) 0 0
\(23\) 4.50000 1.65831i 0.938315 0.345782i
\(24\) 0 0
\(25\) −6.00000 −1.20000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 0 0
\(33\) 3.31662i 0.577350i
\(34\) 0 0
\(35\) 0 0
\(36\) −4.00000 −0.666667
\(37\) 9.94987i 1.63575i 0.575396 + 0.817875i \(0.304848\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 6.63325i 1.00000i
\(45\) 6.63325i 0.988826i
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) −4.00000 −0.577350
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.2665i 1.82229i 0.412082 + 0.911147i \(0.364802\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −11.0000 −1.48324
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 15.0000 1.95283 0.976417 0.215894i \(-0.0692665\pi\)
0.976417 + 0.215894i \(0.0692665\pi\)
\(60\) 6.63325i 0.856349i
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 9.94987i 1.21557i 0.794101 + 0.607785i \(0.207942\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) 0 0
\(69\) −4.50000 + 1.65831i −0.541736 + 0.199637i
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 6.00000 0.692820
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 13.2665i 1.48324i
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.5831i 1.75781i −0.476999 0.878904i \(-0.658275\pi\)
0.476999 0.878904i \(-0.341725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 9.00000 3.31662i 0.938315 0.345782i
\(93\) −5.00000 −0.518476
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.94987i 1.01026i 0.863044 + 0.505128i \(0.168555\pi\)
−0.863044 + 0.505128i \(0.831445\pi\)
\(98\) 0 0
\(99\) 6.63325i 0.666667i
\(100\) −12.0000 −1.20000
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 19.8997i 1.96078i −0.197066 0.980390i \(-0.563141\pi\)
0.197066 0.980390i \(-0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 10.0000 0.962250
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 9.94987i 0.944400i
\(112\) 0 0
\(113\) 3.31662i 0.312002i 0.987757 + 0.156001i \(0.0498603\pi\)
−0.987757 + 0.156001i \(0.950140\pi\)
\(114\) 0 0
\(115\) −5.50000 14.9248i −0.512878 1.39175i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 10.0000 0.898027
\(125\) 3.31662i 0.296648i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 6.63325i 0.577350i
\(133\) 0 0
\(134\) 0 0
\(135\) 16.5831i 1.42725i
\(136\) 0 0
\(137\) 23.2164i 1.98351i 0.128154 + 0.991754i \(0.459095\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 0 0
\(144\) −8.00000 −0.666667
\(145\) 0 0
\(146\) 0 0
\(147\) 7.00000 0.577350
\(148\) 19.8997i 1.63575i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.5831i 1.33199i
\(156\) 0 0
\(157\) 9.94987i 0.794086i −0.917800 0.397043i \(-0.870036\pi\)
0.917800 0.397043i \(-0.129964\pi\)
\(158\) 0 0
\(159\) 13.2665i 1.05210i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 11.0000 0.856349
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 13.2665i 1.00000i
\(177\) −15.0000 −1.12747
\(178\) 0 0
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 13.2665i 0.988826i
\(181\) 9.94987i 0.739568i −0.929118 0.369784i \(-0.879432\pi\)
0.929118 0.369784i \(-0.120568\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 33.0000 2.42621
\(186\) 0 0
\(187\) 0 0
\(188\) −24.0000 −1.75038
\(189\) 0 0
\(190\) 0 0
\(191\) 23.2164i 1.67988i −0.542681 0.839939i \(-0.682591\pi\)
0.542681 0.839939i \(-0.317409\pi\)
\(192\) −8.00000 −0.577350
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i 0.708881 + 0.705328i \(0.249200\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 9.94987i 0.701810i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −9.00000 + 3.31662i −0.625543 + 0.230521i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 26.5330i 1.82229i
\(213\) −3.00000 −0.205557
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −22.0000 −1.48324
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000 0.0669650 0.0334825 0.999439i \(-0.489340\pi\)
0.0334825 + 0.999439i \(0.489340\pi\)
\(224\) 0 0
\(225\) 12.0000 0.800000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 29.8496i 1.97252i 0.165205 + 0.986259i \(0.447172\pi\)
−0.165205 + 0.986259i \(0.552828\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 39.7995i 2.59623i
\(236\) 30.0000 1.95283
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 13.2665i 0.856349i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 23.2164i 1.48324i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.5831i 1.04672i −0.852112 0.523359i \(-0.824679\pi\)
0.852112 0.523359i \(-0.175321\pi\)
\(252\) 0 0
\(253\) −5.50000 14.9248i −0.345782 0.938315i
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 44.0000 2.70290
\(266\) 0 0
\(267\) 16.5831i 1.01487i
\(268\) 19.8997i 1.21557i
