Properties

Label 250.4.d.c.51.3
Level $250$
Weight $4$
Character 250.51
Analytic conductor $14.750$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [250,4,Mod(51,250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(250, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("250.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 250 = 2 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 250.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7504775014\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 51.3
Character \(\chi\) \(=\) 250.51
Dual form 250.4.d.c.201.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61803 + 1.17557i) q^{2} +(-1.35339 + 4.16531i) q^{3} +(1.23607 - 3.80423i) q^{4} +(-2.70679 - 8.33063i) q^{6} -31.2051 q^{7} +(2.47214 + 7.60845i) q^{8} +(6.32528 + 4.59559i) q^{9} +O(q^{10})\) \(q+(-1.61803 + 1.17557i) q^{2} +(-1.35339 + 4.16531i) q^{3} +(1.23607 - 3.80423i) q^{4} +(-2.70679 - 8.33063i) q^{6} -31.2051 q^{7} +(2.47214 + 7.60845i) q^{8} +(6.32528 + 4.59559i) q^{9} +(12.0574 - 8.76021i) q^{11} +(14.1729 + 10.2972i) q^{12} +(-34.5241 - 25.0832i) q^{13} +(50.4909 - 36.6838i) q^{14} +(-12.9443 - 9.40456i) q^{16} +(8.99290 + 27.6773i) q^{17} -15.6370 q^{18} +(-15.9076 - 48.9587i) q^{19} +(42.2328 - 129.979i) q^{21} +(-9.21103 + 28.3486i) q^{22} +(150.283 - 109.187i) q^{23} -35.0374 q^{24} +85.3482 q^{26} +(-123.370 + 89.6334i) q^{27} +(-38.5716 + 118.711i) q^{28} +(-23.7789 + 73.1839i) q^{29} +(-80.3709 - 247.356i) q^{31} +32.0000 q^{32} +(20.1706 + 62.0789i) q^{33} +(-47.0875 - 34.2110i) q^{34} +(25.3011 - 18.3823i) q^{36} +(97.3953 + 70.7618i) q^{37} +(83.2935 + 60.5163i) q^{38} +(151.204 - 109.856i) q^{39} +(248.032 + 180.206i) q^{41} +(84.4656 + 259.958i) q^{42} +504.394 q^{43} +(-18.4221 - 56.6973i) q^{44} +(-114.806 + 353.337i) q^{46} +(60.7022 - 186.822i) q^{47} +(56.6917 - 41.1889i) q^{48} +630.759 q^{49} -127.456 q^{51} +(-138.096 + 100.333i) q^{52} +(139.978 - 430.808i) q^{53} +(94.2462 - 290.060i) q^{54} +(-77.1433 - 237.423i) q^{56} +225.458 q^{57} +(-47.5578 - 146.368i) q^{58} +(-51.9655 - 37.7552i) q^{59} +(110.566 - 80.3305i) q^{61} +(420.827 + 305.749i) q^{62} +(-197.381 - 143.406i) q^{63} +(-51.7771 + 37.6183i) q^{64} +(-105.615 - 76.7337i) q^{66} +(-72.6375 - 223.555i) q^{67} +116.407 q^{68} +(251.407 + 773.750i) q^{69} +(166.664 - 512.939i) q^{71} +(-19.3283 + 59.4865i) q^{72} +(-846.241 + 614.830i) q^{73} -240.774 q^{74} -205.913 q^{76} +(-376.252 + 273.363i) q^{77} +(-115.510 + 355.502i) q^{78} +(109.157 - 335.949i) q^{79} +(-141.150 - 434.416i) q^{81} -613.169 q^{82} +(-301.832 - 928.944i) q^{83} +(-442.267 - 321.326i) q^{84} +(-816.127 + 592.951i) q^{86} +(-272.652 - 198.093i) q^{87} +(96.4592 + 70.0817i) q^{88} +(-891.118 + 647.435i) q^{89} +(1077.33 + 782.724i) q^{91} +(-229.612 - 706.674i) q^{92} +1139.09 q^{93} +(121.404 + 373.644i) q^{94} +(-43.3086 + 133.290i) q^{96} +(448.316 - 1379.77i) q^{97} +(-1020.59 + 741.502i) q^{98} +116.525 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{2} - 6 q^{3} - 32 q^{4} - 12 q^{6} + 112 q^{7} - 64 q^{8} - 26 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q - 16 q^{2} - 6 q^{3} - 32 q^{4} - 12 q^{6} + 112 q^{7} - 64 q^{8} - 26 q^{9} - 106 q^{11} - 24 q^{12} + 14 q^{13} - 56 q^{14} - 128 q^{16} + 92 q^{17} + 848 q^{18} - 110 q^{19} - 36 q^{21} + 68 q^{22} + 124 q^{23} + 192 q^{24} + 808 q^{26} - 630 q^{27} - 112 q^{28} + 10 q^{29} - 486 q^{31} + 1024 q^{32} - 672 q^{33} - 616 q^{34} - 104 q^{36} - 88 q^{37} + 20 q^{38} - 1012 q^{39} - 96 q^{41} - 72 q^{42} + 1804 q^{43} + 136 q^{44} - 832 q^{46} - 328 q^{47} - 96 q^{48} + 2076 q^{49} + 884 q^{51} + 56 q^{52} + 1164 q^{53} + 120 q^{54} - 224 q^{56} + 2800 q^{57} + 20 q^{58} - 2250 q^{59} + 934 q^{61} + 768 q^{62} - 2976 q^{63} - 512 q^{64} + 16 q^{66} - 2248 q^{67} + 1728 q^{68} + 628 q^{69} - 2616 q^{71} - 1488 q^{72} - 3836 q^{73} + 2584 q^{74} + 800 q^{76} + 254 q^{77} + 1816 q^{78} + 2800 q^{79} - 5268 q^{81} + 2128 q^{82} + 304 q^{83} - 624 q^{84} - 692 q^{86} + 2660 q^{87} - 848 q^{88} - 4520 q^{89} + 3764 q^{91} - 1664 q^{92} + 5648 q^{93} - 656 q^{94} - 192 q^{96} - 6228 q^{97} - 2748 q^{98} + 2108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/250\mathbb{Z}\right)^\times\).

