Properties

Label 252.9.z.e.145.1
Level $252$
Weight $9$
Character 252.145
Analytic conductor $102.659$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,9,Mod(73,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.73"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(102.659409735\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} - 1751639 x^{18} + 15765036 x^{17} + 1288400424989 x^{16} - 10307560742020 x^{15} + \cdots + 51\!\cdots\!63 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{26}\cdot 7^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 145.1
Root \(590.770 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 252.145
Dual form 252.9.z.e.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-885.405 - 511.189i) q^{5} +(765.093 - 2275.84i) q^{7} +(-89.3699 - 154.793i) q^{11} +19474.4i q^{13} +(-64245.6 + 37092.2i) q^{17} +(4266.93 + 2463.51i) q^{19} +(-96237.7 + 166689. i) q^{23} +(327315. + 566927. i) q^{25} -1.17929e6 q^{29} +(-950064. + 548520. i) q^{31} +(-1.84080e6 + 1.62393e6i) q^{35} +(1.46795e6 - 2.54256e6i) q^{37} -71941.4i q^{41} +634388. q^{43} +(-190090. - 109749. i) q^{47} +(-4.59407e6 - 3.48245e6i) q^{49} +(601096. + 1.04113e6i) q^{53} +182740. i q^{55} +(8.57841e6 - 4.95275e6i) q^{59} +(1.33423e7 + 7.70320e6i) q^{61} +(9.95511e6 - 1.72428e7i) q^{65} +(922496. + 1.59781e6i) q^{67} +3.59965e7 q^{71} +(1.11337e7 - 6.42804e6i) q^{73} +(-420661. + 84960.2i) q^{77} +(-2.23201e7 + 3.86596e7i) q^{79} +2.52746e7i q^{83} +7.58445e7 q^{85} +(-5.07125e7 - 2.92789e7i) q^{89} +(4.43206e7 + 1.48997e7i) q^{91} +(-2.51864e6 - 4.36241e6i) q^{95} -1.08177e8i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 7238 q^{7} - 107256 q^{19} + 1348832 q^{25} - 4734426 q^{31} + 6802748 q^{37} - 596128 q^{43} - 19249258 q^{49} + 32573772 q^{61} - 25999304 q^{67} - 52899612 q^{73} - 129945530 q^{79} - 83755728 q^{85}+ \cdots + 42306852 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −885.405 511.189i −1.41665 0.817902i −0.420645 0.907225i \(-0.638196\pi\)
−0.996003 + 0.0893233i \(0.971530\pi\)
\(6\) 0 0
\(7\) 765.093 2275.84i 0.318656 0.947870i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −89.3699 154.793i −0.00610409 0.0105726i 0.862957 0.505277i \(-0.168610\pi\)
−0.869061 + 0.494704i \(0.835276\pi\)
\(12\) 0 0
\(13\) 19474.4i 0.681854i 0.940090 + 0.340927i \(0.110741\pi\)
−0.940090 + 0.340927i \(0.889259\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −64245.6 + 37092.2i −0.769215 + 0.444107i −0.832595 0.553883i \(-0.813146\pi\)
0.0633793 + 0.997990i \(0.479812\pi\)
\(18\) 0 0
\(19\) 4266.93 + 2463.51i 0.0327417 + 0.0189034i 0.516281 0.856419i \(-0.327316\pi\)
−0.483540 + 0.875322i \(0.660649\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −96237.7 + 166689.i −0.343902 + 0.595655i −0.985154 0.171675i \(-0.945082\pi\)
0.641252 + 0.767330i \(0.278415\pi\)
\(24\) 0 0
\(25\) 327315. + 566927.i 0.837927 + 1.45133i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.17929e6 −1.66736 −0.833682 0.552245i \(-0.813771\pi\)
−0.833682 + 0.552245i \(0.813771\pi\)
\(30\) 0 0
\(31\) −950064. + 548520.i −1.02874 + 0.593944i −0.916624 0.399751i \(-0.869097\pi\)
−0.112118 + 0.993695i \(0.535763\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.84080e6 + 1.62393e6i −1.22669 + 1.08217i
\(36\) 0 0
\(37\) 1.46795e6 2.54256e6i 0.783256 1.35664i −0.146779 0.989169i \(-0.546891\pi\)
0.930035 0.367470i \(-0.119776\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 71941.4i 0.0254591i −0.999919 0.0127296i \(-0.995948\pi\)
0.999919 0.0127296i \(-0.00405206\pi\)
\(42\) 0 0
\(43\) 634388. 0.185559 0.0927793 0.995687i \(-0.470425\pi\)
0.0927793 + 0.995687i \(0.470425\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −190090. 109749.i −0.0389554 0.0224909i 0.480396 0.877052i \(-0.340493\pi\)
−0.519351 + 0.854561i \(0.673826\pi\)
\(48\) 0 0
\(49\) −4.59407e6 3.48245e6i −0.796917 0.604089i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 601096. + 1.04113e6i 0.0761798 + 0.131947i 0.901599 0.432573i \(-0.142394\pi\)
−0.825419 + 0.564521i \(0.809061\pi\)
\(54\) 0 0
\(55\) 182740.i 0.0199702i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.57841e6 4.95275e6i 0.707944 0.408732i −0.102355 0.994748i \(-0.532638\pi\)
0.810299 + 0.586016i \(0.199305\pi\)
\(60\) 0 0
\(61\) 1.33423e7 + 7.70320e6i 0.963635 + 0.556355i 0.897290 0.441442i \(-0.145533\pi\)
0.0663454 + 0.997797i \(0.478866\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.95511e6 1.72428e7i 0.557690 0.965947i
\(66\) 0 0
\(67\) 922496. + 1.59781e6i 0.0457789 + 0.0792913i 0.888007 0.459830i \(-0.152090\pi\)
−0.842228 + 0.539121i \(0.818756\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.59965e7 1.41654 0.708268 0.705944i \(-0.249477\pi\)
0.708268 + 0.705944i \(0.249477\pi\)
\(72\) 0 0
\(73\) 1.11337e7 6.42804e6i 0.392056 0.226354i −0.290995 0.956725i \(-0.593986\pi\)
