Properties

Label 2520.1.ek.c
Level $2520$
Weight $1$
Character orbit 2520.ek
Analytic conductor $1.258$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2520,1,Mod(829,2520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2520, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 3, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2520.829"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2520.ek (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.25764383184\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.3630312000.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{2} - \zeta_{6} q^{4} - q^{5} + \zeta_{6} q^{7} - q^{8} + \zeta_{6}^{2} q^{10} + (\zeta_{6}^{2} - 1) q^{11} + q^{14} + \zeta_{6}^{2} q^{16} + \zeta_{6} q^{20} + (\zeta_{6}^{2} + \zeta_{6}) q^{22} + \cdots + \zeta_{6} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{5} + q^{7} - 2 q^{8} - q^{10} - 3 q^{11} + 2 q^{14} - q^{16} + q^{20} + 2 q^{25} + q^{28} - 3 q^{31} + q^{32} - q^{35} + 2 q^{40} + 3 q^{44} - q^{49} + q^{50} + q^{53}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(1081\) \(1261\) \(2017\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}^{2}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
829.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.00000 0 0.500000 0.866025i −1.00000 0 −0.500000 0.866025i
1909.1 0.500000 0.866025i 0 −0.500000 0.866025i −1.00000 0 0.500000 + 0.866025i −1.00000 0 −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
105.p even 6 1 inner
280.bk odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.1.ek.c yes 2
3.b odd 2 1 2520.1.ek.b yes 2
5.b even 2 1 2520.1.ek.a 2
7.d odd 6 1 2520.1.ek.d yes 2
8.b even 2 1 2520.1.ek.b yes 2
15.d odd 2 1 2520.1.ek.d yes 2
21.g even 6 1 2520.1.ek.a 2
24.h odd 2 1 CM 2520.1.ek.c yes 2
35.i odd 6 1 2520.1.ek.b yes 2
40.f even 2 1 2520.1.ek.d yes 2
56.j odd 6 1 2520.1.ek.a 2
105.p even 6 1 inner 2520.1.ek.c yes 2
120.i odd 2 1 2520.1.ek.a 2
168.ba even 6 1 2520.1.ek.d yes 2
280.bk odd 6 1 inner 2520.1.ek.c yes 2
840.cb even 6 1 2520.1.ek.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2520.1.ek.a 2 5.b even 2 1
2520.1.ek.a 2 21.g even 6 1
2520.1.ek.a 2 56.j odd 6 1
2520.1.ek.a 2 120.i odd 2 1
2520.1.ek.b yes 2 3.b odd 2 1
2520.1.ek.b yes 2 8.b even 2 1
2520.1.ek.b yes 2 35.i odd 6 1
2520.1.ek.b yes 2 840.cb even 6 1
2520.1.ek.c yes 2 1.a even 1 1 trivial
2520.1.ek.c yes 2 24.h odd 2 1 CM
2520.1.ek.c yes 2 105.p even 6 1 inner
2520.1.ek.c yes 2 280.bk odd 6 1 inner
2520.1.ek.d yes 2 7.d odd 6 1
2520.1.ek.d yes 2 15.d odd 2 1
2520.1.ek.d yes 2 40.f even 2 1
2520.1.ek.d yes 2 168.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2520, [\chi])\):

\( T_{11}^{2} + 3T_{11} + 3 \) Copy content Toggle raw display
\( T_{53}^{2} - T_{53} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 3 \) Copy content Toggle raw display
$31$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$59$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$83$ \( T^{2} + 3 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T - 1)^{2} \) Copy content Toggle raw display
show more
show less