\(n\) \(127\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61803 + 1.17557i −0.572061 + 0.415627i
\(3\) −1.35339 + 4.16531i −0.260461 + 0.801615i 0.732244 + 0.681042i \(0.238473\pi\)
−0.992704 + 0.120573i \(0.961527\pi\)
\(4\) 1.23607 3.80423i 0.154508 0.475528i
\(5\) 0 0
\(6\) −2.70679 8.33063i −0.184173 0.566828i
\(7\) −31.2051 −1.68492 −0.842459 0.538761i \(-0.818893\pi\)
−0.842459 + 0.538761i \(0.818893\pi\)
\(8\) 2.47214 + 7.60845i 0.109254 + 0.336249i
\(9\) 6.32528 + 4.59559i 0.234270 + 0.170207i
\(10\) 0 0
\(11\) 12.0574 8.76021i 0.330495 0.240118i −0.410146 0.912020i \(-0.634522\pi\)
0.740640 + 0.671902i \(0.234522\pi\)
\(12\) 14.1729 + 10.2972i 0.340947 + 0.247713i
\(13\) −34.5241 25.0832i −0.736558 0.535141i 0.155073 0.987903i \(-0.450439\pi\)
−0.891631 + 0.452762i \(0.850439\pi\)
\(14\) 50.4909 36.6838i 0.963876 0.700297i
\(15\) 0 0
\(16\) −12.9443 9.40456i −0.202254 0.146946i
\(17\) 8.99290 + 27.6773i 0.128300 + 0.394867i 0.994488 0.104852i \(-0.0334368\pi\)
−0.866188 + 0.499718i \(0.833437\pi\)
\(18\) −15.6370 −0.204759
\(19\) −15.9076 48.9587i −0.192077 0.591152i −0.999998 0.00186182i \(-0.999407\pi\)
0.807921 0.589290i \(-0.200593\pi\)
\(20\) 0 0
\(21\) 42.2328 129.979i 0.438855 1.35066i
\(22\) −9.21103 + 28.3486i −0.0892636 + 0.274725i
\(23\) 150.283 109.187i 1.36244 0.989874i 0.364159 0.931337i \(-0.381356\pi\)
0.998285 0.0585368i \(-0.0186435\pi\)
\(24\) −35.0374 −0.297999
\(25\) 0 0
\(26\) 85.3482 0.643775
\(27\) −123.370 + 89.6334i −0.879353 + 0.638887i
\(28\) −38.5716 + 118.711i −0.260334 + 0.801226i
\(29\) −23.7789 + 73.1839i −0.152263 + 0.468618i −0.997873 0.0651831i \(-0.979237\pi\)
0.845610 + 0.533801i \(0.179237\pi\)
\(30\) 0 0
\(31\) −80.3709 247.356i −0.465646 1.43311i −0.858168 0.513369i \(-0.828397\pi\)
0.392522 0.919743i \(-0.371603\pi\)
\(32\) 32.0000 0.176777
\(33\) 20.1706 + 62.0789i 0.106402 + 0.327471i
\(34\) −47.0875 34.2110i −0.237513 0.172563i
\(35\) 0 0
\(36\) 25.3011 18.3823i 0.117135 0.0851035i
\(37\) 97.3953 + 70.7618i 0.432748 + 0.314410i 0.782747 0.622340i \(-0.213818\pi\)
−0.349999 + 0.936750i \(0.613818\pi\)
\(38\) 83.2935 + 60.5163i 0.355579 + 0.258343i
\(39\) 151.204 109.856i 0.620821 0.451053i
\(40\) 0 0
\(41\) 248.032 + 180.206i 0.944783 + 0.686425i 0.949567 0.313563i \(-0.101523\pi\)
−0.00478394 + 0.999989i \(0.501523\pi\)
\(42\) 84.4656 + 259.958i 0.310317 + 0.955058i
\(43\) 504.394 1.78882 0.894411 0.447246i \(-0.147595\pi\)
0.894411 + 0.447246i \(0.147595\pi\)
\(44\) −18.4221 56.6973i −0.0631189 0.194260i
\(45\) 0 0
\(46\) −114.806 + 353.337i −0.367984 + 1.13254i
\(47\) 60.7022 186.822i 0.188390 0.579804i −0.811600 0.584213i \(-0.801403\pi\)
0.999990 + 0.00440862i \(0.00140331\pi\)
\(48\) 56.6917 41.1889i 0.170474 0.123856i
\(49\) 630.759 1.83895
\(50\) 0 0
\(51\) −127.456 −0.349948
\(52\) −138.096 + 100.333i −0.368279 + 0.267570i
\(53\) 139.978 430.808i 0.362782 1.11653i −0.588576 0.808442i \(-0.700311\pi\)
0.951358 0.308087i \(-0.0996887\pi\)
\(54\) 94.2462 290.060i 0.237505 0.730966i
\(55\) 0 0
\(56\) −77.1433 237.423i −0.184084 0.566552i
\(57\) 225.458 0.523905
\(58\) −47.5578 146.368i −0.107666 0.331363i
\(59\) −51.9655 37.7552i −0.114667 0.0833102i 0.528974 0.848638i \(-0.322577\pi\)
−0.643641 + 0.765328i \(0.722577\pi\)
\(60\) 0 0
\(61\) 110.566 80.3305i 0.232073 0.168611i −0.465671 0.884958i \(-0.654187\pi\)
0.697744 + 0.716347i \(0.254187\pi\)
\(62\) 420.827 + 305.749i 0.862018 + 0.626293i
\(63\) −197.381 143.406i −0.394725 0.286785i
\(64\) −51.7771 + 37.6183i −0.101127 + 0.0734732i
\(65\) 0 0
\(66\) −105.615 76.7337i −0.196974 0.143110i
\(67\) −72.6375 223.555i −0.132449 0.407636i 0.862735 0.505656i \(-0.168749\pi\)
−0.995185 + 0.0980193i \(0.968749\pi\)
\(68\) 116.407 0.207594
\(69\) 251.407 + 773.750i 0.438635 + 1.34998i
\(70\) 0 0
