Properties

Label 252.3.p.a.157.4
Level $252$
Weight $3$
Character 252.157
Analytic conductor $6.867$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,3,Mod(61,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.61"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 157.4
Character \(\chi\) \(=\) 252.157
Dual form 252.3.p.a.61.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.37299 + 1.83546i) q^{3} +5.22643i q^{5} +(-2.36655 + 6.58783i) q^{7} +(2.26216 - 8.71106i) q^{9} +4.86821 q^{11} +(-3.87803 - 2.23898i) q^{13} +(-9.59291 - 12.4023i) q^{15} +(-22.8086 - 13.1686i) q^{17} +(-15.6393 + 9.02938i) q^{19} +(-6.47591 - 19.9766i) q^{21} +2.10501 q^{23} -2.31556 q^{25} +(10.6207 + 24.8234i) q^{27} +(-13.8523 - 23.9929i) q^{29} +(-24.7272 + 14.2763i) q^{31} +(-11.5522 + 8.93540i) q^{33} +(-34.4308 - 12.3686i) q^{35} +(13.5493 + 23.4681i) q^{37} +(13.3121 - 1.80489i) q^{39} +(-59.9799 - 34.6294i) q^{41} +(0.983471 + 1.70342i) q^{43} +(45.5278 + 11.8230i) q^{45} +(38.7995 + 22.4009i) q^{47} +(-37.7989 - 31.1808i) q^{49} +(78.2950 - 10.6155i) q^{51} +(6.39788 - 11.0815i) q^{53} +25.4433i q^{55} +(20.5389 - 50.1320i) q^{57} +(-48.4028 + 27.9454i) q^{59} +(91.6937 + 52.9394i) q^{61} +(52.0335 + 35.5179i) q^{63} +(11.7019 - 20.2682i) q^{65} +(10.4104 + 18.0313i) q^{67} +(-4.99518 + 3.86367i) q^{69} -23.1583 q^{71} +(116.548 + 67.2890i) q^{73} +(5.49480 - 4.25012i) q^{75} +(-11.5208 + 32.0709i) q^{77} +(-55.8622 + 96.7561i) q^{79} +(-70.7652 - 39.4117i) q^{81} +(16.3728 - 9.45285i) q^{83} +(68.8245 - 119.208i) q^{85} +(76.9093 + 31.5095i) q^{87} +(49.5248 - 28.5932i) q^{89} +(23.9275 - 20.2491i) q^{91} +(32.4739 - 79.2633i) q^{93} +(-47.1914 - 81.7379i) q^{95} +(-165.209 + 95.3837i) q^{97} +(11.0127 - 42.4072i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{7} - 6 q^{9} - 12 q^{11} + 15 q^{13} + 9 q^{15} - 27 q^{17} - 36 q^{21} + 30 q^{23} - 160 q^{25} - 9 q^{27} + 24 q^{29} - 24 q^{31} + 81 q^{33} + 141 q^{35} + 11 q^{37} - 21 q^{39} - 90 q^{41}+ \cdots - 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.37299 + 1.83546i −0.790997 + 0.611820i
\(4\) 0 0
\(5\) 5.22643i 1.04529i 0.852552 + 0.522643i \(0.175054\pi\)
−0.852552 + 0.522643i \(0.824946\pi\)
\(6\) 0 0
\(7\) −2.36655 + 6.58783i −0.338078 + 0.941118i
\(8\) 0 0
\(9\) 2.26216 8.71106i 0.251351 0.967896i
\(10\) 0 0
\(11\) 4.86821 0.442564 0.221282 0.975210i \(-0.428976\pi\)
0.221282 + 0.975210i \(0.428976\pi\)
\(12\) 0 0
\(13\) −3.87803 2.23898i −0.298310 0.172229i 0.343374 0.939199i \(-0.388430\pi\)
−0.641683 + 0.766970i \(0.721764\pi\)
\(14\) 0 0
\(15\) −9.59291 12.4023i −0.639527 0.826818i
\(16\) 0 0
\(17\) −22.8086 13.1686i −1.34168 0.774621i −0.354629 0.935007i \(-0.615393\pi\)
−0.987054 + 0.160386i \(0.948726\pi\)
\(18\) 0 0
\(19\) −15.6393 + 9.02938i −0.823123 + 0.475231i −0.851492 0.524367i \(-0.824302\pi\)
0.0283690 + 0.999598i \(0.490969\pi\)
\(20\) 0 0
\(21\) −6.47591 19.9766i −0.308377 0.951264i
\(22\) 0 0
\(23\) 2.10501 0.0915223 0.0457612 0.998952i \(-0.485429\pi\)
0.0457612 + 0.998952i \(0.485429\pi\)
\(24\) 0 0
\(25\) −2.31556 −0.0926224
\(26\) 0 0
\(27\) 10.6207 + 24.8234i 0.393360 + 0.919384i
\(28\) 0 0
\(29\) −13.8523 23.9929i −0.477665 0.827341i 0.522007 0.852941i \(-0.325183\pi\)
−0.999672 + 0.0256007i \(0.991850\pi\)
\(30\) 0 0
\(31\) −24.7272 + 14.2763i −0.797653 + 0.460525i −0.842650 0.538462i \(-0.819005\pi\)
0.0449971 + 0.998987i \(0.485672\pi\)
\(32\) 0 0
\(33\) −11.5522 + 8.93540i −0.350067 + 0.270770i
\(34\) 0 0
\(35\) −34.4308 12.3686i −0.983737 0.353388i
\(36\) 0 0
\(37\) 13.5493 + 23.4681i 0.366198 + 0.634273i 0.988968 0.148132i \(-0.0473260\pi\)
−0.622770 + 0.782405i \(0.713993\pi\)
\(38\) 0 0
\(39\) 13.3121 1.80489i 0.341335 0.0462793i
\(40\) 0 0
\(41\) −59.9799 34.6294i −1.46292 0.844620i −0.463779 0.885951i \(-0.653507\pi\)
−0.999146 + 0.0413310i \(0.986840\pi\)
\(42\) 0 0
\(43\) 0.983471 + 1.70342i 0.0228714 + 0.0396145i 0.877235 0.480062i \(-0.159386\pi\)
−0.854363 + 0.519676i \(0.826052\pi\)
\(44\) 0 0
\(45\) 45.5278 + 11.8230i 1.01173 + 0.262734i
\(46\) 0 0
\(47\) 38.7995 + 22.4009i 0.825522 + 0.476615i 0.852317 0.523026i \(-0.175197\pi\)
−0.0267949 + 0.999641i \(0.508530\pi\)
\(48\) 0 0
\(49\) −37.7989 31.1808i −0.771406 0.636343i
\(50\) 0 0
\(51\) 78.2950 10.6155i 1.53520 0.208146i
\(52\) 0 0
\(53\) 6.39788 11.0815i 0.120715 0.209084i −0.799335 0.600886i \(-0.794815\pi\)
0.920050 + 0.391802i \(0.128148\pi\)
\(54\) 0 0
\(55\) 25.4433i 0.462606i
\(56\) 0 0
\(57\) 20.5389 50.1320i 0.360332 0.879509i
\(58\) 0 0
\(59\) −48.4028 + 27.9454i −0.820387 + 0.473650i −0.850550 0.525895i \(-0.823731\pi\)
0.0301632 + 0.999545i \(0.490397\pi\)
\(60\) 0 0
\(61\) 91.6937 + 52.9394i 1.50318 + 0.867859i 0.999993 + 0.00367844i \(0.00117089\pi\)
0.503182 + 0.864180i \(0.332162\pi\)
\(62\) 0 0
\(63\) 52.0335 + 35.5179i 0.825928 + 0.563776i
\(64\) 0 0
\(65\) 11.7019 20.2682i 0.180029 0.311819i
\(66\) 0 0
\(67\) 10.4104 + 18.0313i 0.155378 + 0.269123i 0.933197 0.359366i \(-0.117007\pi\)
−0.777818 + 0.628489i \(0.783674\pi\)
\(68\) 0 0
\(69\) −4.99518 + 3.86367i −0.0723939 + 0.0559952i
\(70\) 0 0
\(71\) −23.1583 −0.326174 −0.163087 0.986612i \(-0.552145\pi\)
−0.163087 + 0.986612i \(0.552145\pi\)
\(72\) 0 0
\(73\) 116.548 + 67.2890i 1.59655 + 0.921767i 0.992146 + 0.125086i \(0.0399207\pi\)
0.604401 + 0.796680i \(0.293413\pi\)