0.683051 + 0.730371i \(0.260653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −420661. + 84960.2i −0.0119665 + 0.00241687i
\(78\) 0 0
\(79\) −2.23201e7 + 3.86596e7i −0.573045 + 0.992542i 0.423207 + 0.906033i \(0.360904\pi\)
−0.996251 + 0.0865090i \(0.972429\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.52746e7i 0.532564i 0.963895 + 0.266282i \(0.0857953\pi\)
−0.963895 + 0.266282i \(0.914205\pi\)
\(84\) 0 0
\(85\) 7.58445e7 1.45294
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.07125e7 2.92789e7i −0.808267 0.466653i 0.0380869 0.999274i \(-0.487874\pi\)
−0.846354 + 0.532621i \(0.821207\pi\)
\(90\) 0 0
\(91\) 4.43206e7 + 1.48997e7i 0.646309 + 0.217277i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.51864e6 4.36241e6i −0.0309223 0.0535589i
\(96\) 0 0
\(97\) 1.08177e8i 1.22193i −0.791657 0.610965i \(-0.790781\pi\)
0.791657 0.610965i \(-0.209219\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.42918e8 + 8.25135e7i −1.37341 + 0.792938i −0.991356 0.131202i \(-0.958116\pi\)
−0.382054 + 0.924140i \(0.624783\pi\)
\(102\) 0 0
\(103\) −6.72330e6 3.88170e6i −0.0597356 0.0344884i 0.469835 0.882754i \(-0.344314\pi\)
−0.529570 + 0.848266i \(0.677647\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.40986e7 + 4.17400e7i −0.183847 + 0.318432i −0.943187 0.332261i \(-0.892188\pi\)
0.759340 + 0.650694i \(0.225522\pi\)
\(108\) 0 0
\(109\) 8.30456e7 + 1.43839e8i 0.588316 + 1.01899i 0.994453 + 0.105181i \(0.0335421\pi\)
−0.406137 + 0.913812i \(0.633125\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.10120e8 −0.675389 −0.337694 0.941256i \(-0.609647\pi\)
−0.337694 + 0.941256i \(0.609647\pi\)
\(114\) 0 0
\(115\) 1.70419e8 9.83913e7i 0.974375 0.562555i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.52620e7 + 1.74592e8i 0.175841 + 0.870634i
\(120\) 0 0
\(121\) 1.07163e8 1.85613e8i 0.499925 0.865896i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.69913e8i 1.10557i
\(126\) 0 0
\(127\) 4.16647e8 1.60160 0.800798 0.598935i \(-0.204409\pi\)
0.800798 + 0.598935i \(0.204409\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.35188e8 + 2.51256e8i 1.47772 + 0.853162i 0.999683 0.0251777i \(-0.00801514\pi\)
0.478037 + 0.878340i \(0.341348\pi\)
\(132\) 0 0
\(133\) 8.87114e6 7.82601e6i 0.0283513 0.0250112i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.63136e8 4.55764e8i −0.746960 1.29377i −0.949273 0.314452i \(-0.898179\pi\)
0.202313 0.979321i \(-0.435154\pi\)
\(138\) 0 0
\(139\) 4.75267e8i 1.27315i 0.771216 + 0.636574i \(0.219649\pi\)
−0.771216 + 0.636574i \(0.780351\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.01451e6 1.74043e6i 0.00720896 0.00416210i
\(144\) 0 0
\(145\) 1.04415e9 + 6.02842e8i 2.36207 + 1.36374i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.89018e8 3.27389e8i 0.383494 0.664232i −0.608065 0.793887i \(-0.708054\pi\)
0.991559 + 0.129656i \(0.0413872\pi\)
\(150\) 0 0
\(151\) 9.48044e7 + 1.64206e8i 0.182356 + 0.315850i 0.942682 0.333691i \(-0.108294\pi\)
−0.760326 + 0.649541i \(0.774961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.12159e9 1.94315
\(156\) 0 0
\(157\) 4.56334e8 2.63464e8i 0.751076 0.433634i −0.0750066 0.997183i \(-0.523898\pi\)
0.826083 + 0.563549i \(0.190564\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.05725e8 + 3.46554e8i 0.455017 + 0.515783i
\(162\) 0 0
\(163\) 3.83633e8 6.64472e8i 0.543457 0.941296i −0.455245 0.890366i \(-0.650448\pi\)
0.998702 0.0509295i \(-0.0162184\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.12292e8i 0.401508i 0.979642 + 0.200754i \(0.0643392\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(168\) 0 0
\(169\) 4.36477e8 0.535075
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.88275e7 4.55111e7i −0.0880022 0.0508081i 0.455353 0.890311i \(-0.349513\pi\)
−0.543355 + 0.839503i \(0.682846\pi\)
\(174\) 0 0
\(175\) 1.54066e9 3.11165e8i 1.64269 0.331771i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.27225e8 1.60600e9i −0.903177 1.56435i −0.823346 0.567540i \(-0.807895\pi\)
−0.0798315 0.996808i \(-0.525438\pi\)
\(180\) 0 0
\(181\) 4.07233e8i 0.379428i −0.981839 0.189714i \(-0.939244\pi\)
0.981839 0.189714i \(-0.0607560\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.59946e9 + 1.50080e9i −2.21920 + 1.28125i
\(186\) 0 0
\(187\) 1.14833e7 + 6.62986e6i 0.00939071 + 0.00542173i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.98416e7 1.03649e8i 0.0449645 0.0778808i −0.842667 0.538435i \(-0.819016\pi\)
0.887632 + 0.460554i \(0.152349\pi\)
\(192\) 0 0
\(193\) 4.84829e8 + 8.39749e8i 0.349429 + 0.605230i 0.986148 0.165867i \(-0.0530421\pi\)
−0.636719 + 0.771096i \(0.719709\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.18199e9 0.784784 0.392392 0.919798i \(-0.371648\pi\)
0.392392 + 0.919798i \(0.371648\pi\)
\(198\) 0 0