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19.8997i 1.20000i
\(276\) −9.00000 + 3.31662i −0.541736 + 0.199637i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 9.94987i 0.583272i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 49.7494i 2.89652i
\(296\) 0 0
\(297\) 16.5831i 0.962250i
\(298\) 0 0
\(299\) 0 0
\(300\) 12.0000 0.692820
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 19.8997i 1.13206i
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 29.8496i 1.68720i −0.536972 0.843600i \(-0.680432\pi\)
0.536972 0.843600i \(-0.319568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.0000 −1.51647 −0.758236 0.651981i \(-0.773938\pi\)
−0.758236 + 0.651981i \(0.773938\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 26.5330i 1.48324i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 2.00000 0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 35.0000 1.92377 0.961887 0.273447i \(-0.0881639\pi\)
0.961887 + 0.273447i \(0.0881639\pi\)
\(332\) 0 0
\(333\) 19.8997i 1.09050i
\(334\) 0 0
\(335\) 33.0000 1.80298
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 3.31662i 0.180134i
\(340\) 0 0
\(341\) 16.5831i 0.898027i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 5.50000 + 14.9248i 0.296110 + 0.803525i
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) 9.94987i 0.528085i
\(356\) 33.1662i 1.75781i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 11.0000 0.577350
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 9.94987i 0.519379i −0.965692 0.259690i \(-0.916380\pi\)
0.965692 0.259690i \(-0.0836203\pi\)
\(368\) 18.0000 6.63325i 0.938315 0.345782i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −10.0000 −0.518476
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 3.31662i 0.171270i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.8496i 1.53327i 0.642082 + 0.766636i \(0.278071\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.31662i 0.169472i −0.996403 0.0847358i \(-0.972995\pi\)
0.996403 0.0847358i \(-0.0270046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 19.8997i 1.01026i
\(389\) 36.4829i 1.84976i 0.380265 + 0.924878i \(0.375833\pi\)
−0.380265 + 0.924878i \(0.624167\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 13.2665i 0.666667i
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −24.0000 −1.20000
\(401\) 26.5330i 1.32499i 0.749064 + 0.662497i \(0.230503\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3.31662i 0.164804i
\(406\) 0 0
\(407\) 33.0000 1.63575
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 23.2164i 1.14518i
\(412\) 39.7995i 1.96078i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 33.1662i 1.62028i 0.586238 + 0.810139i \(0.300608\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) 39.7995i 1.93971i −0.243685 0.969854i \(-0.578356\pi\)
0.243685 0.969854i \(-0.421644\pi\)
\(422\) 0 0
\(423\) 24.0000 1.16692
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 20.0000 0.962250
\(433\) 29.8496i 1.43448i −0.696826 0.717241i \(-0.745405\pi\)
0.696826 0.717241i \(-0.254595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 14.0000 0.666667
\(442\) 0 0
\(443\) −21.0000 −0.997740 −0.498870 0.866677i \(-0.666252\pi\)
−0.498870 + 0.866677i \(0.666252\pi\)
\(444\) 19.8997i 0.944400i
\(445\) −55.0000 −2.60725
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −39.0000 −1.84052 −0.920262 0.391303i \(-0.872024\pi\)
−0.920262 + 0.391303i \(0.872024\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 6.63325i 0.312002i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −11.0000 29.8496i −0.512878 1.39175i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 0 0
\(465\) 16.5831i 0.769024i
\(466\) 0 0
\(467\) 43.1161i 1.99518i 0.0694117 + 0.997588i \(0.477888\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 9.94987i 0.458466i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 26.5330i 1.21486i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −22.0000 −1.00000
\(485\) 33.0000 1.49845
\(486\) 0 0
\(487\) 43.0000 1.94852 0.974258 0.225436i \(-0.0723806\pi\)
0.974258 + 0.225436i \(0.0723806\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 22.0000 0.988826
\(496\) 20.0000 0.898027
\(497\) 0 0
\(498\) 0 0
\(499\) 40.0000 1.79065 0.895323 0.445418i \(-0.146945\pi\)
0.895323 + 0.445418i \(0.146945\pi\)
\(500\) 6.63325i 0.296648i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 0 0
\(509\) 45.0000 1.99459 0.997295 0.0735034i \(-0.0234180\pi\)
0.997295 + 0.0735034i \(0.0234180\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −66.0000 −2.90831
\(516\) 0 0
\(517\) 39.7995i 1.75038i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 43.1161i 1.88895i 0.328581 + 0.944476i \(0.393430\pi\)