\(71\) 166.664 512.939i 0.278583 0.857390i −0.709666 0.704538i \(-0.751154\pi\)
0.988249 0.152852i \(-0.0488458\pi\)
\(72\) −19.3283 + 59.4865i −0.0316370 + 0.0973688i
\(73\) −846.241 + 614.830i −1.35678 + 0.985759i −0.358139 + 0.933668i \(0.616589\pi\)
−0.998642 + 0.0520909i \(0.983411\pi\)
\(74\) −240.774 −0.378236
\(75\) 0 0
\(76\) −205.913 −0.310787
\(77\) −376.252 + 273.363i −0.556856 + 0.404580i
\(78\) −115.510 + 355.502i −0.167678 + 0.516060i
\(79\) 109.157 335.949i 0.155457 0.478446i −0.842750 0.538305i \(-0.819065\pi\)
0.998207 + 0.0598585i \(0.0190649\pi\)
\(80\) 0 0
\(81\) −141.150 434.416i −0.193622 0.595907i
\(82\) −613.169 −0.825771
\(83\) −301.832 928.944i −0.399161 1.22849i −0.925673 0.378325i \(-0.876500\pi\)
0.526512 0.850168i \(-0.323500\pi\)
\(84\) −442.267 321.326i −0.574468 0.417376i
\(85\) 0 0
\(86\) −816.127 + 592.951i −1.02332 + 0.743483i
\(87\) −272.652 198.093i −0.335993 0.244113i
\(88\) 96.4592 + 70.0817i 0.116848 + 0.0848947i
\(89\) −891.118 + 647.435i −1.06133 + 0.771101i −0.974334 0.225108i \(-0.927727\pi\)
−0.0869953 + 0.996209i \(0.527727\pi\)
\(90\) 0 0
\(91\) 1077.33 + 782.724i 1.24104 + 0.901668i
\(92\) −229.612 706.674i −0.260204 0.800825i
\(93\) 1139.09 1.27009
\(94\) 121.404 + 373.644i 0.133212 + 0.409984i
\(95\) 0 0
\(96\) −43.3086 + 133.290i −0.0460434 + 0.141707i
\(97\) 448.316 1379.77i 0.469274 1.44428i −0.384253 0.923228i \(-0.625541\pi\)
0.853527 0.521048i \(-0.174459\pi\)
\(98\) −1020.59 + 741.502i −1.05199 + 0.764316i
\(99\) 116.525 0.118295
\(100\) 0 0
\(101\) −305.774 −0.301244 −0.150622 0.988591i \(-0.548128\pi\)
−0.150622 + 0.988591i \(0.548128\pi\)
\(102\) 206.228 149.833i 0.200192 0.145448i
\(103\) −109.795 + 337.914i −0.105033 + 0.323259i −0.989738 0.142892i \(-0.954360\pi\)
0.884705 + 0.466151i \(0.154360\pi\)
\(104\) 105.496 324.684i 0.0994688 0.306133i
\(105\) 0 0
\(106\) 279.956 + 861.616i 0.256526 + 0.789505i
\(107\) −254.177 −0.229647 −0.114823 0.993386i \(-0.536630\pi\)
−0.114823 + 0.993386i \(0.536630\pi\)
\(108\) 188.492 + 580.120i 0.167942 + 0.516871i
\(109\) −723.625 525.744i −0.635878 0.461992i 0.222554 0.974920i \(-0.428561\pi\)
−0.858432 + 0.512928i \(0.828561\pi\)
\(110\) 0 0
\(111\) −426.559 + 309.914i −0.364750 + 0.265006i
\(112\) 403.927 + 293.470i 0.340782 + 0.247592i
\(113\) −1081.45 785.716i −0.900300 0.654106i 0.0382434 0.999268i \(-0.487824\pi\)
−0.938543 + 0.345163i \(0.887824\pi\)
\(114\) −364.798 + 265.041i −0.299706 + 0.217749i
\(115\) 0 0
\(116\) 249.016 + 180.921i 0.199315 + 0.144811i
\(117\) −103.102 317.317i −0.0814686 0.250735i
\(118\) 128.466 0.100222
\(119\) −280.625 863.674i −0.216175 0.665318i
\(120\) 0 0
\(121\) −342.662 + 1054.61i −0.257447 + 0.792341i
\(122\) −84.4645 + 259.955i −0.0626808 + 0.192912i
\(123\) −1086.30 + 789.243i −0.796328 + 0.578566i
\(124\) −1040.34 −0.753431
\(125\) 0 0
\(126\) 487.953 0.345002
\(127\) 1226.46 891.078i 0.856937 0.622601i −0.0701127 0.997539i \(-0.522336\pi\)
0.927050 + 0.374938i \(0.122336\pi\)
\(128\) 39.5542 121.735i 0.0273135 0.0840623i
\(129\) −682.643 + 2100.96i −0.465918 + 1.43395i
\(130\) 0 0
\(131\) −385.607 1186.78i −0.257180 0.791519i −0.993392 0.114768i \(-0.963387\pi\)
0.736212 0.676751i \(-0.236613\pi\)
\(132\) 261.094 0.172162
\(133\) 496.400 + 1527.76i 0.323634 + 0.996043i
\(134\) 380.335 + 276.330i 0.245194 + 0.178144i
\(135\) 0 0
\(136\) −188.350 + 136.844i −0.118756 + 0.0862815i
\(137\) −1933.90 1405.06i −1.20602 0.876222i −0.211154 0.977453i \(-0.567722\pi\)
−0.994863 + 0.101231i \(0.967722\pi\)
\(138\) −1316.38 956.408i −0.812014 0.589962i
\(139\) −1423.34 + 1034.12i −0.868534 + 0.631027i −0.930193 0.367071i \(-0.880361\pi\)
0.0616594 + 0.998097i \(0.480361\pi\)
\(140\) 0 0
\(141\) 696.019 + 505.687i 0.415712 + 0.302032i
\(142\) 333.328 + 1025.88i 0.196988 + 0.606266i
