Properties

Label 252.4.bm
Level $252$
Weight $4$
Character orbit 252.bm
Rep. character $\chi_{252}(173,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $48$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.bm (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(252, [\chi])\).

Total New Old
Modular forms 300 48 252
Cusp forms 276 48 228
Eisenstein series 24 0 24

Trace form

\( 48 q + 6 q^{7} - 30 q^{9} + 36 q^{13} + 66 q^{15} + 72 q^{17} + 126 q^{21} + 1200 q^{25} + 396 q^{27} + 42 q^{29} - 90 q^{31} + 108 q^{33} - 390 q^{35} + 84 q^{37} + 1014 q^{39} + 618 q^{41} - 42 q^{43}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.4.bm.a 252.bm 63.s $48$ $14.868$ None 252.4.w.a \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{4}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)