\(199\) 1.76730e9 1.02035e9i 1.12693 0.650633i 0.183769 0.982969i \(-0.441170\pi\)
0.943161 + 0.332336i \(0.107837\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.02270e8 + 2.68388e9i −0.531315 + 1.58044i
\(204\) 0 0
\(205\) −3.67756e7 + 6.36973e7i −0.0208231 + 0.0360666i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 880655.i 0.000461552i
\(210\) 0 0
\(211\) 2.10575e9 1.06237 0.531186 0.847255i \(-0.321746\pi\)
0.531186 + 0.847255i \(0.321746\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.61690e8 3.24292e8i −0.262871 0.151769i
\(216\) 0 0
\(217\) 5.21455e8 + 2.58186e9i 0.235168 + 1.16438i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.22350e8 1.25115e9i −0.302816 0.524493i
\(222\) 0 0
\(223\) 1.37045e9i 0.554172i 0.960845 + 0.277086i \(0.0893687\pi\)
−0.960845 + 0.277086i \(0.910631\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.28035e9 + 1.89391e9i −1.23543 + 0.713274i −0.968156 0.250348i \(-0.919455\pi\)
−0.267270 + 0.963622i \(0.586122\pi\)
\(228\) 0 0
\(229\) 1.41344e7 + 8.16050e6i 0.00513967 + 0.00296739i 0.502568 0.864538i \(-0.332389\pi\)
−0.497428 + 0.867505i \(0.665722\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.88764e9 5.00154e9i 0.979760 1.69699i 0.316523 0.948585i \(-0.397485\pi\)
0.663237 0.748409i \(-0.269182\pi\)
\(234\) 0 0
\(235\) 1.12204e8 + 1.94344e8i 0.0367907 + 0.0637234i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.29837e9 1.31738 0.658692 0.752413i \(-0.271110\pi\)
0.658692 + 0.752413i \(0.271110\pi\)
\(240\) 0 0
\(241\) 6.66397e8 3.84744e8i 0.197544 0.114052i −0.397965 0.917401i \(-0.630284\pi\)
0.595510 + 0.803348i \(0.296950\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.28742e9 + 5.43182e9i 0.634865 + 1.50758i
\(246\) 0 0
\(247\) −4.79755e7 + 8.30960e7i −0.0128894 + 0.0223250i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.09715e9i 1.78809i −0.447979 0.894044i \(-0.647856\pi\)
0.447979 0.894044i \(-0.352144\pi\)
\(252\) 0 0
\(253\) 3.44030e7 0.00839682
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.26184e9 + 3.61527e9i 1.43539 + 0.828721i 0.997524 0.0703204i \(-0.0224022\pi\)
0.437863 + 0.899042i \(0.355735\pi\)
\(258\) 0 0
\(259\) −4.66334e9 5.28610e9i −1.03633 1.17473i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.10490e9 5.37785e9i −0.648971 1.12405i −0.983369 0.181619i \(-0.941866\pi\)
0.334398 0.942432i \(-0.391467\pi\)
\(264\) 0 0
\(265\) 1.22909e9i 0.249231i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.16864e9 + 6.74713e8i −0.223188 + 0.128858i −0.607426 0.794377i \(-0.707798\pi\)
0.384238 + 0.923234i \(0.374464\pi\)
\(270\) 0 0
\(271\) 9.80116e8 + 5.65870e8i 0.181719 + 0.104916i 0.588100 0.808788i \(-0.299876\pi\)
−0.406381 + 0.913704i \(0.633209\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.85043e7 1.01332e8i 0.0102296 0.0177181i
\(276\) 0 0
\(277\) −1.79327e9 3.10604e9i −0.304599 0.527580i 0.672573 0.740030i \(-0.265189\pi\)
−0.977172 + 0.212450i \(0.931856\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.75399e9 0.922877 0.461439 0.887172i \(-0.347333\pi\)
0.461439 + 0.887172i \(0.347333\pi\)
\(282\) 0 0
\(283\) −9.95966e9 + 5.75021e9i −1.55274 + 0.896475i −0.554823 + 0.831969i \(0.687214\pi\)
−0.997917 + 0.0645064i \(0.979453\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.63727e8 5.50419e7i −0.0241320 0.00811270i
\(288\) 0 0
\(289\) −7.36211e8 + 1.27515e9i −0.105538 + 0.182798i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.07373e10i 1.45688i 0.685108 + 0.728442i \(0.259755\pi\)
−0.685108 + 0.728442i \(0.740245\pi\)
\(294\) 0 0
\(295\) −1.01272e10 −1.33721
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.24617e9 1.87418e9i −0.406150 0.234491i
\(300\) 0 0
\(301\) 4.85366e8 1.44376e9i 0.0591293 0.175886i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.87558e9 1.36409e10i −0.910088 1.57632i
\(306\) 0 0
\(307\) 8.74603e9i 0.984595i −0.870427 0.492297i \(-0.836157\pi\)
0.870427 0.492297i \(-0.163843\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.53768e10 + 8.87781e9i −1.64371 + 0.948996i −0.664210 + 0.747546i \(0.731232\pi\)
−0.979499 + 0.201449i \(0.935435\pi\)
\(312\) 0 0
\(313\) −6.41291e9 3.70250e9i −0.668156 0.385760i 0.127222 0.991874i \(-0.459394\pi\)
−0.795378 + 0.606114i \(0.792727\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.94697e9 + 1.03005e10i −0.588924 + 1.02005i 0.405450 + 0.914117i \(0.367115\pi\)
−0.994374 + 0.105928i \(0.966219\pi\)
\(318\) 0 0
\(319\) 1.05393e8 + 1.82547e8i 0.0101777 + 0.0176283i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.65509e8 −0.0335805
\(324\) 0 0
\(325\) −1.10406e10 + 6.37428e9i −0.989597 + 0.571344i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.95206e8 + 3.48646e8i −0.0337319 + 0.0297578i
\(330\) 0 0
\(331\) −6.62889e9 + 1.14816e10i −0.552241 + 0.956510i 0.445871 + 0.895097i \(0.352894\pi\)