\(143\) −636.005 −0.371926
\(144\) −38.6567 118.973i −0.0223708 0.0688501i
\(145\) 0 0
\(146\) 646.471 1989.63i 0.366454 1.12783i
\(147\) −853.665 + 2627.31i −0.478973 + 1.47413i
\(148\) 389.581 283.047i 0.216374 0.157205i
\(149\) 391.623 0.215322 0.107661 0.994188i \(-0.465664\pi\)
0.107661 + 0.994188i \(0.465664\pi\)
\(150\) 0 0
\(151\) 1937.43 1.04414 0.522072 0.852901i \(-0.325159\pi\)
0.522072 + 0.852901i \(0.325159\pi\)
\(152\) 333.174 242.065i 0.177789 0.129172i
\(153\) −70.3108 + 216.394i −0.0371522 + 0.114343i
\(154\) 287.431 884.622i 0.150402 0.462889i
\(155\) 0 0
\(156\) −231.019 711.004i −0.118566 0.364910i
\(157\) 1798.13 0.914052 0.457026 0.889453i \(-0.348915\pi\)
0.457026 + 0.889453i \(0.348915\pi\)
\(158\) 218.313 + 671.899i 0.109924 + 0.338313i
\(159\) 1605.01 + 1166.10i 0.800536 + 0.581623i
\(160\) 0 0
\(161\) −4689.60 + 3407.20i −2.29561 + 1.66786i
\(162\) 739.073 + 536.968i 0.358439 + 0.260421i
\(163\) −1079.33 784.182i −0.518650 0.376821i 0.297445 0.954739i \(-0.403866\pi\)
−0.816095 + 0.577917i \(0.803866\pi\)
\(164\) 992.129 720.824i 0.472392 0.343213i
\(165\) 0 0
\(166\) 1580.41 + 1148.24i 0.738939 + 0.536871i
\(167\) −498.847 1535.29i −0.231149 0.711404i −0.997609 0.0691116i \(-0.977984\pi\)
0.766460 0.642292i \(-0.222016\pi\)
\(168\) 1093.35 0.502104
\(169\) −116.166 357.522i −0.0528748 0.162732i
\(170\) 0 0
\(171\) 124.374 382.782i 0.0556204 0.171182i
\(172\) 623.465 1918.83i 0.276388 0.850636i
\(173\) 2671.96 1941.29i 1.17425 0.853142i 0.182738 0.983162i \(-0.441504\pi\)
0.991511 + 0.130020i \(0.0415040\pi\)
\(174\) 674.033 0.293668
\(175\) 0 0
\(176\) −238.460 −0.102128
\(177\) 227.592 165.355i 0.0966489 0.0702195i
\(178\) 680.753 2095.14i 0.286655 0.882234i
\(179\) 854.933 2631.21i 0.356987 1.09869i −0.597861 0.801600i \(-0.703983\pi\)
0.954848 0.297094i \(-0.0960174\pi\)
\(180\) 0 0
\(181\) −1009.96 3108.33i −0.414749 1.27647i −0.912475 0.409132i \(-0.865832\pi\)
0.497726 0.867334i \(-0.334168\pi\)
\(182\) −2663.30 −1.08471
\(183\) 184.963 + 569.259i 0.0747153 + 0.229950i
\(184\) 1202.27 + 873.497i 0.481697 + 0.349973i
\(185\) 0 0
\(186\) −1843.09 + 1339.08i −0.726568 + 0.527882i
\(187\) 350.890 + 254.937i 0.137217 + 0.0996941i
\(188\) −635.681 461.850i −0.246605 0.179169i
\(189\) 3849.77 2797.02i 1.48164 1.07647i
\(190\) 0 0
\(191\) −286.949 208.481i −0.108706 0.0789797i 0.532104 0.846679i \(-0.321401\pi\)
−0.640810 + 0.767699i \(0.721401\pi\)
\(192\) −86.6171 266.580i −0.0325576 0.100202i
\(193\) 2907.82 1.08451 0.542253 0.840216i \(-0.317572\pi\)
0.542253 + 0.840216i \(0.317572\pi\)
\(194\) 896.631 + 2759.55i 0.331827 + 1.02126i
\(195\) 0 0
\(196\) 779.661 2399.55i 0.284133 0.874472i
\(197\) −1291.54 + 3974.94i −0.467098 + 1.43758i 0.389228 + 0.921142i \(0.372742\pi\)
−0.856325 + 0.516437i \(0.827258\pi\)
\(198\) −188.541 + 136.983i −0.0676718 + 0.0491665i
\(199\) −1052.08 −0.374772 −0.187386 0.982286i \(-0.560002\pi\)
−0.187386 + 0.982286i \(0.560002\pi\)
\(200\) 0 0
\(201\) 1029.49 0.361265
\(202\) 494.753 359.459i 0.172330 0.125205i
\(203\) 742.023 2283.71i 0.256551 0.789583i
\(204\) −157.544 + 484.870i −0.0540700 + 0.166410i
\(205\) 0 0
\(206\) −219.590 675.828i −0.0742697 0.228579i
\(207\) 1452.36 0.487663
\(208\) 210.992 + 649.368i 0.0703350 + 0.216469i
\(209\) −620.693 450.960i −0.205427 0.149251i
\(210\) 0 0
\(211\) 1074.58 780.728i 0.350602 0.254727i −0.398519 0.917160i \(-0.630476\pi\)
0.749122 + 0.662432i \(0.230476\pi\)
\(212\) −1465.87 1065.02i −0.474888 0.345026i
\(213\) 1910.99 + 1388.42i 0.614737 + 0.446633i
\(214\) 411.267 298.803i 0.131372 0.0954474i
\(215\) 0 0
\(216\) −986.959 717.067i −0.310898 0.225881i
\(217\) 2507.98 + 7718.77i 0.784576 + 2.41468i
\(218\) 1788.90 0.555778
\(219\) −1415.66 4356.97i −0.436812 1.34437i
\(220\) 0 0