\(74\) 0 0
\(75\) 5.49480 4.25012i 0.0732640 0.0566683i
\(76\) 0 0
\(77\) −11.5208 + 32.0709i −0.149621 + 0.416505i
\(78\) 0 0
\(79\) −55.8622 + 96.7561i −0.707116 + 1.22476i 0.258807 + 0.965929i \(0.416671\pi\)
−0.965922 + 0.258832i \(0.916663\pi\)
\(80\) 0 0
\(81\) −70.7652 39.4117i −0.873645 0.486564i
\(82\) 0 0
\(83\) 16.3728 9.45285i 0.197263 0.113890i −0.398115 0.917335i \(-0.630336\pi\)
0.595378 + 0.803446i \(0.297002\pi\)
\(84\) 0 0
\(85\) 68.8245 119.208i 0.809700 1.40244i
\(86\) 0 0
\(87\) 76.9093 + 31.5095i 0.884016 + 0.362178i
\(88\) 0 0
\(89\) 49.5248 28.5932i 0.556459 0.321272i −0.195264 0.980751i \(-0.562556\pi\)
0.751723 + 0.659479i \(0.229223\pi\)
\(90\) 0 0
\(91\) 23.9275 20.2491i 0.262940 0.222518i
\(92\) 0 0
\(93\) 32.4739 79.2633i 0.349182 0.852294i
\(94\) 0 0
\(95\) −47.1914 81.7379i −0.496752 0.860399i
\(96\) 0 0
\(97\) −165.209 + 95.3837i −1.70319 + 0.983337i −0.760698 + 0.649106i \(0.775143\pi\)
−0.942491 + 0.334231i \(0.891523\pi\)
\(98\) 0 0
\(99\) 11.0127 42.4072i 0.111239 0.428356i
\(100\) 0 0
\(101\) 113.735i 1.12609i −0.826427 0.563044i \(-0.809630\pi\)
0.826427 0.563044i \(-0.190370\pi\)
\(102\) 0 0
\(103\) 120.883i 1.17362i 0.809724 + 0.586811i \(0.199617\pi\)
−0.809724 + 0.586811i \(0.800383\pi\)
\(104\) 0 0
\(105\) 104.406 33.8459i 0.994343 0.322342i
\(106\) 0 0
\(107\) 57.2792 + 99.2104i 0.535319 + 0.927200i 0.999148 + 0.0412752i \(0.0131420\pi\)
−0.463829 + 0.885925i \(0.653525\pi\)
\(108\) 0 0
\(109\) 1.44744 2.50705i 0.0132793 0.0230004i −0.859309 0.511456i \(-0.829106\pi\)
0.872589 + 0.488456i \(0.162440\pi\)
\(110\) 0 0
\(111\) −75.2272 30.8203i −0.677723 0.277661i
\(112\) 0 0
\(113\) −60.3613 + 104.549i −0.534171 + 0.925211i 0.465032 + 0.885294i \(0.346043\pi\)
−0.999203 + 0.0399175i \(0.987290\pi\)
\(114\) 0 0
\(115\) 11.0017i 0.0956670i
\(116\) 0 0
\(117\) −28.2766 + 28.7168i −0.241681 + 0.245443i
\(118\) 0 0
\(119\) 140.730 119.095i 1.18260 1.00080i
\(120\) 0 0
\(121\) −97.3006 −0.804137
\(122\) 0 0
\(123\) 205.893 27.9155i 1.67392 0.226956i
\(124\) 0 0
\(125\) 118.559i 0.948469i
\(126\) 0 0
\(127\) −146.347 −1.15234 −0.576168 0.817331i \(-0.695453\pi\)
−0.576168 + 0.817331i \(0.695453\pi\)
\(128\) 0 0
\(129\) −5.46033 2.23708i −0.0423282 0.0173417i
\(130\) 0 0
\(131\) 83.9330i 0.640710i −0.947298 0.320355i \(-0.896198\pi\)
0.947298 0.320355i \(-0.103802\pi\)
\(132\) 0 0
\(133\) −22.4727 124.398i −0.168968 0.935321i
\(134\) 0 0
\(135\) −129.738 + 55.5085i −0.961019 + 0.411174i
\(136\) 0 0
\(137\) −19.1092 −0.139483 −0.0697415 0.997565i \(-0.522217\pi\)
−0.0697415 + 0.997565i \(0.522217\pi\)
\(138\) 0 0
\(139\) 121.699 + 70.2632i 0.875535 + 0.505490i 0.869184 0.494490i \(-0.164645\pi\)
0.00635130 + 0.999980i \(0.497978\pi\)
\(140\) 0 0
\(141\) −133.187 + 18.0579i −0.944588 + 0.128070i
\(142\) 0 0
\(143\) −18.8790 10.8998i −0.132021 0.0762225i
\(144\) 0 0
\(145\) 125.397 72.3980i 0.864807 0.499297i
\(146\) 0 0
\(147\) 146.928 + 4.61329i 0.999507 + 0.0313829i
\(148\) 0 0
\(149\) −127.289 −0.854288 −0.427144 0.904184i \(-0.640480\pi\)
−0.427144 + 0.904184i \(0.640480\pi\)
\(150\) 0 0
\(151\) 153.984 1.01976 0.509880 0.860245i \(-0.329690\pi\)
0.509880 + 0.860245i \(0.329690\pi\)
\(152\) 0 0
\(153\) −166.309 + 168.898i −1.08699 + 1.10391i
\(154\) 0 0
\(155\) −74.6139 129.235i −0.481380 0.833775i
\(156\) 0 0
\(157\) −123.023 + 71.0276i −0.783589 + 0.452405i −0.837701 0.546130i \(-0.816101\pi\)
0.0541119 + 0.998535i \(0.482767\pi\)
\(158\) 0 0
\(159\) 5.15747 + 38.0392i 0.0324369 + 0.239241i
\(160\) 0 0
\(161\) −4.98161 + 13.8675i −0.0309417 + 0.0861333i
\(162\) 0 0
\(163\) −28.1059 48.6808i −0.172429 0.298655i 0.766840 0.641839i \(-0.221828\pi\)
−0.939268 + 0.343183i \(0.888495\pi\)
\(164\) 0 0
\(165\) −46.7002 60.3768i −0.283032 0.365920i
\(166\) 0 0
\(167\) −149.022 86.0380i −0.892348 0.515197i −0.0176382 0.999844i \(-0.505615\pi\)
−0.874710 + 0.484647i \(0.838948\pi\)
\(168\) 0 0
\(169\) −74.4739 128.993i −0.440674 0.763270i
\(170\) 0 0
\(171\) 43.2767 + 156.661i 0.253080 + 0.916148i
\(172\) 0 0
\(173\) 259.109 + 149.597i 1.49774 + 0.864722i 0.999997 0.00260137i \(-0.000828042\pi\)
0.497745 + 0.867323i \(0.334161\pi\)
\(174\) 0 0
\(175\) 5.47988 15.2545i 0.0313136 0.0871686i
\(176\) 0 0
\(177\) 63.5667 155.156i 0.359134 0.876585i
\(178\) 0 0
\(179\) −105.294 + 182.374i −0.588234 + 1.01885i 0.406230 + 0.913771i \(0.366843\pi\)
−0.994464 + 0.105080i \(0.966490\pi\)
\(180\) 0 0
\(181\) 109.297i 0.603849i −0.953332 0.301924i \(-0.902371\pi\)
0.953332 0.301924i \(-0.0976290\pi\)
\(182\) 0 0
\(183\) −314.756 + 42.6756i −1.71998 + 0.233200i
\(184\) 0 0
\(185\) −122.654 + 70.8146i −0.662997 + 0.382782i
\(186\) 0 0
\(187\) −111.037 64.1072i −0.593781 0.342820i
\(188\) 0 0
\(189\) −188.667 + 11.2218i −0.998236 + 0.0593747i
\(190\) 0 0
\(191\) −80.0424 + 138.637i −0.419070 + 0.725850i −0.995846 0.0910518i \(-0.970977\pi\)
0.576776 + 0.816902i \(0.304310\pi\)
\(192\) 0 0
\(193\) 128.950 + 223.348i 0.668135 + 1.15724i 0.978425 + 0.206602i \(0.0662404\pi\)
−0.310290 + 0.950642i \(0.600426\pi\)
\(194\) 0 0
\(195\) 9.43314 + 69.5747i 0.0483751 + 0.356793i
\(196\) 0 0
\(197\) 48.3615 0.245490 0.122745 0.992438i \(-0.460830\pi\)
0.122745 + 0.992438i \(0.460830\pi\)
\(198\) 0 0
\(199\) −242.500 140.007i −1.21859 0.703555i −0.253976 0.967211i \(-0.581738\pi\)