−0.998112 + 0.0614129i \(0.980439\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.88628e9i 0.149771i
\(336\) 0 0
\(337\) −5.54131e8 −0.0429628 −0.0214814 0.999769i \(-0.506838\pi\)
−0.0214814 + 0.999769i \(0.506838\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.69814e8 + 9.80424e7i 0.0125591 + 0.00725097i
\(342\) 0 0
\(343\) −1.14404e10 + 7.79095e9i −0.826540 + 0.562878i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.46399e9 + 1.29280e10i 0.514818 + 0.891690i 0.999852 + 0.0171952i \(0.00547366\pi\)
−0.485035 + 0.874495i \(0.661193\pi\)
\(348\) 0 0
\(349\) 1.96683e10i 1.32576i 0.748724 + 0.662882i \(0.230667\pi\)
−0.748724 + 0.662882i \(0.769333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.25411e10 7.24064e9i 0.807679 0.466313i −0.0384705 0.999260i \(-0.512249\pi\)
0.846149 + 0.532946i \(0.178915\pi\)
\(354\) 0 0
\(355\) −3.18715e10 1.84010e10i −2.00673 1.15859i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.20020e9 1.07391e10i 0.373274 0.646530i −0.616793 0.787126i \(-0.711568\pi\)
0.990067 + 0.140595i \(0.0449017\pi\)
\(360\) 0 0
\(361\) −8.47964e9 1.46872e10i −0.499285 0.864788i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.31438e10 −0.740540
\(366\) 0 0
\(367\) 2.27624e10 1.31419e10i 1.25474 0.724423i 0.282691 0.959211i \(-0.408773\pi\)
0.972047 + 0.234788i \(0.0754395\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.82933e9 5.71436e8i 0.149344 0.0301628i
\(372\) 0 0
\(373\) −2.39767e9 + 4.15288e9i −0.123866 + 0.214543i −0.921289 0.388878i \(-0.872863\pi\)
0.797423 + 0.603421i \(0.206196\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.29661e10i 1.13690i
\(378\) 0 0
\(379\) −2.55248e10 −1.23710 −0.618551 0.785744i \(-0.712280\pi\)
−0.618551 + 0.785744i \(0.712280\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.05386e10 + 6.08448e9i 0.489767 + 0.282767i 0.724478 0.689298i \(-0.242081\pi\)
−0.234711 + 0.972065i \(0.575414\pi\)
\(384\) 0 0
\(385\) 4.15886e8 + 1.39813e8i 0.0189291 + 0.00636361i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.13562e10 + 1.96696e10i 0.495948 + 0.859008i 0.999989 0.00467229i \(-0.00148724\pi\)
−0.504041 + 0.863680i \(0.668154\pi\)
\(390\) 0 0
\(391\) 1.42787e10i 0.610916i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.95247e10 2.28196e10i 1.62360 0.937388i
\(396\) 0 0
\(397\) 5.08354e8 + 2.93498e8i 0.0204646 + 0.0118153i 0.510197 0.860057i \(-0.329572\pi\)
−0.489733 + 0.871873i \(0.662906\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.10243e9 8.83767e9i 0.197333 0.341791i −0.750330 0.661064i \(-0.770105\pi\)
0.947663 + 0.319273i \(0.103439\pi\)
\(402\) 0 0
\(403\) −1.06821e10 1.85020e10i −0.404983 0.701452i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.24762e8 −0.0191243
\(408\) 0 0
\(409\) −4.17938e10 + 2.41297e10i −1.49355 + 0.862299i −0.999973 0.00740547i \(-0.997643\pi\)
−0.493573 + 0.869704i \(0.664309\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.70837e9 2.33124e10i −0.161834 0.801284i
\(414\) 0 0
\(415\) 1.29201e10 2.23783e10i 0.435585 0.754456i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.77178e10i 0.899296i 0.893206 + 0.449648i \(0.148451\pi\)
−0.893206 + 0.449648i \(0.851549\pi\)
\(420\) 0 0
\(421\) 1.48421e10 0.472461 0.236231 0.971697i \(-0.424088\pi\)
0.236231 + 0.971697i \(0.424088\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.20572e10 2.42817e10i −1.28909 0.744258i
\(426\) 0 0
\(427\) 2.77394e10 2.44713e10i 0.834421 0.736116i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.21503e10 + 5.56860e10i 0.931700 + 1.61375i 0.780415 + 0.625262i \(0.215008\pi\)
0.151285 + 0.988490i \(0.451659\pi\)
\(432\) 0 0
\(433\) 3.96724e10i 1.12859i 0.825573 + 0.564296i \(0.190852\pi\)
−0.825573 + 0.564296i \(0.809148\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.21279e8 + 4.74165e8i −0.0225198 + 0.0130018i
\(438\) 0 0
\(439\) 3.43439e10 + 1.98284e10i 0.924679 + 0.533864i 0.885125 0.465354i \(-0.154073\pi\)
0.0395542 + 0.999217i \(0.487406\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.44772e10 + 2.50752e10i −0.375897 + 0.651072i −0.990461 0.137795i \(-0.955999\pi\)
0.614564 + 0.788867i \(0.289332\pi\)
\(444\) 0 0
\(445\) 2.99340e10 + 5.18473e10i 0.763353 + 1.32217i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.19948e10 −1.52535 −0.762675 0.646782i \(-0.776115\pi\)
−0.762675 + 0.646782i \(0.776115\pi\)
\(450\) 0 0
\(451\) −1.11360e7 + 6.42940e6i −0.000269169 + 0.000155405i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.16251e10 3.58485e10i −0.737882 0.836422i
\(456\) 0 0
\(457\) −2.46381e9 + 4.26744e9i −0.0564861 + 0.0978368i −0.892886 0.450283i \(-0.851323\pi\)
0.836400 + 0.548120i \(0.184656\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.17242e10i 0.702404i 0.936300 + 0.351202i \(0.114227\pi\)
−0.936300 + 0.351202i \(0.885773\pi\)
\(462\) 0 0