−0.328581 + 0.944476i \(0.606570\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 13.2665i 0.577350i
\(529\) 17.5000 14.9248i 0.760870 0.648905i
\(530\) 0 0
\(531\) −30.0000 −1.30189
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 21.0000 0.906217
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 33.1662i 1.42725i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 9.94987i 0.426990i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 46.4327i 1.98351i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −33.0000 −1.40077
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 24.0000 1.01058
\(565\) 11.0000 0.462773
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 23.2164i 0.969878i
\(574\) 0 0
\(575\) −27.0000 + 9.94987i −1.12598 + 0.414938i
\(576\) −16.0000 −0.666667
\(577\) −47.0000 −1.95664 −0.978318 0.207109i \(-0.933594\pi\)
−0.978318 + 0.207109i \(0.933594\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 44.0000 1.82229
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −48.0000 −1.98117 −0.990586 0.136892i \(-0.956289\pi\)
−0.990586 + 0.136892i \(0.956289\pi\)
\(588\) 14.0000 0.577350
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 39.7995i 1.63575i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19.8997i 0.814442i
\(598\) 0 0
\(599\) −36.0000 −1.47092 −0.735460 0.677568i \(-0.763034\pi\)
−0.735460 + 0.677568i \(0.763034\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 19.8997i 0.810380i
\(604\) 0 0
\(605\) 36.4829i 1.48324i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.5330i 1.06818i 0.845428 + 0.534089i \(0.179345\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 49.7494i 1.99960i 0.0200967 + 0.999798i \(0.493603\pi\)
−0.0200967 + 0.999798i \(0.506397\pi\)
\(620\) 33.1662i 1.33199i
\(621\) 22.5000 8.29156i 0.902894 0.332729i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 19.8997i 0.794086i
\(629\) 0 0
\(630\) 0 0
\(631\) 49.7494i 1.98049i −0.139333 0.990246i \(-0.544496\pi\)
0.139333 0.990246i \(-0.455504\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 26.5330i 1.05210i
\(637\) 0 0
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 23.2164i 0.916992i −0.888697 0.458496i \(-0.848388\pi\)
0.888697 0.458496i \(-0.151612\pi\)
\(642\) 0 0
\(643\) 29.8496i 1.17715i 0.808441 + 0.588577i \(0.200312\pi\)
−0.808441 + 0.588577i \(0.799688\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27.0000 1.06148 0.530740 0.847535i \(-0.321914\pi\)
0.530740 + 0.847535i \(0.321914\pi\)
\(648\) 0 0
\(649\) 49.7494i 1.95283i
\(650\) 0 0
\(651\) 0 0
\(652\) 32.0000 1.25322
\(653\) −51.0000 −1.99578 −0.997892 0.0648948i \(-0.979329\pi\)
−0.997892 + 0.0648948i \(0.979329\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 22.0000 0.856349
\(661\) 49.7494i 1.93503i 0.252821 + 0.967513i \(0.418642\pi\)
−0.252821 + 0.967513i \(0.581358\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −1.00000 −0.0386622
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −30.0000 −1.15470
\(676\) 26.0000 1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.0000 0.918334 0.459167 0.888350i \(-0.348148\pi\)
0.459167 + 0.888350i \(0.348148\pi\)
\(684\) 0 0
\(685\) 77.0000 2.94202
\(686\) 0 0
\(687\) 29.8496i 1.13883i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −17.0000 −0.646710 −0.323355 0.946278i \(-0.604811\pi\)
−0.323355 + 0.946278i \(0.604811\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 26.5330i 1.00000i
\(705\) 39.7995i 1.49894i
\(706\) 0 0
\(707\) 0 0
\(708\) −30.0000 −1.12747
\(709\) 49.7494i 1.86838i −0.356780 0.934188i \(-0.616125\pi\)
0.356780 0.934188i \(-0.383875\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22.5000 8.29156i 0.842632 0.310521i
\(714\) 0 0
\(715\) 0 0
\(716\) −42.0000 −1.56961
\(717\) 0 0
\(718\) 0 0
\(719\) 51.0000 1.90198 0.950990 0.309223i \(-0.100069\pi\)
0.950990 + 0.309223i \(0.100069\pi\)
\(720\) 26.5330i 0.988826i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 19.8997i 0.739568i
\(725\) 0 0
\(726\) 0 0
\(727\) 9.94987i 0.369020i 0.982831 + 0.184510i \(0.0590699\pi\)
−0.982831 + 0.184510i \(0.940930\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 23.2164i 0.856349i
\(736\) 0 0
\(737\) 33.0000 1.21557
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 66.0000 2.42621
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 49.7494i 1.81538i 0.419641 + 0.907690i \(0.362156\pi\)
−0.419641 + 0.907690i \(0.637844\pi\)
\(752\) −48.0000 −1.75038
\(753\) 16.5831i 0.604323i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 39.7995i 1.44654i −0.690567 0.723269i \(-0.742639\pi\)
0.690567 0.723269i \(-0.257361\pi\)