\(221\) 383.764 1181.10i 0.116809 0.359501i
\(222\) 325.862 1002.90i 0.0985155 0.303200i
\(223\) −3613.82 + 2625.59i −1.08520 + 0.788442i −0.978582 0.205858i \(-0.934001\pi\)
−0.106616 + 0.994300i \(0.534001\pi\)
\(224\) −998.564 −0.297854
\(225\) 0 0
\(226\) 2673.48 0.786891
\(227\) −1494.35 + 1085.71i −0.436931 + 0.317449i −0.784414 0.620237i \(-0.787036\pi\)
0.347483 + 0.937686i \(0.387036\pi\)
\(228\) 278.681 857.692i 0.0809478 0.249132i
\(229\) −80.0296 + 246.306i −0.0230939 + 0.0710757i −0.961939 0.273263i \(-0.911897\pi\)
0.938845 + 0.344339i \(0.111897\pi\)
\(230\) 0 0
\(231\) −629.427 1937.18i −0.179278 0.551762i
\(232\) −615.601 −0.174208
\(233\) 1047.00 + 3222.33i 0.294383 + 0.906018i 0.983428 + 0.181299i \(0.0580303\pi\)
−0.689045 + 0.724719i \(0.741970\pi\)
\(234\) 539.852 + 392.225i 0.150817 + 0.109575i
\(235\) 0 0
\(236\) −207.862 + 151.021i −0.0573333 + 0.0416551i
\(237\) 1251.60 + 909.343i 0.343040 + 0.249233i
\(238\) 1469.37 + 1067.56i 0.400189 + 0.290755i
\(239\) −2332.67 + 1694.79i −0.631330 + 0.458688i −0.856861 0.515548i \(-0.827589\pi\)
0.225530 + 0.974236i \(0.427589\pi\)
\(240\) 0 0
\(241\) 5114.13 + 3715.63i 1.36693 + 0.993133i 0.997970 + 0.0636877i \(0.0202861\pi\)
0.368960 + 0.929445i \(0.379714\pi\)
\(242\) −685.324 2109.21i −0.182043 0.560270i
\(243\) −2116.81 −0.558821
\(244\) −168.929 519.910i −0.0443220 0.136409i
\(245\) 0 0
\(246\) 829.859 2554.04i 0.215081 0.661951i
\(247\) −678.844 + 2089.27i −0.174874 + 0.538206i
\(248\) 1683.31 1223.00i 0.431009 0.313146i
\(249\) 4277.84 1.08874
\(250\) 0 0
\(251\) 1232.70 0.309990 0.154995 0.987915i \(-0.450464\pi\)
0.154995 + 0.987915i \(0.450464\pi\)
\(252\) −789.525 + 573.623i −0.197363 + 0.143392i
\(253\) 855.522 2633.02i 0.212594 0.654296i
\(254\) −936.935 + 2883.59i −0.231451 + 0.712332i
\(255\) 0 0
\(256\) 79.1084 + 243.470i 0.0193136 + 0.0594410i
\(257\) 6483.90 1.57375 0.786877 0.617110i \(-0.211697\pi\)
0.786877 + 0.617110i \(0.211697\pi\)
\(258\) −1365.29 4201.92i −0.329454 1.01395i
\(259\) −3039.23 2208.13i −0.729145 0.529755i
\(260\) 0 0
\(261\) −486.731 + 353.631i −0.115433 + 0.0838667i
\(262\) 2019.06 + 1466.93i 0.476100 + 0.345907i
\(263\) 646.478 + 469.694i 0.151572 + 0.110124i 0.660987 0.750398i \(-0.270138\pi\)
−0.509414 + 0.860521i \(0.670138\pi\)
\(264\) −422.459 + 306.935i −0.0984870 + 0.0715550i
\(265\) 0 0
\(266\) −2599.18 1888.42i −0.599121 0.435287i
\(267\) −1490.74 4588.02i −0.341692 1.05162i
\(268\) −940.240 −0.214307
\(269\) 1260.60 + 3879.74i 0.285727 + 0.879376i 0.986180 + 0.165678i \(0.0529811\pi\)
−0.700453 + 0.713698i \(0.747019\pi\)
\(270\) 0 0
\(271\) 135.829 418.040i 0.0304467 0.0937052i −0.934678 0.355494i \(-0.884313\pi\)
0.965125 + 0.261789i \(0.0843125\pi\)
\(272\) 143.886 442.837i 0.0320750 0.0987167i
\(273\) −4718.34 + 3428.08i −1.04603 + 0.759987i
\(274\) 4780.86 1.05410
\(275\) 0 0
\(276\) 3254.28 0.709726
\(277\) −51.9157 + 37.7190i −0.0112611 + 0.00818164i −0.593402 0.804907i \(-0.702215\pi\)
0.582140 + 0.813088i \(0.302215\pi\)
\(278\) 1087.34 3346.47i 0.234583 0.721972i
\(279\) 628.378 1933.95i 0.134839 0.414991i
\(280\) 0 0
\(281\) −552.262 1699.69i −0.117243 0.360836i 0.875166 0.483824i \(-0.160752\pi\)
−0.992408 + 0.122988i \(0.960752\pi\)
\(282\) −1720.65 −0.363345
\(283\) 1929.30 + 5937.78i 0.405248 + 1.24722i 0.920688 + 0.390299i \(0.127628\pi\)
−0.515440 + 0.856926i \(0.672372\pi\)
\(284\) −1745.33 1268.06i −0.364670 0.264948i
\(285\) 0 0
\(286\) 1029.08 747.668i 0.212764 0.154582i
\(287\) −7739.87 5623.35i −1.59188 1.15657i
\(288\) 202.409 + 147.059i 0.0414134 + 0.0300886i
\(289\) 3289.54 2389.99i 0.669558 0.486462i
\(290\) 0 0
\(291\) 5140.44 + 3734.75i 1.03553 + 0.752354i
\(292\) 1292.94 + 3979.26i 0.259122 + 0.797496i
\(293\) 2442.29 0.486963 0.243482 0.969905i \(-0.421710\pi\)