\(463\) 4.40978e9 0.0959606 0.0479803 0.998848i \(-0.484722\pi\)
0.0479803 + 0.998848i \(0.484722\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.65266e10 2.10887e10i −0.767966 0.443386i 0.0641824 0.997938i \(-0.479556\pi\)
−0.832149 + 0.554553i \(0.812889\pi\)
\(468\) 0 0
\(469\) 4.34215e9 8.76978e8i 0.0897456 0.0181258i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.66952e7 9.81990e7i −0.00113267 0.00196183i
\(474\) 0 0
\(475\) 3.22538e9i 0.0633587i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.82676e10 2.78673e10i 0.916882 0.529362i 0.0342429 0.999414i \(-0.489098\pi\)
0.882639 + 0.470052i \(0.155765\pi\)
\(480\) 0 0
\(481\) 4.95149e10 + 2.85875e10i 0.925030 + 0.534066i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.52987e10 + 9.57802e10i −0.999420 + 1.73105i
\(486\) 0 0
\(487\) −1.30429e10 2.25910e10i −0.231877 0.401623i 0.726483 0.687184i \(-0.241153\pi\)
−0.958361 + 0.285561i \(0.907820\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.26082e10 −0.561049 −0.280525 0.959847i \(-0.590508\pi\)
−0.280525 + 0.959847i \(0.590508\pi\)
\(492\) 0 0
\(493\) 7.57645e10 4.37427e10i 1.28256 0.740487i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.75407e10 8.19223e10i 0.451387 1.34269i
\(498\) 0 0
\(499\) 2.19192e10 3.79653e10i 0.353528 0.612328i −0.633337 0.773876i \(-0.718315\pi\)
0.986865 + 0.161548i \(0.0516487\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.00135e10i 0.937513i 0.883327 + 0.468756i \(0.155298\pi\)
−0.883327 + 0.468756i \(0.844702\pi\)
\(504\) 0 0
\(505\) 1.68720e11 2.59418
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.52781e10 + 3.76883e10i 0.972514 + 0.561481i 0.900002 0.435886i \(-0.143565\pi\)
0.0725126 + 0.997367i \(0.476898\pi\)
\(510\) 0 0
\(511\) −6.11087e9 3.02565e10i −0.0896230 0.443747i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.96856e9 + 6.87375e9i 0.0564162 + 0.0977158i
\(516\) 0 0
\(517\) 3.92329e7i 0.000549146i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.51950e10 4.91874e10i 1.15628 0.667579i 0.205871 0.978579i \(-0.433997\pi\)
0.950410 + 0.311000i \(0.100664\pi\)
\(522\) 0 0
\(523\) −9.50672e10 5.48871e10i −1.27064 0.733607i −0.295535 0.955332i \(-0.595498\pi\)
−0.975109 + 0.221725i \(0.928831\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.06917e10 7.04800e10i 0.527549 0.913742i
\(528\) 0 0
\(529\) 2.06321e10 + 3.57358e10i 0.263463 + 0.456332i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.40102e9 0.0173594
\(534\) 0 0
\(535\) 4.26740e10 2.46378e10i 0.520893 0.300737i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.28489e8 + 1.02236e9i −0.00152233 + 0.0121129i
\(540\) 0 0
\(541\) −3.52106e10 + 6.09865e10i −0.411040 + 0.711942i −0.995004 0.0998378i \(-0.968168\pi\)
0.583964 + 0.811780i \(0.301501\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.69808e11i 1.92474i
\(546\) 0 0
\(547\) 1.51267e11 1.68965 0.844823 0.535046i \(-0.179706\pi\)
0.844823 + 0.535046i \(0.179706\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.03196e9 2.90521e9i −0.0545923 0.0315189i
\(552\) 0 0
\(553\) 7.09060e10 + 8.03752e10i 0.758198 + 0.859451i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.44814e10 + 1.29006e11i 0.773797 + 1.34026i 0.935468 + 0.353411i \(0.114978\pi\)
−0.161671 + 0.986845i \(0.551688\pi\)
\(558\) 0 0
\(559\) 1.23543e10i 0.126524i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.90339e10 3.98568e10i 0.687115 0.396706i −0.115416 0.993317i \(-0.536820\pi\)
0.802530 + 0.596612i \(0.203487\pi\)
\(564\) 0 0
\(565\) 9.75011e10 + 5.62923e10i 0.956788 + 0.552402i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.97355e9 + 1.55427e10i −0.0856082 + 0.148278i −0.905650 0.424026i \(-0.860617\pi\)
0.820042 + 0.572303i \(0.193950\pi\)
\(570\) 0 0
\(571\) 7.55428e9 + 1.30844e10i 0.0710639 + 0.123086i 0.899368 0.437193i \(-0.144027\pi\)
−0.828304 + 0.560279i \(0.810694\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.26000e11 −1.15266
\(576\) 0 0
\(577\) 4.29450e10 2.47943e10i 0.387444 0.223691i −0.293608 0.955926i \(-0.594856\pi\)
0.681052 + 0.732235i \(0.261523\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.75209e10 + 1.93374e10i 0.504802 + 0.169705i
\(582\) 0 0
\(583\) 1.07440e8 1.86091e8i 0.000930017 0.00161084i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.84088e9i 0.0744634i −0.999307 0.0372317i \(-0.988146\pi\)
0.999307 0.0372317i \(-0.0118540\pi\)
\(588\) 0 0
\(589\) −5.40514e9 −0.0449103
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9.92824e10 + 5.73207e10i 0.802885 + 0.463546i 0.844479 0.535589i \(-0.179910\pi\)
−0.0415939 + 0.999135i \(0.513244\pi\)
\(594\) 0 0
\(595\) 5.80281e10 1.72610e11i 0.462989 1.37720i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.15055e10 7.18897e10i −0.322403 0.558418i 0.658581 0.752510i \(-0.271157\pi\)
−0.980983 + 0.194092i \(0.937824\pi\)
\(600\) 0 0