−0.964617 + 0.263656i \(0.915072\pi\)
\(200\) 0 0
\(201\) −57.7994 23.6802i −0.287559 0.117812i
\(202\) 0 0
\(203\) 190.843 34.4762i 0.940113 0.169834i
\(204\) 0 0
\(205\) 180.988 313.481i 0.882869 1.52917i
\(206\) 0 0
\(207\) 4.76188 18.3369i 0.0230043 0.0885841i
\(208\) 0 0
\(209\) −76.1355 + 43.9569i −0.364285 + 0.210320i
\(210\) 0 0
\(211\) 116.083 201.061i 0.550155 0.952897i −0.448108 0.893980i \(-0.647902\pi\)
0.998263 0.0589170i \(-0.0187647\pi\)
\(212\) 0 0
\(213\) 54.9545 42.5062i 0.258002 0.199560i
\(214\) 0 0
\(215\) −8.90282 + 5.14004i −0.0414085 + 0.0239072i
\(216\) 0 0
\(217\) −35.5315 196.684i −0.163739 0.906379i
\(218\) 0 0
\(219\) −400.073 + 54.2431i −1.82682 + 0.247686i
\(220\) 0 0
\(221\) 58.9683 + 102.136i 0.266825 + 0.462154i
\(222\) 0 0
\(223\) 40.4870 23.3752i 0.181556 0.104822i −0.406467 0.913665i \(-0.633240\pi\)
0.588024 + 0.808844i \(0.299906\pi\)
\(224\) 0 0
\(225\) −5.23817 + 20.1710i −0.0232808 + 0.0896488i
\(226\) 0 0
\(227\) 194.745i 0.857905i −0.903327 0.428953i \(-0.858883\pi\)
0.903327 0.428953i \(-0.141117\pi\)
\(228\) 0 0
\(229\) 323.593i 1.41307i −0.707679 0.706534i \(-0.750258\pi\)
0.707679 0.706534i \(-0.249742\pi\)
\(230\) 0 0
\(231\) −31.5260 97.2500i −0.136476 0.420995i
\(232\) 0 0
\(233\) 118.761 + 205.701i 0.509706 + 0.882836i 0.999937 + 0.0112437i \(0.00357907\pi\)
−0.490231 + 0.871593i \(0.663088\pi\)
\(234\) 0 0
\(235\) −117.077 + 202.783i −0.498199 + 0.862907i
\(236\) 0 0
\(237\) −45.0317 332.134i −0.190007 1.40141i
\(238\) 0 0
\(239\) 208.192 360.600i 0.871098 1.50879i 0.0102362 0.999948i \(-0.496742\pi\)
0.860862 0.508839i \(-0.169925\pi\)
\(240\) 0 0
\(241\) 193.161i 0.801500i 0.916187 + 0.400750i \(0.131250\pi\)
−0.916187 + 0.400750i \(0.868750\pi\)
\(242\) 0 0
\(243\) 240.264 36.3633i 0.988740 0.149643i
\(244\) 0 0
\(245\) 162.964 197.553i 0.665160 0.806340i
\(246\) 0 0
\(247\) 80.8664 0.327394
\(248\) 0 0
\(249\) −21.5022 + 52.4832i −0.0863542 + 0.210776i
\(250\) 0 0
\(251\) 398.689i 1.58840i 0.607654 + 0.794202i \(0.292111\pi\)
−0.607654 + 0.794202i \(0.707889\pi\)
\(252\) 0 0
\(253\) 10.2476 0.0405045
\(254\) 0 0
\(255\) 55.4810 + 409.203i 0.217573 + 1.60472i
\(256\) 0 0
\(257\) 62.2823i 0.242343i −0.992632 0.121172i \(-0.961335\pi\)
0.992632 0.121172i \(-0.0386652\pi\)
\(258\) 0 0
\(259\) −186.669 + 33.7222i −0.720730 + 0.130202i
\(260\) 0 0
\(261\) −240.340 + 66.3924i −0.920841 + 0.254377i
\(262\) 0 0
\(263\) 19.4267 0.0738658 0.0369329 0.999318i \(-0.488241\pi\)
0.0369329 + 0.999318i \(0.488241\pi\)
\(264\) 0 0
\(265\) 57.9164 + 33.4381i 0.218553 + 0.126181i
\(266\) 0 0
\(267\) −65.0402 + 158.752i −0.243596 + 0.594577i
\(268\) 0 0
\(269\) 402.278 + 232.255i 1.49546 + 0.863402i 0.999986 0.00522340i \(-0.00166267\pi\)
0.495470 + 0.868625i \(0.334996\pi\)
\(270\) 0 0
\(271\) −79.6131 + 45.9646i −0.293775 + 0.169611i −0.639643 0.768672i \(-0.720918\pi\)
0.345868 + 0.938283i \(0.387585\pi\)
\(272\) 0 0
\(273\) −19.6134 + 91.9690i −0.0718438 + 0.336883i
\(274\) 0 0
\(275\) −11.2726 −0.0409913
\(276\) 0 0
\(277\) 477.953 1.72546 0.862730 0.505664i \(-0.168752\pi\)
0.862730 + 0.505664i \(0.168752\pi\)
\(278\) 0 0
\(279\) 68.4245 + 247.696i 0.245249 + 0.887798i
\(280\) 0 0
\(281\) 256.938 + 445.030i 0.914371 + 1.58374i 0.807820 + 0.589429i \(0.200647\pi\)
0.106550 + 0.994307i \(0.466019\pi\)
\(282\) 0 0
\(283\) −308.150 + 177.910i −1.08887 + 0.628659i −0.933275 0.359162i \(-0.883062\pi\)
−0.155594 + 0.987821i \(0.549729\pi\)
\(284\) 0 0
\(285\) 262.012 + 107.345i 0.919339 + 0.376650i
\(286\) 0 0
\(287\) 370.078 313.185i 1.28947 1.09124i
\(288\) 0 0
\(289\) 202.322 + 350.432i 0.700076 + 1.21257i
\(290\) 0 0
\(291\) 216.967 529.580i 0.745592 1.81986i
\(292\) 0 0
\(293\) 117.030 + 67.5671i 0.399419 + 0.230604i 0.686233 0.727382i \(-0.259263\pi\)
−0.286815 + 0.957986i \(0.592596\pi\)
\(294\) 0 0
\(295\) −146.055 252.974i −0.495100 0.857538i
\(296\) 0 0
\(297\) 51.7039 + 120.845i 0.174087 + 0.406887i
\(298\) 0 0
\(299\) −8.16330 4.71308i −0.0273020 0.0157628i
\(300\) 0 0
\(301\) −13.5493 + 2.44771i −0.0450142 + 0.00813193i
\(302\) 0 0
\(303\) 208.756 + 269.892i 0.688964 + 0.890732i
\(304\) 0 0
\(305\) −276.684 + 479.231i −0.907160 + 1.57125i
\(306\) 0 0
\(307\) 39.5279i 0.128755i −0.997926 0.0643776i \(-0.979494\pi\)
0.997926 0.0643776i \(-0.0205062\pi\)
\(308\) 0 0
\(309\) −221.876 286.854i −0.718046 0.928331i
\(310\) 0 0
\(311\) 300.456 173.468i 0.966095 0.557775i 0.0680515 0.997682i \(-0.478322\pi\)
0.898044 + 0.439907i \(0.144988\pi\)
\(312\) 0 0
\(313\) 111.454 + 64.3478i 0.356082 + 0.205584i 0.667361 0.744735i \(-0.267424\pi\)
−0.311279 + 0.950319i \(0.600757\pi\)
\(314\) 0 0
\(315\) −185.632 + 271.949i −0.589307 + 0.863331i
\(316\) 0 0
\(317\) 98.3572 170.360i 0.310275 0.537412i −0.668147 0.744030i \(-0.732912\pi\)
0.978422 + 0.206617i \(0.0662455\pi\)
\(318\) 0 0
\(319\) −67.4358 116.802i −0.211398 0.366151i
\(320\) 0 0
\(321\) −318.020 130.292i −0.990716 0.405893i
\(322\) 0 0
\(323\) 475.616 1.47249
\(324\) 0 0
\(325\) 8.97980 + 5.18449i 0.0276302 + 0.0159523i
\(326\) 0 0
\(327\) 1.16682 + 8.60593i 0.00356825 + 0.0263178i
\(328\) 0 0
\(329\) −239.394 + 202.592i −0.727642 + 0.615781i
\(330\) 0 0
\(331\) 255.022 441.712i 0.770461 1.33448i −0.166850 0.985982i \(-0.553360\pi\)
0.937311 0.348495i \(-0.113307\pi\)
\(332\) 0 0
\(333\) 235.083 64.9403i 0.705955 0.195016i