0.243482 + 0.969905i \(0.421710\pi\)
\(294\) −1707.33 5254.62i −0.338685 1.04237i
\(295\) 0 0
\(296\) −297.614 + 915.960i −0.0584407 + 0.179862i
\(297\) −702.311 + 2161.49i −0.137213 + 0.422298i
\(298\) −633.660 + 460.381i −0.123178 + 0.0894937i
\(299\) −7927.15 −1.53324
\(300\) 0 0
\(301\) −15739.7 −3.01402
\(302\) −3134.83 + 2277.59i −0.597315 + 0.433975i
\(303\) 413.832 1273.65i 0.0784622 0.241482i
\(304\) −254.522 + 783.339i −0.0480193 + 0.147788i
\(305\) 0 0
\(306\) −140.622 432.789i −0.0262706 0.0808526i
\(307\) −6382.66 −1.18657 −0.593286 0.804992i \(-0.702170\pi\)
−0.593286 + 0.804992i \(0.702170\pi\)
\(308\) 574.862 + 1769.24i 0.106350 + 0.327312i
\(309\) −1258.92 914.661i −0.231772 0.168392i
\(310\) 0 0
\(311\) −2487.41 + 1807.21i −0.453531 + 0.329510i −0.790988 0.611831i \(-0.790433\pi\)
0.337457 + 0.941341i \(0.390433\pi\)
\(312\) 1209.63 + 878.850i 0.219494 + 0.159471i
\(313\) −4495.09 3265.88i −0.811750 0.589771i 0.102587 0.994724i \(-0.467288\pi\)
−0.914337 + 0.404953i \(0.867288\pi\)
\(314\) −2909.43 + 2113.82i −0.522894 + 0.379904i
\(315\) 0 0
\(316\) −1143.10 830.513i −0.203495 0.147848i
\(317\) −1028.23 3164.57i −0.182180 0.560693i 0.817708 0.575633i \(-0.195244\pi\)
−0.999888 + 0.0149397i \(0.995244\pi\)
\(318\) −3967.79 −0.699694
\(319\) 354.395 + 1090.72i 0.0622016 + 0.191437i
\(320\) 0 0
\(321\) 344.001 1058.73i 0.0598140 0.184088i
\(322\) 3582.54 11025.9i 0.620022 1.90823i
\(323\) 1211.99 880.562i 0.208783 0.151690i
\(324\) −1827.09 −0.313287
\(325\) 0 0
\(326\) 2668.26 0.453317
\(327\) 3169.24 2302.59i 0.535961 0.389399i
\(328\) −757.919 + 2332.63i −0.127589 + 0.392677i
\(329\) −1894.22 + 5829.80i −0.317421 + 0.976923i
\(330\) 0 0
\(331\) −266.427 819.978i −0.0442422 0.136163i 0.926495 0.376306i \(-0.122806\pi\)
−0.970738 + 0.240143i \(0.922806\pi\)
\(332\) −3907.00 −0.645857
\(333\) 290.861 + 895.177i 0.0478651 + 0.147313i
\(334\) 2611.99 + 1897.73i 0.427910 + 0.310895i
\(335\) 0 0
\(336\) −1769.07 + 1285.30i −0.287234 + 0.208688i
\(337\) 4634.03 + 3366.82i 0.749056 + 0.544221i 0.895534 0.444993i \(-0.146794\pi\)
−0.146478 + 0.989214i \(0.546794\pi\)
\(338\) 608.253 + 441.921i 0.0978834 + 0.0711164i
\(339\) 4736.38 3441.18i 0.758834 0.551325i
\(340\) 0 0
\(341\) −3135.95 2278.40i −0.498010 0.361826i
\(342\) 248.747 + 765.565i 0.0393295 + 0.121044i
\(343\) −8979.56 −1.41356
\(344\) 1246.93 + 3837.66i 0.195436 + 0.601490i
\(345\) 0 0
\(346\) −2041.19 + 6282.15i −0.317154 + 0.976099i
\(347\) 715.567 2202.29i 0.110702 0.340706i −0.880324 0.474373i \(-0.842675\pi\)
0.991026 + 0.133666i \(0.0426750\pi\)
\(348\) −1090.61 + 792.373i −0.167996 + 0.122056i
\(349\) −4454.14 −0.683166 −0.341583 0.939852i \(-0.610963\pi\)
−0.341583 + 0.939852i \(0.610963\pi\)
\(350\) 0 0
\(351\) 6507.52 0.989589
\(352\) 385.837 280.327i 0.0584238 0.0424473i
\(353\) 2346.00 7220.26i 0.353726 1.08866i −0.603019 0.797727i \(-0.706036\pi\)
0.956745 0.290929i \(-0.0939643\pi\)
\(354\) −173.865 + 535.101i −0.0261040 + 0.0803398i
\(355\) 0 0
\(356\) 1361.51 + 4190.29i 0.202696 + 0.623834i
\(357\) 3977.27 0.589634
\(358\) 1709.87 + 5262.43i 0.252428 + 0.776894i
\(359\) 7535.11 + 5474.58i 1.10777 + 0.804839i 0.982310 0.187261i \(-0.0599609\pi\)
0.125455 + 0.992099i \(0.459961\pi\)
\(360\) 0 0
\(361\) 3405.15 2473.98i 0.496450 0.360692i
\(362\) 5288.21 + 3842.11i 0.767796 + 0.557836i
\(363\) −3929.01 2854.59i −0.568098 0.412747i
\(364\) 4309.31 3130.90i 0.620520 0.450834i
\(365\) 0 0
\(366\) −968.481 703.643i −0.138315 0.100492i
\(367\) −2382.00 7331.03i −0.338799 1.04272i −0.964820 0.262910i \(-0.915318\pi\)
0.626022 0.779806i \(-0.284682\pi\)
\(368\) −2972.16 −0.421018
\(369\) 740.722 + 2279.71i 0.104500 + 0.321617i
\(370\) 0 0
\(371\) −4368.03 + 13443.4i −0.611258 + 1.88126i
\(372\) 1407.99 4333.35i 0.196239 0.603962i