\(601\) 6.02491e10i 0.461799i 0.972978 + 0.230899i \(0.0741668\pi\)
−0.972978 + 0.230899i \(0.925833\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.89766e11 + 1.09562e11i −1.41644 + 0.817780i
\(606\) 0 0
\(607\) −2.83559e10 1.63713e10i −0.208876 0.120595i 0.391913 0.920002i \(-0.371813\pi\)
−0.600789 + 0.799408i \(0.705147\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.13729e9 3.70190e9i 0.0153355 0.0265619i
\(612\) 0 0
\(613\) 8.89776e10 + 1.54114e11i 0.630143 + 1.09144i 0.987522 + 0.157480i \(0.0503370\pi\)
−0.357379 + 0.933959i \(0.616330\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.06150e11 0.732452 0.366226 0.930526i \(-0.380650\pi\)
0.366226 + 0.930526i \(0.380650\pi\)
\(618\) 0 0
\(619\) −2.07518e11 + 1.19811e11i −1.41349 + 0.816080i −0.995716 0.0924692i \(-0.970524\pi\)
−0.417777 + 0.908550i \(0.637191\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.05434e11 + 9.30123e10i −0.699885 + 0.617430i
\(624\) 0 0
\(625\) −1.01192e10 + 1.75269e10i −0.0663169 + 0.114864i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.17798e11i 1.39140i
\(630\) 0 0
\(631\) 3.78175e10 0.238548 0.119274 0.992861i \(-0.461943\pi\)
0.119274 + 0.992861i \(0.461943\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.68901e11 2.12985e11i −2.26890 1.30995i
\(636\) 0 0
\(637\) 6.78188e10 8.94669e10i 0.411901 0.543381i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.03428e11 1.79142e11i −0.612638 1.06112i −0.990794 0.135379i \(-0.956775\pi\)
0.378155 0.925742i \(-0.376558\pi\)
\(642\) 0 0
\(643\) 7.87609e10i 0.460752i 0.973102 + 0.230376i \(0.0739955\pi\)
−0.973102 + 0.230376i \(0.926004\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.92434e11 + 1.11102e11i −1.09816 + 0.634022i −0.935737 0.352700i \(-0.885264\pi\)
−0.162421 + 0.986721i \(0.551930\pi\)
\(648\) 0 0
\(649\) −1.53330e9 8.85254e8i −0.00864270 0.00498987i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.38559e10 + 5.86402e10i −0.186201 + 0.322510i −0.943981 0.330001i \(-0.892951\pi\)
0.757780 + 0.652511i \(0.226284\pi\)
\(654\) 0 0
\(655\) −2.56879e11 4.44927e11i −1.39561 2.41726i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.67964e11 1.42080 0.710402 0.703796i \(-0.248513\pi\)
0.710402 + 0.703796i \(0.248513\pi\)
\(660\) 0 0
\(661\) −7.26106e10 + 4.19218e10i −0.380360 + 0.219601i −0.677975 0.735085i \(-0.737142\pi\)
0.297615 + 0.954686i \(0.403809\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.18551e10 + 2.39436e9i −0.0606205 + 0.0122434i
\(666\) 0 0
\(667\) 1.13493e11 1.96575e11i 0.573409 0.993173i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.75374e9i 0.0135842i
\(672\) 0 0
\(673\) −8.88652e10 −0.433183 −0.216592 0.976262i \(-0.569494\pi\)
−0.216592 + 0.976262i \(0.569494\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.38108e11 + 1.37471e11i 1.13349 + 0.654422i 0.944811 0.327616i \(-0.106245\pi\)
0.188681 + 0.982038i \(0.439579\pi\)
\(678\) 0 0
\(679\) −2.46192e11 8.27652e10i −1.15823 0.389375i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.99131e10 + 8.64521e10i 0.229368 + 0.397276i 0.957621 0.288032i \(-0.0930009\pi\)
−0.728253 + 0.685308i \(0.759668\pi\)
\(684\) 0 0
\(685\) 5.38048e11i 2.44376i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.02754e10 + 1.17060e10i −0.0899688 + 0.0519435i
\(690\) 0 0
\(691\) −3.80607e11 2.19744e11i −1.66942 0.963838i −0.967953 0.251132i \(-0.919197\pi\)
−0.701463 0.712706i \(-0.747469\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.42951e11 4.20804e11i 1.04131 1.80360i
\(696\) 0 0
\(697\) 2.66847e9 + 4.62192e9i 0.0113066 + 0.0195836i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.37767e11 0.570524 0.285262 0.958450i \(-0.407919\pi\)
0.285262 + 0.958450i \(0.407919\pi\)
\(702\) 0 0
\(703\) 1.25273e10 7.23261e9i 0.0512902 0.0296124i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.84421e10 + 3.88388e11i 0.313958 + 1.55449i
\(708\) 0 0
\(709\) −8.01965e10 + 1.38904e11i −0.317373 + 0.549707i −0.979939 0.199297i \(-0.936134\pi\)
0.662566 + 0.749004i \(0.269468\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.11153e11i 0.817033i
\(714\) 0 0
\(715\) −3.55875e9 −0.0136167
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.30536e11 + 7.53649e10i 0.488443 + 0.282003i 0.723928 0.689875i \(-0.242335\pi\)
−0.235485 + 0.971878i \(0.575668\pi\)
\(720\) 0 0
\(721\) −1.39781e10 + 1.23313e10i −0.0517256 + 0.0456317i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.86001e11 6.68574e11i −1.39713 2.41990i
\(726\) 0 0
\(727\) 2.37942e11i 0.851793i −0.904772 0.425896i \(-0.859959\pi\)
0.904772 0.425896i \(-0.140041\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.07567e10 + 2.35309e10i −0.142735 + 0.0824078i
\(732\) 0 0
\(733\) −4.06304e11 2.34580e11i −1.40746 0.812597i −0.412316 0.911041i \(-0.635280\pi\)