\(334\) 0 0
\(335\) −94.2392 + 54.4090i −0.281311 + 0.162415i
\(336\) 0 0
\(337\) 162.206 280.949i 0.481324 0.833678i −0.518446 0.855110i \(-0.673489\pi\)
0.999770 + 0.0214324i \(0.00682267\pi\)
\(338\) 0 0
\(339\) −48.6586 358.884i −0.143536 1.05866i
\(340\) 0 0
\(341\) −120.377 + 69.4998i −0.353012 + 0.203812i
\(342\) 0 0
\(343\) 294.867 175.222i 0.859669 0.510851i
\(344\) 0 0
\(345\) −20.1932 26.1069i −0.0585310 0.0756723i
\(346\) 0 0
\(347\) −344.996 597.550i −0.994224 1.72205i −0.590060 0.807359i \(-0.700896\pi\)
−0.404164 0.914687i \(-0.632437\pi\)
\(348\) 0 0
\(349\) −99.8806 + 57.6661i −0.286191 + 0.165232i −0.636223 0.771505i \(-0.719504\pi\)
0.350032 + 0.936738i \(0.386171\pi\)
\(350\) 0 0
\(351\) 14.3916 120.045i 0.0410016 0.342010i
\(352\) 0 0
\(353\) 534.239i 1.51342i −0.653749 0.756712i \(-0.726805\pi\)
0.653749 0.756712i \(-0.273195\pi\)
\(354\) 0 0
\(355\) 121.035i 0.340945i
\(356\) 0 0
\(357\) −115.356 + 540.916i −0.323126 + 1.51517i
\(358\) 0 0
\(359\) −37.1151 64.2853i −0.103385 0.179068i 0.809692 0.586855i \(-0.199634\pi\)
−0.913077 + 0.407787i \(0.866301\pi\)
\(360\) 0 0
\(361\) −17.4406 + 30.2080i −0.0483119 + 0.0836787i
\(362\) 0 0
\(363\) 230.893 178.591i 0.636070 0.491987i
\(364\) 0 0
\(365\) −351.681 + 609.129i −0.963510 + 1.66885i
\(366\) 0 0
\(367\) 221.060i 0.602344i 0.953570 + 0.301172i \(0.0973778\pi\)
−0.953570 + 0.301172i \(0.902622\pi\)
\(368\) 0 0
\(369\) −437.343 + 444.151i −1.18521 + 1.20366i
\(370\) 0 0
\(371\) 57.8618 + 68.3729i 0.155962 + 0.184294i
\(372\) 0 0
\(373\) 308.603 0.827355 0.413677 0.910424i \(-0.364244\pi\)
0.413677 + 0.910424i \(0.364244\pi\)
\(374\) 0 0
\(375\) −217.610 281.338i −0.580293 0.750236i
\(376\) 0 0
\(377\) 124.060i 0.329072i
\(378\) 0 0
\(379\) −183.496 −0.484159 −0.242080 0.970256i \(-0.577830\pi\)
−0.242080 + 0.970256i \(0.577830\pi\)
\(380\) 0 0
\(381\) 347.279 268.614i 0.911494 0.705023i
\(382\) 0 0
\(383\) 304.720i 0.795614i 0.917469 + 0.397807i \(0.130229\pi\)
−0.917469 + 0.397807i \(0.869771\pi\)
\(384\) 0 0
\(385\) −167.616 60.2128i −0.435367 0.156397i
\(386\) 0 0
\(387\) 17.0634 4.71366i 0.0440915 0.0121800i
\(388\) 0 0
\(389\) −530.534 −1.36384 −0.681920 0.731427i \(-0.738855\pi\)
−0.681920 + 0.731427i \(0.738855\pi\)
\(390\) 0 0
\(391\) −48.0124 27.7200i −0.122794 0.0708951i
\(392\) 0 0
\(393\) 154.056 + 199.172i 0.391999 + 0.506799i
\(394\) 0 0
\(395\) −505.689 291.960i −1.28022 0.739138i
\(396\) 0 0
\(397\) −34.4462 + 19.8875i −0.0867662 + 0.0500945i −0.542755 0.839891i \(-0.682619\pi\)
0.455989 + 0.889985i \(0.349286\pi\)
\(398\) 0 0
\(399\) 281.655 + 253.947i 0.705902 + 0.636458i
\(400\) 0 0
\(401\) −137.340 −0.342493 −0.171246 0.985228i \(-0.554779\pi\)
−0.171246 + 0.985228i \(0.554779\pi\)
\(402\) 0 0
\(403\) 127.857 0.317263
\(404\) 0 0
\(405\) 205.982 369.849i 0.508599 0.913209i
\(406\) 0 0
\(407\) 65.9609 + 114.248i 0.162066 + 0.280707i
\(408\) 0 0
\(409\) −250.540 + 144.649i −0.612568 + 0.353666i −0.773970 0.633223i \(-0.781732\pi\)
0.161402 + 0.986889i \(0.448398\pi\)
\(410\) 0 0
\(411\) 45.3459 35.0742i 0.110331 0.0853386i
\(412\) 0 0
\(413\) −69.5518 385.003i −0.168406 0.932211i
\(414\) 0 0
\(415\) 49.4047 + 85.5714i 0.119047 + 0.206196i
\(416\) 0 0
\(417\) −417.757 + 56.6407i −1.00181 + 0.135829i
\(418\) 0 0
\(419\) −276.096 159.404i −0.658940 0.380439i 0.132933 0.991125i \(-0.457561\pi\)
−0.791873 + 0.610686i \(0.790894\pi\)
\(420\) 0 0
\(421\) 151.715 + 262.779i 0.360369 + 0.624178i 0.988022 0.154316i \(-0.0493174\pi\)
−0.627652 + 0.778494i \(0.715984\pi\)
\(422\) 0 0
\(423\) 282.907 287.311i 0.668810 0.679221i
\(424\) 0 0
\(425\) 52.8147 + 30.4926i 0.124270 + 0.0717472i
\(426\) 0 0
\(427\) −565.753 + 478.779i −1.32495 + 1.12126i
\(428\) 0 0
\(429\) 64.8059 8.78658i 0.151063 0.0204815i
\(430\) 0 0
\(431\) 95.1177 164.749i 0.220691 0.382248i −0.734327 0.678796i \(-0.762502\pi\)
0.955018 + 0.296548i \(0.0958355\pi\)
\(432\) 0 0
\(433\) 174.100i 0.402080i −0.979583 0.201040i \(-0.935568\pi\)
0.979583 0.201040i \(-0.0644320\pi\)
\(434\) 0 0
\(435\) −164.682 + 401.961i −0.378580 + 0.924049i
\(436\) 0 0
\(437\) −32.9210 + 19.0070i −0.0753342 + 0.0434942i
\(438\) 0 0
\(439\) −328.255 189.518i −0.747734 0.431705i 0.0771404 0.997020i \(-0.475421\pi\)
−0.824875 + 0.565316i \(0.808754\pi\)
\(440\) 0 0
\(441\) −357.125 + 258.733i −0.809808 + 0.586695i
\(442\) 0 0
\(443\) −225.787 + 391.075i −0.509678 + 0.882788i 0.490259 + 0.871577i \(0.336902\pi\)
−0.999937 + 0.0112115i \(0.996431\pi\)
\(444\) 0 0
\(445\) 149.440 + 258.838i 0.335821 + 0.581658i
\(446\) 0 0
\(447\) 302.055 233.634i 0.675739 0.522671i
\(448\) 0 0
\(449\) 210.442 0.468690 0.234345 0.972154i \(-0.424705\pi\)
0.234345 + 0.972154i \(0.424705\pi\)
\(450\) 0 0
\(451\) −291.995 168.583i −0.647438 0.373798i
\(452\) 0 0
\(453\) −365.402 + 282.631i −0.806627 + 0.623910i
\(454\) 0 0
\(455\) 105.831 + 125.056i 0.232595 + 0.274848i
\(456\) 0 0
\(457\) −169.499 + 293.580i −0.370894 + 0.642407i −0.989703 0.143134i \(-0.954282\pi\)
0.618809 + 0.785541i \(0.287615\pi\)
\(458\) 0 0
\(459\) 84.6441 706.047i 0.184410 1.53823i
\(460\) 0 0
\(461\) 667.078 385.138i 1.44702 0.835439i 0.448720 0.893672i \(-0.351880\pi\)
0.998303 + 0.0582329i \(0.0185466\pi\)
\(462\) 0 0
\(463\) 19.3898 33.5841i 0.0418786 0.0725359i −0.844326 0.535829i \(-0.819999\pi\)
0.886205 + 0.463293i \(0.153332\pi\)