\(373\) 7224.67 5249.03i 1.00289 0.728644i 0.0401863 0.999192i \(-0.487205\pi\)
0.962707 + 0.270548i \(0.0872049\pi\)
\(374\) −867.448 −0.119932
\(375\) 0 0
\(376\) 1571.49 0.215541
\(377\) 2656.63 1930.16i 0.362927 0.263682i
\(378\) −2940.96 + 9051.35i −0.400177 + 1.23162i
\(379\) −1311.50 + 4036.39i −0.177750 + 0.547059i −0.999748 0.0224313i \(-0.992859\pi\)
0.821998 + 0.569490i \(0.192859\pi\)
\(380\) 0 0
\(381\) 2051.73 + 6314.59i 0.275888 + 0.849097i
\(382\) 709.377 0.0950127
\(383\) −1686.84 5191.55i −0.225048 0.692626i −0.998287 0.0585112i \(-0.981365\pi\)
0.773239 0.634115i \(-0.218635\pi\)
\(384\) 453.533 + 329.511i 0.0602715 + 0.0437898i
\(385\) 0 0
\(386\) −4704.95 + 3418.35i −0.620403 + 0.450749i
\(387\) 3190.43 + 2317.99i 0.419067 + 0.304470i
\(388\) −4694.82 3410.99i −0.614287 0.446306i
\(389\) −10460.1 + 7599.69i −1.36336 + 0.990538i −0.365136 + 0.930954i \(0.618977\pi\)
−0.998223 + 0.0595840i \(0.981023\pi\)
\(390\) 0 0
\(391\) 4373.49 + 3177.53i 0.565670 + 0.410983i
\(392\) 1559.32 + 4799.10i 0.200912 + 0.618345i
\(393\) 5465.17 0.701479
\(394\) −2583.07 7949.89i −0.330288 1.01652i
\(395\) 0 0
\(396\) 144.032 443.286i 0.0182775 0.0562525i
\(397\) 628.083 1933.04i 0.0794020 0.244374i −0.903474 0.428643i \(-0.858992\pi\)
0.982876 + 0.184269i \(0.0589917\pi\)
\(398\) 1702.29 1236.79i 0.214393 0.155765i
\(399\) −7035.43 −0.882737
\(400\) 0 0
\(401\) −8972.43 −1.11736 −0.558681 0.829383i \(-0.688692\pi\)
−0.558681 + 0.829383i \(0.688692\pi\)
\(402\) −1665.74 + 1210.23i −0.206666 + 0.150152i
\(403\) −3429.75 + 10555.7i −0.423941 + 1.30476i
\(404\) −377.958 + 1163.23i −0.0465448 + 0.143250i
\(405\) 0 0
\(406\) 1484.05 + 4567.43i 0.181409 + 0.558319i
\(407\) 1794.22 0.218517
\(408\) −315.088 969.740i −0.0382332 0.117670i
\(409\) 7002.65 + 5087.72i 0.846599 + 0.615090i 0.924206 0.381894i \(-0.124728\pi\)
−0.0776075 + 0.996984i \(0.524728\pi\)
\(410\) 0 0
\(411\) 8469.85 6153.71i 1.01651 0.738540i
\(412\) 1149.79 + 835.370i 0.137490 + 0.0998925i
\(413\) 1621.59 + 1178.15i 0.193204 + 0.140371i
\(414\) −2349.97 + 1707.35i −0.278973 + 0.202686i
\(415\) 0 0
\(416\) −1104.77 802.663i −0.130206 0.0946004i
\(417\) −2381.09 7328.23i −0.279622 0.860587i
\(418\) 1534.44 0.179550
\(419\) −1774.40 5461.04i −0.206886 0.636729i −0.999631 0.0271754i \(-0.991349\pi\)
0.792745 0.609554i \(-0.208651\pi\)
\(420\) 0 0
\(421\) 1139.25 3506.25i 0.131885 0.405901i −0.863207 0.504850i \(-0.831548\pi\)
0.995093 + 0.0989486i \(0.0315479\pi\)
\(422\) −820.905 + 2526.49i −0.0946944 + 0.291440i
\(423\) 1242.52 902.740i 0.142821 0.103765i
\(424\) 3623.83 0.415067
\(425\) 0 0
\(426\) −4724.23 −0.537300
\(427\) −3450.21 + 2506.72i −0.391024 + 0.284096i
\(428\) −314.180 + 966.947i −0.0354824 + 0.109204i
\(429\) 860.764 2649.16i 0.0968720 0.298141i
\(430\) 0 0
\(431\) −2973.01 9149.99i −0.332262 1.02260i −0.968055 0.250738i \(-0.919327\pi\)
0.635793 0.771859i \(-0.280673\pi\)
\(432\) 2439.90 0.271735
\(433\) 489.167 + 1505.50i 0.0542907 + 0.167090i 0.974525 0.224278i \(-0.0720022\pi\)
−0.920235 + 0.391367i \(0.872002\pi\)
\(434\) −13132.0 9540.93i −1.45243 1.05525i
\(435\) 0 0
\(436\) −2894.50 + 2102.98i −0.317939 + 0.230996i
\(437\) −7736.31 5620.76i −0.846860 0.615280i
\(438\) 7412.52 + 5385.51i 0.808639 + 0.587510i
\(439\) −1345.66 + 977.681i −0.146298 + 0.106292i −0.658527 0.752557i \(-0.728820\pi\)
0.512229 + 0.858849i \(0.328820\pi\)
\(440\) 0 0
\(441\) 3989.73 + 2898.71i 0.430810 + 0.313002i
\(442\) 767.528 + 2362.21i 0.0825964 + 0.254205i
\(443\) −6466.22 −0.693497 −0.346748 0.937958i \(-0.612714\pi\)
−0.346748 + 0.937958i \(0.612714\pi\)
\(444\) 651.725 + 2005.80i 0.0696610 + 0.214395i
\(445\) 0 0
\(446\) 2760.71 8496.59i 0.293102 0.902075i
\(447\) −530.020 + 1631.23i −0.0560830 + 0.172606i
\(448\) 1615.71 1173.88i 0.170391 0.123796i