−0.995143 + 0.0984440i \(0.968613\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.64887e8 2.85592e8i 0.000558877 0.000968003i
\(738\) 0 0
\(739\) −3.62346e10 6.27601e10i −0.121491 0.210429i 0.798865 0.601511i \(-0.205434\pi\)
−0.920356 + 0.391082i \(0.872101\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.93093e11 1.61798 0.808990 0.587822i \(-0.200015\pi\)
0.808990 + 0.587822i \(0.200015\pi\)
\(744\) 0 0
\(745\) −3.34716e11 + 1.93248e11i −1.08655 + 0.627322i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.65557e10 + 8.67794e10i 0.243249 + 0.275733i
\(750\) 0 0
\(751\) −2.51634e11 + 4.35842e11i −0.791059 + 1.37015i 0.134253 + 0.990947i \(0.457137\pi\)
−0.925312 + 0.379207i \(0.876197\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.93852e11i 0.596598i
\(756\) 0 0
\(757\) 9.55961e10 0.291110 0.145555 0.989350i \(-0.453503\pi\)
0.145555 + 0.989350i \(0.453503\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.96935e11 + 2.29171e11i 1.18354 + 0.683314i 0.956830 0.290649i \(-0.0938712\pi\)
0.226705 + 0.973963i \(0.427205\pi\)
\(762\) 0 0
\(763\) 3.90892e11 7.89479e10i 1.15334 0.232939i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.64520e10 + 1.67060e11i 0.278695 + 0.482715i
\(768\) 0 0
\(769\) 6.23757e11i 1.78365i 0.452379 + 0.891826i \(0.350575\pi\)
−0.452379 + 0.891826i \(0.649425\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.37168e11 + 1.36929e11i −0.664259 + 0.383510i −0.793898 0.608051i \(-0.791951\pi\)
0.129639 + 0.991561i \(0.458618\pi\)
\(774\) 0 0
\(775\) −6.21941e11 3.59078e11i −1.72402 0.995364i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.77228e8 3.06969e8i 0.000481264 0.000833574i
\(780\) 0 0
\(781\) −3.21701e9 5.57202e9i −0.00864666 0.0149764i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −5.38720e11 −1.41868
\(786\) 0 0
\(787\) −3.25601e11 + 1.87986e11i −0.848764 + 0.490034i −0.860234 0.509900i \(-0.829682\pi\)
0.0114696 + 0.999934i \(0.496349\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.42522e10 + 2.50616e11i −0.215216 + 0.640181i
\(792\) 0 0
\(793\) −1.50016e11 + 2.59835e11i −0.379353 + 0.657059i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.47010e11i 0.364345i −0.983267 0.182172i \(-0.941687\pi\)
0.983267 0.182172i \(-0.0583129\pi\)
\(798\) 0 0
\(799\) 1.62833e10 0.0399535
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.99004e9 1.14895e9i −0.00478629 0.00276336i
\(804\) 0 0
\(805\) −9.35365e10 4.63124e11i −0.222740 1.10284i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.59804e11 6.23198e11i −0.839985 1.45490i −0.889906 0.456143i \(-0.849230\pi\)
0.0499213 0.998753i \(-0.484103\pi\)
\(810\) 0 0
\(811\) 4.46899e11i 1.03306i −0.856269 0.516531i \(-0.827223\pi\)
0.856269 0.516531i \(-0.172777\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.79341e11 + 3.92218e11i −1.53978 + 0.888990i
\(816\) 0 0
\(817\) 2.70689e9 + 1.56282e9i 0.00607550 + 0.00350769i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.82753e11 + 4.89743e11i −0.622350 + 1.07794i 0.366696 + 0.930341i \(0.380489\pi\)
−0.989047 + 0.147602i \(0.952845\pi\)
\(822\) 0 0
\(823\) −4.08180e11 7.06988e11i −0.889718 1.54104i −0.840209 0.542263i \(-0.817568\pi\)
−0.0495086 0.998774i \(-0.515766\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.58275e11 0.338369 0.169185 0.985584i \(-0.445887\pi\)
0.169185 + 0.985584i \(0.445887\pi\)
\(828\) 0 0
\(829\) −2.94240e11 + 1.69880e11i −0.622994 + 0.359686i −0.778034 0.628223i \(-0.783783\pi\)
0.155040 + 0.987908i \(0.450449\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.24321e11 + 5.33281e10i 0.881281 + 0.110758i
\(834\) 0 0
\(835\) 1.59640e11 2.76504e11i 0.328394 0.568796i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.17796e11i 0.439543i 0.975551 + 0.219772i \(0.0705312\pi\)
−0.975551 + 0.219772i \(0.929469\pi\)
\(840\) 0 0
\(841\) 8.90489e11 1.78010
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.86459e11 2.23122e11i −0.758013 0.437639i
\(846\) 0 0
\(847\) −3.40434e11 3.85897e11i −0.661453 0.749788i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.82544e11 + 4.89381e11i 0.538726 + 0.933101i
\(852\) 0 0
\(853\) 3.85581e11i 0.728315i 0.931337 + 0.364158i \(0.118643\pi\)
−0.931337 + 0.364158i \(0.881357\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.52464e11 + 2.61230e11i −0.838804 + 0.484284i −0.856857 0.515553i \(-0.827586\pi\)
0.0180535 + 0.999837i \(0.494253\pi\)
\(858\) 0 0
\(859\) 1.75889e10 + 1.01550e10i 0.0323047 + 0.0186512i 0.516065 0.856549i \(-0.327396\pi\)
−0.483761 + 0.875200i \(0.660729\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.35353e11 5.80848e11i 0.604587 1.04718i −0.387529 0.921857i \(-0.626671\pi\)
0.992117 0.125319i \(-0.0399953\pi\)
\(864\) 0 0
\(865\) 4.65295e10 + 8.05915e10i 0.0831121 + 0.143954i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.97899e9 0.0139917
\(870\) 0 0