\(464\) 0 0
\(465\) 414.264 + 169.723i 0.890891 + 0.364995i
\(466\) 0 0
\(467\) −664.728 + 383.781i −1.42340 + 0.821801i −0.996588 0.0825394i \(-0.973697\pi\)
−0.426813 + 0.904340i \(0.640364\pi\)
\(468\) 0 0
\(469\) −143.423 + 25.9098i −0.305807 + 0.0552448i
\(470\) 0 0
\(471\) 161.565 394.353i 0.343025 0.837267i
\(472\) 0 0
\(473\) 4.78774 + 8.29261i 0.0101221 + 0.0175319i
\(474\) 0 0
\(475\) 36.2138 20.9081i 0.0762396 0.0440170i
\(476\) 0 0
\(477\) −82.0582 80.8004i −0.172030 0.169393i
\(478\) 0 0
\(479\) 690.530i 1.44161i −0.693139 0.720804i \(-0.743773\pi\)
0.693139 0.720804i \(-0.256227\pi\)
\(480\) 0 0
\(481\) 121.347i 0.252280i
\(482\) 0 0
\(483\) −13.6319 42.0509i −0.0282233 0.0870619i
\(484\) 0 0
\(485\) −498.516 863.455i −1.02787 1.78032i
\(486\) 0 0
\(487\) −240.644 + 416.807i −0.494135 + 0.855867i −0.999977 0.00675930i \(-0.997848\pi\)
0.505842 + 0.862626i \(0.331182\pi\)
\(488\) 0 0
\(489\) 156.047 + 63.9318i 0.319114 + 0.130740i
\(490\) 0 0
\(491\) −87.9273 + 152.295i −0.179078 + 0.310172i −0.941565 0.336831i \(-0.890645\pi\)
0.762487 + 0.647004i \(0.223978\pi\)
\(492\) 0 0
\(493\) 729.659i 1.48004i
\(494\) 0 0
\(495\) 221.638 + 57.5570i 0.447754 + 0.116277i
\(496\) 0 0
\(497\) 54.8053 152.563i 0.110272 0.306968i
\(498\) 0 0
\(499\) 441.085 0.883938 0.441969 0.897030i \(-0.354280\pi\)
0.441969 + 0.897030i \(0.354280\pi\)
\(500\) 0 0
\(501\) 511.547 69.3571i 1.02105 0.138437i
\(502\) 0 0
\(503\) 574.435i 1.14202i −0.820944 0.571009i \(-0.806552\pi\)
0.820944 0.571009i \(-0.193448\pi\)
\(504\) 0 0
\(505\) 594.428 1.17708
\(506\) 0 0
\(507\) 413.487 + 169.404i 0.815556 + 0.334131i
\(508\) 0 0
\(509\) 204.871i 0.402497i −0.979540 0.201248i \(-0.935500\pi\)
0.979540 0.201248i \(-0.0644998\pi\)
\(510\) 0 0
\(511\) −719.104 + 608.555i −1.40725 + 1.19091i
\(512\) 0 0
\(513\) −390.241 292.323i −0.760704 0.569830i
\(514\) 0 0
\(515\) −631.787 −1.22677
\(516\) 0 0
\(517\) 188.884 + 109.052i 0.365346 + 0.210933i
\(518\) 0 0
\(519\) −889.443 + 120.593i −1.71376 + 0.232357i
\(520\) 0 0
\(521\) −353.441 204.059i −0.678389 0.391668i 0.120858 0.992670i \(-0.461435\pi\)
−0.799248 + 0.601001i \(0.794769\pi\)
\(522\) 0 0
\(523\) 48.8115 28.1814i 0.0933299 0.0538841i −0.452609 0.891709i \(-0.649507\pi\)
0.545939 + 0.837825i \(0.316173\pi\)
\(524\) 0 0
\(525\) 14.9953 + 46.2569i 0.0285626 + 0.0881083i
\(526\) 0 0
\(527\) 751.992 1.42693
\(528\) 0 0
\(529\) −524.569 −0.991624
\(530\) 0 0
\(531\) 133.939 + 484.857i 0.252239 + 0.913102i
\(532\) 0 0
\(533\) 155.069 + 268.588i 0.290937 + 0.503917i
\(534\) 0 0
\(535\) −518.516 + 299.365i −0.969189 + 0.559562i
\(536\) 0 0
\(537\) −84.8797 626.035i −0.158063 1.16580i
\(538\) 0 0
\(539\) −184.013 151.795i −0.341397 0.281623i
\(540\) 0 0
\(541\) −12.8446 22.2475i −0.0237424 0.0411230i 0.853910 0.520421i \(-0.174225\pi\)
−0.877652 + 0.479298i \(0.840891\pi\)
\(542\) 0 0
\(543\) 200.610 + 259.360i 0.369447 + 0.477642i
\(544\) 0 0
\(545\) 13.1029 + 7.56497i 0.0240420 + 0.0138807i
\(546\) 0 0
\(547\) 382.531 + 662.563i 0.699326 + 1.21127i 0.968701 + 0.248232i \(0.0798496\pi\)
−0.269375 + 0.963035i \(0.586817\pi\)
\(548\) 0 0
\(549\) 668.584 678.992i 1.21782 1.23678i
\(550\) 0 0
\(551\) 433.282 + 250.155i 0.786355 + 0.454002i
\(552\) 0 0
\(553\) −505.212 596.988i −0.913584 1.07954i
\(554\) 0 0
\(555\) 161.080 393.170i 0.290235 0.708414i
\(556\) 0 0
\(557\) −268.114 + 464.386i −0.481353 + 0.833728i −0.999771 0.0213996i \(-0.993188\pi\)
0.518418 + 0.855127i \(0.326521\pi\)
\(558\) 0 0
\(559\) 8.80789i 0.0157565i
\(560\) 0 0
\(561\) 381.156 51.6783i 0.679423 0.0921181i
\(562\) 0 0
\(563\) −292.335 + 168.780i −0.519245 + 0.299786i −0.736626 0.676301i \(-0.763582\pi\)
0.217381 + 0.976087i \(0.430249\pi\)
\(564\) 0 0
\(565\) −546.417 315.474i −0.967110 0.558361i
\(566\) 0 0
\(567\) 427.107 372.919i 0.753275 0.657706i
\(568\) 0 0
\(569\) −518.116 + 897.403i −0.910572 + 1.57716i −0.0973144 + 0.995254i \(0.531025\pi\)
−0.813258 + 0.581904i \(0.802308\pi\)
\(570\) 0 0
\(571\) 339.020 + 587.200i 0.593730 + 1.02837i 0.993725 + 0.111853i \(0.0356787\pi\)
−0.399995 + 0.916518i \(0.630988\pi\)
\(572\) 0 0
\(573\) −64.5239 475.900i −0.112607 0.830541i
\(574\) 0 0
\(575\) −4.87428 −0.00847701
\(576\) 0 0
\(577\) 392.667 + 226.706i 0.680532 + 0.392906i 0.800056 0.599926i \(-0.204803\pi\)
−0.119523 + 0.992831i \(0.538137\pi\)
\(578\) 0 0
\(579\) −715.944 293.320i −1.23652 0.506597i
\(580\) 0 0
\(581\) 23.5267 + 130.232i 0.0404935 + 0.224151i
\(582\) 0 0
\(583\) 31.1462 53.9468i 0.0534240 0.0925331i
\(584\) 0 0
\(585\) −150.086 147.786i −0.256558 0.252625i
\(586\) 0 0
\(587\) −244.807 + 141.339i −0.417047 + 0.240782i −0.693813 0.720155i \(-0.744071\pi\)
0.276766 + 0.960937i \(0.410737\pi\)
\(588\) 0 0
\(589\) 257.812 446.543i 0.437711 0.758138i
\(590\) 0 0
\(591\) −114.761 + 88.7657i −0.194182 + 0.150196i
\(592\) 0 0
\(593\) 612.297 353.510i 1.03254 0.596138i 0.114830 0.993385i \(-0.463368\pi\)
0.917712 + 0.397247i \(0.130034\pi\)
\(594\) 0 0
\(595\) 622.442 + 735.514i 1.04612 + 1.23616i
\(596\) 0 0
\(597\) 832.428 112.863i 1.39435 0.189050i
\(598\) 0 0
\(599\) 210.290 + 364.234i 0.351069 + 0.608069i 0.986437 0.164140i \(-0.0524849\pi\)
−0.635368 + 0.772210i \(0.719152\pi\)
\(600\) 0 0
\(601\) 493.506 284.926i 0.821142 0.474086i −0.0296684 0.999560i \(-0.509445\pi\)
0.850810 + 0.525473i \(0.176112\pi\)