\(758\) 0 0
\(759\) 5.50000 + 14.9248i 0.199637 + 0.541736i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 46.4327i 1.67988i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −16.0000 −0.577350
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) 13.2665i 0.477163i 0.971123 + 0.238581i \(0.0766824\pi\)
−0.971123 + 0.238581i \(0.923318\pi\)
\(774\) 0 0
\(775\) −30.0000 −1.07763
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 9.94987i 0.356034i
\(782\) 0 0
\(783\) 0 0
\(784\) −28.0000 −1.00000
\(785\) −33.0000 −1.17782
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −44.0000 −1.56052
\(796\) 39.7995i 1.41066i
\(797\) 56.3826i 1.99717i −0.0531327 0.998587i \(-0.516921\pi\)
0.0531327 0.998587i \(-0.483079\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 33.1662i 1.17187i
\(802\) 0 0
\(803\) 0 0
\(804\) 19.8997i 0.701810i
\(805\) 0 0
\(806\) 0 0
\(807\) 30.0000 1.05605
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 53.0660i 1.85882i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) −49.0000 −1.70803 −0.854016 0.520246i \(-0.825840\pi\)
−0.854016 + 0.520246i \(0.825840\pi\)
\(824\) 0 0
\(825\) 19.8997i 0.692820i
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) −18.0000 + 6.63325i −0.625543 + 0.230521i
\(829\) 29.0000 1.00721 0.503606 0.863934i \(-0.332006\pi\)
0.503606 + 0.863934i \(0.332006\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 25.0000 0.864126
\(838\) 0 0
\(839\) 36.4829i 1.25953i −0.776786 0.629764i \(-0.783151\pi\)
0.776786 0.629764i \(-0.216849\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 43.1161i 1.48324i
\(846\) 0 0
\(847\) 0 0
\(848\) 53.0660i 1.82229i
\(849\) 0 0
\(850\) 0 0
\(851\) 16.5000 + 44.7744i 0.565613 + 1.53485i
\(852\) −6.00000 −0.205557
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −31.0000 −1.05771 −0.528853 0.848713i \(-0.677378\pi\)
−0.528853 + 0.848713i \(0.677378\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 19.8997i 0.673504i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −44.0000 −1.48324
\(881\) 16.5831i 0.558700i 0.960189 + 0.279350i \(0.0901189\pi\)
−0.960189 + 0.279350i \(0.909881\pi\)
\(882\) 0 0
\(883\) 56.0000 1.88455 0.942275 0.334840i \(-0.108682\pi\)
0.942275 + 0.334840i \(0.108682\pi\)
\(884\) 0 0
\(885\) 49.7494i 1.67231i
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.31662i 0.111111i
\(892\) 2.00000 0.0669650
\(893\) 0 0
\(894\) 0 0
\(895\) 69.6491i 2.32811i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 24.0000 0.800000
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −33.0000 −1.09696
\(906\) 0 0
\(907\) 59.6992i 1.98228i −0.132818 0.991140i \(-0.542403\pi\)
0.132818 0.991140i \(-0.457597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.63325i 0.219769i −0.993944 0.109885i \(-0.964952\pi\)
0.993944 0.109885i \(-0.0350482\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 59.6992i 1.97252i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 59.6992i 1.96290i
\(926\) 0 0
\(927\) 39.7995i 1.30719i
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 12.0000 0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 29.8496i 0.974106i
\(940\) 79.5990i 2.59623i
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 60.0000 1.95283
\(945\) 0 0
\(946\) 0 0
\(947\) −57.0000 −1.85225 −0.926126 0.377215i \(-0.876882\pi\)
−0.926126 + 0.377215i \(0.876882\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 27.0000 0.875535
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) −77.0000 −2.49166
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 26.5330i 0.856349i
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 43.1161i 1.38366i −0.722059 0.691831i \(-0.756804\pi\)
0.722059 0.691831i \(-0.243196\pi\)
\(972\) −32.0000 −1.02640
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 56.3826i 1.80384i 0.431903 + 0.901920i \(0.357842\pi\)
−0.431903 + 0.901920i \(0.642158\pi\)
\(978\) 0 0
\(979\) −55.0000 −1.75781
\(980\) 46.4327i 1.48324i
\(981\) 0 0
\(982\) 0 0
\(983\) 36.4829i 1.16362i −0.813324 0.581811i \(-0.802344\pi\)
0.813324 0.581811i \(-0.197656\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 0 0
\(993\) −35.0000 −1.11069
\(994\) 0 0
\(995\) 66.0000 2.09234
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 49.7494i 1.57400i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.2.b.a.252.1 2
11.10 odd 2 CM 253.2.b.a.252.1 2
23.22 odd 2 inner 253.2.b.a.252.2 yes 2
253.252 even 2 inner 253.2.b.a.252.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.b.a.252.1 2 1.1 even 1 trivial
253.2.b.a.252.1 2 11.10 odd 2 CM
253.2.b.a.252.2 yes 2 23.22 odd 2 inner
253.2.b.a.252.2 yes 2 253.252 even 2 inner