\(871\) −3.11164e10 + 1.79651e10i −0.0540651 + 0.0312145i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.14279e11 2.06509e11i −1.04793 0.352295i
\(876\) 0 0
\(877\) −2.78980e11 + 4.83207e11i −0.471601 + 0.816837i −0.999472 0.0324877i \(-0.989657\pi\)
0.527871 + 0.849324i \(0.322990\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.26303e11i 0.209658i 0.994490 + 0.104829i \(0.0334295\pi\)
−0.994490 + 0.104829i \(0.966571\pi\)
\(882\) 0 0
\(883\) 3.53162e11 0.580939 0.290470 0.956884i \(-0.406188\pi\)
0.290470 + 0.956884i \(0.406188\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.53648e11 2.04179e11i −0.571317 0.329850i 0.186358 0.982482i \(-0.440332\pi\)
−0.757675 + 0.652632i \(0.773665\pi\)
\(888\) 0 0
\(889\) 3.18773e11 9.48220e11i 0.510358 1.51811i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.40733e8 9.36578e8i −0.000850310 0.00147278i
\(894\) 0 0
\(895\) 1.89595e12i 2.95484i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.12041e12 6.46867e11i 1.71529 0.990321i
\(900\) 0 0
\(901\) −7.72355e10 4.45920e10i −0.117197 0.0676640i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.08173e11 + 3.60566e11i −0.310335 + 0.537515i
\(906\) 0 0
\(907\) 3.15150e11 + 5.45855e11i 0.465680 + 0.806581i 0.999232 0.0391859i \(-0.0124765\pi\)
−0.533552 + 0.845767i \(0.679143\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.47406e11 1.37551 0.687753 0.725945i \(-0.258597\pi\)
0.687753 + 0.725945i \(0.258597\pi\)
\(912\) 0 0
\(913\) 3.91234e9 2.25879e9i 0.00563058 0.00325082i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.04778e11 7.98184e11i 1.27957 1.12882i
\(918\) 0 0
\(919\) 3.99492e11 6.91941e11i 0.560075 0.970079i −0.437414 0.899260i \(-0.644106\pi\)
0.997489 0.0708185i \(-0.0225611\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.01012e11i 0.965871i
\(924\) 0 0
\(925\) 1.92193e12 2.62525
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.54944e11 + 4.35867e11i 1.01357 + 0.585182i 0.912234 0.409670i \(-0.134356\pi\)
0.101332 + 0.994853i \(0.467690\pi\)
\(930\) 0 0
\(931\) −1.10235e10 2.61769e10i −0.0146730 0.0348433i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6.77822e9 1.17402e10i −0.00886889 0.0153614i
\(936\) 0 0
\(937\) 2.93757e11i 0.381092i 0.981678 + 0.190546i \(0.0610258\pi\)
−0.981678 + 0.190546i \(0.938974\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.62309e11 5.55589e11i 1.22731 0.708590i 0.260847 0.965380i \(-0.415998\pi\)
0.966467 + 0.256790i \(0.0826648\pi\)
\(942\) 0 0
\(943\) 1.19918e10 + 6.92348e9i 0.0151649 + 0.00875543i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.58116e11 4.47070e11i 0.320933 0.555873i −0.659748 0.751487i \(-0.729337\pi\)
0.980681 + 0.195614i \(0.0626701\pi\)
\(948\) 0 0
\(949\) 1.25183e11 + 2.16823e11i 0.154340 + 0.267325i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.18648e11 −0.750018 −0.375009 0.927021i \(-0.622360\pi\)
−0.375009 + 0.927021i \(0.622360\pi\)
\(954\) 0 0
\(955\) −1.05968e11 + 6.11807e10i −0.127398 + 0.0735531i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.23857e12 + 2.50152e11i −1.46435 + 0.295753i
\(960\) 0 0
\(961\) 1.75303e11 3.03633e11i 0.205539 0.356004i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.91357e11i 1.14320i
\(966\) 0 0
\(967\) 1.14154e12 1.30552 0.652760 0.757565i \(-0.273611\pi\)
0.652760 + 0.757565i \(0.273611\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.03500e12 5.97555e11i −1.16429 0.672204i −0.211963 0.977278i \(-0.567986\pi\)
−0.952329 + 0.305074i \(0.901319\pi\)
\(972\) 0 0
\(973\) 1.08163e12 + 3.63623e11i 1.20678 + 0.405696i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.55277e11 + 1.48138e12i 0.938703 + 1.62588i 0.767893 + 0.640578i \(0.221305\pi\)
0.170810 + 0.985304i \(0.445362\pi\)
\(978\) 0 0
\(979\) 1.04666e10i 0.0113940i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.38729e11 5.41975e11i 1.00537 0.580451i 0.0955378 0.995426i \(-0.469543\pi\)
0.909833 + 0.414975i \(0.136210\pi\)
\(984\) 0 0
\(985\) −1.04654e12 6.04222e11i −1.11176 0.641877i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.10521e10 + 1.05745e11i −0.0638139 + 0.110529i
\(990\) 0 0
\(991\) −1.24842e11 2.16233e11i −0.129439 0.224196i 0.794020 0.607891i \(-0.207984\pi\)
−0.923460 + 0.383696i \(0.874651\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.08636e12 −2.12862
\(996\) 0 0
\(997\) 7.78246e11 4.49320e11i 0.787655 0.454753i −0.0514813 0.998674i \(-0.516394\pi\)
0.839136 + 0.543921i \(0.183061\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.9.z.e.145.1 yes 20
3.2 odd 2 inner 252.9.z.e.145.10 yes 20
7.3 odd 6 inner 252.9.z.e.73.1 20
21.17 even 6 inner 252.9.z.e.73.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.9.z.e.73.1 20 7.3 odd 6 inner
252.9.z.e.73.10 yes 20 21.17 even 6 inner
252.9.z.e.145.1 yes 20 1.1 even 1 trivial
252.9.z.e.145.10 yes 20 3.2 odd 2 inner