\(602\) 0 0
\(603\) 180.621 49.8956i 0.299538 0.0827456i
\(604\) 0 0
\(605\) 508.535i 0.840553i
\(606\) 0 0
\(607\) 229.484i 0.378062i −0.981971 0.189031i \(-0.939465\pi\)
0.981971 0.189031i \(-0.0605347\pi\)
\(608\) 0 0
\(609\) −389.589 + 432.097i −0.639719 + 0.709518i
\(610\) 0 0
\(611\) −100.310 173.743i −0.164174 0.284358i
\(612\) 0 0
\(613\) 303.077 524.944i 0.494415 0.856353i −0.505564 0.862789i \(-0.668716\pi\)
0.999979 + 0.00643661i \(0.00204885\pi\)
\(614\) 0 0
\(615\) 145.899 + 1076.08i 0.237234 + 1.74973i
\(616\) 0 0
\(617\) 8.50305 14.7277i 0.0137813 0.0238699i −0.859053 0.511887i \(-0.828946\pi\)
0.872834 + 0.488018i \(0.162280\pi\)
\(618\) 0 0
\(619\) 221.345i 0.357584i −0.983887 0.178792i \(-0.942781\pi\)
0.983887 0.178792i \(-0.0572189\pi\)
\(620\) 0 0
\(621\) 22.3568 + 52.2535i 0.0360012 + 0.0841442i
\(622\) 0 0
\(623\) 71.1640 + 393.928i 0.114228 + 0.632308i
\(624\) 0 0
\(625\) −677.527 −1.08404
\(626\) 0 0
\(627\) 99.9877 244.053i 0.159470 0.389239i
\(628\) 0 0
\(629\) 713.700i 1.13466i
\(630\) 0 0
\(631\) 947.169 1.50106 0.750530 0.660837i \(-0.229798\pi\)
0.750530 + 0.660837i \(0.229798\pi\)
\(632\) 0 0
\(633\) 93.5769 + 690.181i 0.147831 + 1.09033i
\(634\) 0 0
\(635\) 764.871i 1.20452i
\(636\) 0 0
\(637\) 76.7720 + 205.551i 0.120521 + 0.322686i
\(638\) 0 0
\(639\) −52.3879 + 201.734i −0.0819842 + 0.315702i
\(640\) 0 0
\(641\) −639.570 −0.997769 −0.498884 0.866669i \(-0.666257\pi\)
−0.498884 + 0.866669i \(0.666257\pi\)
\(642\) 0 0
\(643\) 790.540 + 456.419i 1.22946 + 0.709827i 0.966916 0.255094i \(-0.0821065\pi\)
0.262540 + 0.964921i \(0.415440\pi\)
\(644\) 0 0
\(645\) 11.6919 28.5380i 0.0181270 0.0442450i
\(646\) 0 0
\(647\) −921.679 532.131i −1.42454 0.822460i −0.427859 0.903845i \(-0.640732\pi\)
−0.996683 + 0.0813857i \(0.974065\pi\)
\(648\) 0 0
\(649\) −235.635 + 136.044i −0.363074 + 0.209621i
\(650\) 0 0
\(651\) 445.322 + 401.513i 0.684058 + 0.616763i
\(652\) 0 0
\(653\) 238.535 0.365291 0.182646 0.983179i \(-0.441534\pi\)
0.182646 + 0.983179i \(0.441534\pi\)
\(654\) 0 0
\(655\) 438.670 0.669725
\(656\) 0 0
\(657\) 849.809 863.037i 1.29347 1.31360i
\(658\) 0 0
\(659\) 538.673 + 933.010i 0.817410 + 1.41580i 0.907584 + 0.419870i \(0.137924\pi\)
−0.0901739 + 0.995926i \(0.528742\pi\)
\(660\) 0 0
\(661\) −95.1790 + 54.9516i −0.143992 + 0.0831341i −0.570265 0.821460i \(-0.693160\pi\)
0.426273 + 0.904595i \(0.359826\pi\)
\(662\) 0 0
\(663\) −327.398 134.134i −0.493813 0.202314i
\(664\) 0 0
\(665\) 650.156 117.452i 0.977678 0.176620i
\(666\) 0 0
\(667\) −29.1593 50.5053i −0.0437170 0.0757201i
\(668\) 0 0
\(669\) −53.1711 + 129.782i −0.0794784 + 0.193993i
\(670\) 0 0
\(671\) 446.384 + 257.720i 0.665252 + 0.384083i
\(672\) 0 0
\(673\) −133.564 231.339i −0.198460 0.343743i 0.749569 0.661926i \(-0.230261\pi\)
−0.948029 + 0.318183i \(0.896927\pi\)
\(674\) 0 0
\(675\) −24.5929 57.4800i −0.0364340 0.0851556i
\(676\) 0 0
\(677\) −512.469 295.874i −0.756970 0.437037i 0.0712366 0.997459i \(-0.477305\pi\)
−0.828207 + 0.560422i \(0.810639\pi\)
\(678\) 0 0
\(679\) −237.395 1314.10i −0.349625 1.93535i
\(680\) 0 0
\(681\) 357.446 + 462.127i 0.524884 + 0.678600i
\(682\) 0 0
\(683\) 299.478 518.712i 0.438475 0.759461i −0.559097 0.829102i \(-0.688852\pi\)
0.997572 + 0.0696413i \(0.0221855\pi\)
\(684\) 0 0
\(685\) 99.8728i 0.145800i
\(686\) 0 0
\(687\) 593.942 + 767.882i 0.864544 + 1.11773i
\(688\) 0 0
\(689\) −49.6223 + 28.6495i −0.0720208 + 0.0415812i
\(690\) 0 0
\(691\) 577.667 + 333.516i 0.835987 + 0.482657i 0.855898 0.517144i \(-0.173005\pi\)
−0.0199111 + 0.999802i \(0.506338\pi\)
\(692\) 0 0
\(693\) 253.310 + 172.908i 0.365526 + 0.249507i
\(694\) 0 0
\(695\) −367.225 + 636.053i −0.528382 + 0.915184i
\(696\) 0 0
\(697\) 912.039 + 1579.70i 1.30852 + 2.26642i
\(698\) 0 0
\(699\) −659.376 270.144i −0.943313 0.386472i
\(700\) 0 0
\(701\) 938.173 1.33834 0.669168 0.743111i \(-0.266651\pi\)
0.669168 + 0.743111i \(0.266651\pi\)
\(702\) 0 0
\(703\) −423.805 244.684i −0.602852 0.348057i
\(704\) 0 0
\(705\) −94.3782 696.092i −0.133870 0.987365i
\(706\) 0 0
\(707\) 749.266 + 269.159i 1.05978 + 0.380706i
\(708\) 0 0
\(709\) −331.078 + 573.444i −0.466964 + 0.808806i −0.999288 0.0377350i \(-0.987986\pi\)
0.532323 + 0.846541i \(0.321319\pi\)
\(710\) 0 0
\(711\) 716.479 + 705.497i 1.00771 + 0.992260i
\(712\) 0 0
\(713\) −52.0511 + 30.0517i −0.0730030 + 0.0421483i
\(714\) 0 0
\(715\) 56.9671 98.6699i 0.0796743 0.138000i
\(716\) 0 0
\(717\) 167.829 + 1237.83i 0.234071 + 1.72640i
\(718\) 0 0
\(719\) −417.149 + 240.841i −0.580179 + 0.334966i −0.761204 0.648512i \(-0.775392\pi\)
0.181026 + 0.983478i \(0.442058\pi\)
\(720\) 0 0
\(721\) −796.357 286.076i −1.10452 0.396776i
\(722\) 0 0
\(723\) −354.540 458.370i −0.490374 0.633984i
\(724\) 0 0
\(725\) 32.0758 + 55.5569i 0.0442425 + 0.0766302i
\(726\) 0 0
\(727\) 158.111 91.2852i 0.217484 0.125564i −0.387301 0.921953i \(-0.626593\pi\)
0.604785 + 0.796389i \(0.293259\pi\)
\(728\) 0 0
\(729\) −503.400 + 527.285i −0.690535 + 0.723299i
\(730\) 0 0
\(731\) 51.8036i 0.0708668i
\(732\) 0 0
\(733\) 309.155i 0.421767i −0.977511 0.210883i \(-0.932366\pi\)
0.977511 0.210883i \(-0.0676341\pi\)
\(734\) 0 0
\(735\) −24.1110 + 767.907i −0.0328041 + 1.04477i
\(736\) 0 0
\(737\) 50.6798 + 87.7799i 0.0687649 + 0.119104i
\(738\) 0 0
\(739\) 153.566 265.984i 0.207803 0.359925i −0.743219 0.669048i \(-0.766702\pi\)
0.951022 + 0.309123i \(0.100036\pi\)
\(740\) 0 0
\(741\) −191.895 + 148.427i −0.258968 + 0.200307i
\(742\) 0 0
\(743\) −333.563 + 577.749i −0.448941 + 0.777589i −0.998317 0.0579859i \(-0.981532\pi\)
0.549376 + 0.835575i \(0.314865\pi\)
\(744\) 0 0
\(745\) 665.266i 0.892975i
\(746\) 0 0
\(747\) −45.3064 164.009i −0.0606511 0.219556i
\(748\) 0 0
\(749\) −789.135 + 142.559i −1.05358 + 0.190333i
\(750\) 0 0
\(751\) −165.828 −0.220809 −0.110405 0.993887i \(-0.535215\pi\)
−0.110405 + 0.993887i \(0.535215\pi\)
\(752\) 0 0
\(753\) −731.779 946.086i −0.971818 1.25642i
\(754\) 0 0
\(755\) 804.785i 1.06594i
\(756\) 0 0
\(757\) −1445.23 −1.90916 −0.954580 0.297954i \(-0.903696\pi\)
−0.954580 + 0.297954i \(0.903696\pi\)
\(758\) 0 0
\(759\) −24.3175 + 18.8091i −0.0320389 + 0.0247815i
\(760\) 0 0
\(761\) 1385.00i 1.81997i −0.414639 0.909986i \(-0.636092\pi\)
0.414639 0.909986i \(-0.363908\pi\)
\(762\) 0 0
\(763\) 13.0905 + 15.4686i 0.0171567 + 0.0202733i
\(764\) 0 0
\(765\) −882.733 869.202i −1.15390 1.13621i
\(766\) 0 0
\(767\) 250.277 0.326306
\(768\) 0 0
\(769\) −278.900 161.023i −0.362679 0.209393i 0.307576 0.951523i \(-0.400482\pi\)
−0.670255 + 0.742131i \(0.733815\pi\)
\(770\) 0 0
\(771\) 114.317 + 147.795i 0.148271 + 0.191693i
\(772\) 0 0
\(773\) 691.055 + 398.981i 0.893991 + 0.516146i 0.875246 0.483678i \(-0.160700\pi\)
0.0187451 + 0.999824i \(0.494033\pi\)
\(774\) 0 0
\(775\) 57.2574 33.0575i 0.0738805 0.0426549i
\(776\) 0 0
\(777\) 381.068 422.646i 0.490435 0.543946i
\(778\) 0 0
\(779\) 1250.73 1.60556
\(780\) 0 0
\(781\) −112.740 −0.144353
\(782\) 0 0
\(783\) 448.463 598.683i 0.572749 0.764601i
\(784\) 0 0
\(785\) −371.221 642.973i −0.472893 0.819074i
\(786\) 0 0
\(787\) 17.0107 9.82112i 0.0216146 0.0124792i −0.489154 0.872198i \(-0.662694\pi\)
0.510768 + 0.859718i \(0.329361\pi\)
\(788\) 0 0
\(789\) −46.0994 + 35.6570i −0.0584276 + 0.0451926i
\(790\) 0 0
\(791\) −545.902 645.070i −0.690142 0.815512i
\(792\) 0 0
\(793\) −237.060 410.601i −0.298941 0.517782i
\(794\) 0 0
\(795\) −198.809 + 26.9552i −0.250075 + 0.0339059i
\(796\) 0 0
\(797\) 47.9342 + 27.6748i 0.0601433 + 0.0347238i 0.529770 0.848141i \(-0.322278\pi\)
−0.469627 + 0.882865i \(0.655612\pi\)
\(798\) 0 0
\(799\) −589.976 1021.87i −0.738393 1.27893i
\(800\) 0 0
\(801\) −137.044 496.096i −0.171091 0.619346i
\(802\) 0 0
\(803\) 567.379 + 327.576i 0.706574 + 0.407941i
\(804\) 0 0
\(805\) −72.4773 26.0360i −0.0900339 0.0323429i
\(806\) 0 0
\(807\) −1380.90 + 187.226i −1.71115 + 0.232002i
\(808\) 0 0
\(809\) −476.140 + 824.699i −0.588554 + 1.01941i 0.405868 + 0.913932i \(0.366969\pi\)
−0.994422 + 0.105474i \(0.966364\pi\)
\(810\) 0 0
\(811\) 1053.01i 1.29841i 0.760615 + 0.649204i \(0.224898\pi\)
−0.760615 + 0.649204i \(0.775102\pi\)
\(812\) 0 0
\(813\) 104.555 255.200i 0.128604 0.313900i
\(814\) 0 0
\(815\) 254.427 146.893i 0.312180 0.180237i
\(816\) 0 0
\(817\) −30.7617 17.7603i −0.0376520 0.0217384i
\(818\) 0 0
\(819\) −122.263 254.241i −0.149284 0.310429i
\(820\) 0 0
\(821\) −73.9349 + 128.059i −0.0900547 + 0.155979i −0.907534 0.419979i \(-0.862038\pi\)
0.817479 + 0.575958i \(0.195371\pi\)
\(822\) 0 0
\(823\) −708.750 1227.59i −0.861179 1.49161i −0.870792 0.491652i \(-0.836393\pi\)
0.00961253 0.999954i \(-0.496940\pi\)
\(824\) 0 0
\(825\) 26.7498 20.6905i 0.0324240 0.0250793i
\(826\) 0 0
\(827\) −620.518 −0.750323 −0.375162 0.926959i \(-0.622413\pi\)
−0.375162 + 0.926959i \(0.622413\pi\)
\(828\) 0 0
\(829\) 239.434 + 138.237i 0.288823 + 0.166752i 0.637411 0.770524i \(-0.280005\pi\)
−0.348588 + 0.937276i \(0.613339\pi\)
\(830\) 0 0
\(831\) −1134.18 + 877.264i −1.36483 + 1.05567i
\(832\) 0 0
\(833\) 451.535 + 1208.95i 0.542058 + 1.45132i
\(834\) 0 0
\(835\) 449.671 778.853i 0.538528 0.932759i
\(836\) 0 0
\(837\) −617.006 462.189i −0.737164 0.552197i
\(838\) 0 0
\(839\) 517.588 298.830i 0.616911 0.356174i −0.158755 0.987318i \(-0.550748\pi\)
0.775665 + 0.631145i \(0.217415\pi\)
\(840\) 0 0
\(841\) 36.7279 63.6147i 0.0436718 0.0756417i
\(842\) 0 0
\(843\) −1426.55 584.452i −1.69223 0.693300i
\(844\) 0 0
\(845\) 674.171 389.233i 0.797835 0.460630i
\(846\) 0 0
\(847\) 230.266 640.999i 0.271861 0.756788i
\(848\) 0 0
\(849\) 404.689 987.777i 0.476665 1.16346i
\(850\) 0 0
\(851\) 28.5215 + 49.4007i 0.0335153 + 0.0580502i
\(852\) 0 0
\(853\) 832.688 480.753i 0.976187 0.563602i 0.0750705 0.997178i \(-0.476082\pi\)
0.901117 + 0.433576i \(0.142748\pi\)
\(854\) 0 0
\(855\) −818.779 + 226.183i −0.957636 + 0.264541i
\(856\) 0 0
\(857\) 1136.54i 1.32618i −0.748538 0.663092i \(-0.769244\pi\)
0.748538 0.663092i \(-0.230756\pi\)
\(858\) 0 0
\(859\) 934.897i 1.08836i 0.838970 + 0.544178i \(0.183158\pi\)
−0.838970 + 0.544178i \(0.816842\pi\)
\(860\) 0 0
\(861\) −303.352 + 1422.45i −0.352325 + 1.65209i
\(862\) 0 0
\(863\) −127.595 221.001i −0.147850 0.256084i 0.782582 0.622547i \(-0.213902\pi\)
−0.930433 + 0.366463i \(0.880569\pi\)
\(864\) 0 0
\(865\) −781.857 + 1354.22i −0.903881 + 1.56557i
\(866\) 0 0
\(867\) −1123.31 460.217i −1.29563 0.530816i
\(868\) 0 0
\(869\) −271.948 + 471.029i −0.312944 + 0.542035i
\(870\) 0 0
\(871\) 93.2344i 0.107043i
\(872\) 0 0
\(873\) 457.163 + 1654.92i 0.523668 + 1.89567i
\(874\) 0 0
\(875\) −781.044 280.575i −0.892621 0.320657i
\(876\) 0 0
\(877\) 201.993 0.230323 0.115161 0.993347i \(-0.463261\pi\)
0.115161 + 0.993347i \(0.463261\pi\)
\(878\) 0 0
\(879\) −401.727 + 54.4673i −0.457027 + 0.0619651i
\(880\) 0 0
\(881\) 63.7012i 0.0723056i −0.999346 0.0361528i \(-0.988490\pi\)
0.999346 0.0361528i \(-0.0115103\pi\)
\(882\) 0 0
\(883\) 480.739 0.544438 0.272219 0.962235i \(-0.412242\pi\)
0.272219 + 0.962235i \(0.412242\pi\)
\(884\) 0 0
\(885\) 810.910 + 332.227i 0.916282 + 0.375398i
\(886\) 0 0
\(887\) 910.655i 1.02667i 0.858189 + 0.513334i \(0.171590\pi\)
−0.858189 + 0.513334i \(0.828410\pi\)
\(888\) 0 0
\(889\) 346.336 964.107i 0.389580 1.08448i
\(890\) 0 0
\(891\) −344.500 191.864i −0.386644 0.215336i
\(892\) 0 0
\(893\) −809.066 −0.906009
\(894\) 0 0
\(895\) −953.166 550.311i −1.06499 0.614872i
\(896\) 0 0
\(897\) 28.0221 3.79932i 0.0312398 0.00423559i
\(898\) 0 0
\(899\) 685.058 + 395.518i 0.762022 + 0.439954i
\(900\) 0 0
\(901\) −291.854 + 168.502i −0.323922 + 0.187016i
\(902\) 0 0
\(903\) 27.6596 30.6776i 0.0306308 0.0339730i
\(904\) 0 0
\(905\) 571.231 0.631194
\(906\) 0 0
\(907\) 864.974 0.953664 0.476832 0.878994i \(-0.341785\pi\)
0.476832 + 0.878994i \(0.341785\pi\)
\(908\) 0 0
\(909\) −990.752 257.287i −1.08994 0.283044i
\(910\) 0 0
\(911\) 674.624 + 1168.48i 0.740532 + 1.28264i 0.952254 + 0.305308i \(0.0987595\pi\)
−0.211722 + 0.977330i \(0.567907\pi\)
\(912\) 0 0
\(913\) 79.7063 46.0184i 0.0873015 0.0504035i
\(914\) 0 0
\(915\) −223.041 1645.05i −0.243761 1.79787i
\(916\) 0 0
\(917\) 552.936 + 198.631i 0.602984 + 0.216610i
\(918\) 0 0
\(919\) −343.774 595.433i −0.374073 0.647914i 0.616114 0.787657i \(-0.288706\pi\)
−0.990188 + 0.139742i \(0.955373\pi\)
\(920\) 0 0
\(921\) 72.5518 + 93.7992i 0.0787751 + 0.101845i
\(922\) 0 0
\(923\) 89.8087 + 51.8511i 0.0973008 + 0.0561767i
\(924\) 0 0
\(925\) −31.3743 54.3418i −0.0339181 0.0587479i
\(926\) 0 0
\(927\) 1053.02 + 273.457i 1.13594 + 0.294992i
\(928\) 0 0
\(929\) 836.461 + 482.931i 0.900389 + 0.519840i 0.877326 0.479894i \(-0.159325\pi\)
0.0230626 + 0.999734i \(0.492658\pi\)
\(930\) 0 0
\(931\) 872.693 + 146.347i 0.937372 + 0.157193i
\(932\) 0 0
\(933\) −394.584 + 963.113i −0.422920 + 1.03228i
\(934\) 0 0
\(935\) 335.052 580.327i 0.358344 0.620671i
\(936\) 0 0
\(937\) 1227.11i 1.30962i −0.755795 0.654808i \(-0.772749\pi\)
0.755795 0.654808i \(-0.227251\pi\)
\(938\) 0 0
\(939\) −382.586 + 51.8722i −0.407440 + 0.0552419i
\(940\) 0 0
\(941\) 247.826 143.082i 0.263364 0.152053i −0.362504 0.931982i \(-0.618078\pi\)
0.625868 + 0.779929i \(0.284745\pi\)
\(942\) 0 0
\(943\) −126.259 72.8954i −0.133890 0.0773016i
\(944\) 0 0
\(945\) −58.6500 986.052i −0.0620635 1.04344i
\(946\) 0 0
\(947\) −804.293 + 1393.08i −0.849306 + 1.47104i 0.0325231 + 0.999471i \(0.489646\pi\)
−0.881829 + 0.471570i \(0.843688\pi\)
\(948\) 0 0
\(949\) −301.317 521.897i −0.317510 0.549944i
\(950\) 0 0
\(951\) 79.2879 + 584.793i 0.0833732 + 0.614924i
\(952\) 0 0
\(953\) 809.469 0.849390 0.424695 0.905336i \(-0.360381\pi\)
0.424695 + 0.905336i \(0.360381\pi\)
\(954\) 0 0
\(955\) −724.579 418.336i −0.758721 0.438048i
\(956\) 0 0
\(957\) 374.410 + 153.395i 0.391234 + 0.160287i
\(958\) 0 0
\(959\) 45.2228 125.888i 0.0471562 0.131270i
\(960\) 0 0
\(961\) −72.8761 + 126.225i −0.0758336 + 0.131348i
\(962\) 0 0
\(963\) 993.803 274.532i 1.03199 0.285080i
\(964\) 0 0
\(965\) −1167.31 + 673.948i −1.20965 + 0.698392i
\(966\) 0 0
\(967\) −582.505 + 1008.93i −0.602384 + 1.04336i 0.390076 + 0.920783i \(0.372449\pi\)
−0.992459 + 0.122576i \(0.960884\pi\)
\(968\) 0 0
\(969\) −1128.63 + 872.974i −1.16474 + 0.900902i
\(970\) 0 0
\(971\) −1065.16 + 614.970i −1.09697 + 0.633337i −0.935424 0.353528i \(-0.884982\pi\)
−0.161548 + 0.986865i \(0.551649\pi\)
\(972\) 0 0
\(973\) −750.889 + 635.453i −0.771725 + 0.653086i
\(974\) 0 0
\(975\) −30.8249 + 4.17933i −0.0316153 + 0.00428650i
\(976\) 0 0
\(977\) −102.611 177.728i −0.105027 0.181912i 0.808722 0.588191i \(-0.200160\pi\)
−0.913749 + 0.406279i \(0.866826\pi\)
\(978\) 0 0
\(979\) 241.097 139.197i 0.246269 0.142183i
\(980\) 0 0
\(981\) −18.5647 18.2801i −0.0189243 0.0186342i
\(982\) 0 0
\(983\) 571.168i 0.581046i 0.956868 + 0.290523i \(0.0938292\pi\)
−0.956868 + 0.290523i \(0.906171\pi\)
\(984\) 0 0
\(985\) 252.758i 0.256607i
\(986\) 0 0
\(987\) 196.231 920.147i 0.198816 0.932267i
\(988\) 0 0
\(989\) 2.07022 + 3.58573i 0.00209325 + 0.00362561i
\(990\) 0 0
\(991\) 513.419 889.268i 0.518082 0.897344i −0.481698 0.876338i \(-0.659980\pi\)
0.999779 0.0210064i \(-0.00668704\pi\)
\(992\) 0 0
\(993\) 205.579 + 1516.26i 0.207028 + 1.52695i
\(994\) 0 0
\(995\) 731.739 1267.41i 0.735416 1.27378i
\(996\) 0 0
\(997\) 361.272i 0.362359i −0.983450 0.181180i \(-0.942008\pi\)
0.983450 0.181180i \(-0.0579916\pi\)
\(998\) 0 0
\(999\) −438.654 + 585.589i −0.439093 + 0.586175i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.3.p.a.157.4 yes 32
3.2 odd 2 756.3.p.a.577.3 32
7.5 odd 6 252.3.bd.a.229.9 yes 32
9.2 odd 6 756.3.bd.a.73.14 32
9.7 even 3 252.3.bd.a.241.9 yes 32
21.5 even 6 756.3.bd.a.145.14 32
63.47 even 6 756.3.p.a.397.14 32
63.61 odd 6 inner 252.3.p.a.61.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.p.a.61.4 32 63.61 odd 6 inner
252.3.p.a.157.4 yes 32 1.1 even 1 trivial
252.3.bd.a.229.9 yes 32 7.5 odd 6
252.3.bd.a.241.9 yes 32 9.7 even 3
756.3.p.a.397.14 32 63.47 even 6
756.3.p.a.577.3 32 3.2 odd 2
756.3.bd.a.73.14 32 9.2 odd 6
756.3.bd.a.145.14 32 21.5 even 6