\(449\) 5559.14 0.584303 0.292151 0.956372i \(-0.405629\pi\)
0.292151 + 0.956372i \(0.405629\pi\)
\(450\) 0 0
\(451\) 4569.26 0.477069
\(452\) −4325.78 + 3142.87i −0.450150 + 0.327053i
\(453\) −2622.11 + 8070.01i −0.271959 + 0.837002i
\(454\) 1141.58 3513.42i 0.118011 0.363201i
\(455\) 0 0
\(456\) 557.362 + 1715.38i 0.0572387 + 0.176163i
\(457\) −1317.36 −0.134843 −0.0674216 0.997725i \(-0.521477\pi\)
−0.0674216 + 0.997725i \(0.521477\pi\)
\(458\) −160.059 492.611i −0.0163299 0.0502581i
\(459\) −3590.27 2608.48i −0.365096 0.265258i
\(460\) 0 0
\(461\) 6845.97 4973.89i 0.691646 0.502510i −0.185555 0.982634i \(-0.559408\pi\)
0.877201 + 0.480124i \(0.159408\pi\)
\(462\) 3295.72 + 2394.48i 0.331885 + 0.241129i
\(463\) 10265.9 + 7458.64i 1.03045 + 0.748666i 0.968399 0.249407i \(-0.0802356\pi\)
0.0620519 + 0.998073i \(0.480236\pi\)
\(464\) 996.064 723.683i 0.0996575 0.0724054i
\(465\) 0 0
\(466\) −5482.16 3983.02i −0.544971 0.395944i
\(467\) 253.819 + 781.175i 0.0251506 + 0.0774057i 0.962844 0.270058i \(-0.0870429\pi\)
−0.937693 + 0.347464i \(0.887043\pi\)
\(468\) −1334.59 −0.131819
\(469\) 2266.66 + 6976.07i 0.223166 + 0.686834i
\(470\) 0 0
\(471\) −2433.57 + 7489.76i −0.238074 + 0.732718i
\(472\) 158.792 488.713i 0.0154852 0.0476586i
\(473\) 6081.68 4418.60i 0.591196 0.429529i
\(474\) −3094.13 −0.299828
\(475\) 0 0
\(476\) −3632.48 −0.349778
\(477\) 2865.21 2081.70i 0.275030 0.199821i
\(478\) 1782.00 5484.44i 0.170517 0.524796i
\(479\) 3405.28 10480.4i 0.324825 0.999710i −0.646694 0.762750i \(-0.723849\pi\)
0.971519 0.236960i \(-0.0761511\pi\)
\(480\) 0 0
\(481\) −1587.55 4885.97i −0.150491 0.463163i
\(482\) −12642.8 −1.19474
\(483\) −7845.17 24145.0i −0.739064 2.27460i
\(484\) 3588.40 + 2607.13i 0.337003 + 0.244847i
\(485\) 0 0
\(486\) 3425.07 2488.46i 0.319680 0.232261i
\(487\) −6354.39 4616.73i −0.591262 0.429577i 0.251504 0.967856i \(-0.419075\pi\)
−0.842767 + 0.538279i \(0.819075\pi\)
\(488\) 884.524 + 642.644i 0.0820503 + 0.0596130i
\(489\) 4727.13 3434.46i 0.437154 0.317611i
\(490\) 0 0
\(491\) −16604.1 12063.6i −1.52614 1.10881i −0.958337 0.285641i \(-0.907794\pi\)
−0.567803 0.823164i \(-0.692206\pi\)
\(492\) 1659.72 + 5108.09i 0.152085 + 0.468070i
\(493\) −2239.38 −0.204577
\(494\) −1357.69 4178.54i −0.123654 0.380569i
\(495\) 0 0
\(496\) −1285.93 + 3957.70i −0.116412 + 0.358278i
\(497\) −5200.77 + 16006.3i −0.469389 + 1.44463i
\(498\) −6921.70 + 5028.91i −0.622829 + 0.452511i
\(499\) 20672.7 1.85458 0.927291 0.374341i \(-0.122131\pi\)
0.927291 + 0.374341i \(0.122131\pi\)
\(500\) 0 0
\(501\) 7070.11 0.630477
\(502\) −1994.55 + 1449.13i −0.177333 + 0.128840i
\(503\) 1003.26 3087.72i 0.0889329 0.273707i −0.896692 0.442655i \(-0.854037\pi\)
0.985625 + 0.168947i \(0.0540368\pi\)
\(504\) 603.143 1856.28i 0.0533058 0.164058i
\(505\) 0 0
\(506\) 1711.04 + 5266.05i 0.150326 + 0.462657i
\(507\) 1646.41 0.144220
\(508\) −1873.87 5767.18i −0.163660 0.503695i
\(509\) −43.4872 31.5953i −0.00378691 0.00275135i 0.585890 0.810390i \(-0.300745\pi\)
−0.589677 + 0.807639i \(0.700745\pi\)
\(510\) 0 0
\(511\) 26407.1 19185.8i 2.28606 1.66092i
\(512\) −414.217 300.946i −0.0357538 0.0259767i
\(513\) 6350.86 + 4614.17i 0.546583 + 0.397116i
\(514\) −10491.2 + 7622.28i −0.900284 + 0.654094i
\(515\) 0 0
\(516\) 7148.73 + 5193.86i 0.609894 + 0.443114i
\(517\) −904.691 2784.35i −0.0769599 0.236858i
\(518\) 7513.39 0.637296
\(519\) 4469.88 + 13756.9i 0.378046 + 1.16351i
\(520\) 0 0
\(521\) 1555.45 4787.17i 0.130797 0.402553i −0.864115 0.503294i \(-0.832121\pi\)
0.994913 + 0.100741i \(0.0321214\pi\)
\(522\) 371.830 1144.37i 0.0311773 0.0959538i
\(523\) −4809.07 + 3493.99i −0.402076 + 0.292126i −0.770386 0.637577i \(-0.779937\pi\)
0.368310 + 0.929703i \(0.379937\pi\)
\(524\) −4991.40 −0.416126
\(525\) 0 0
\(526\) −1598.18 −0.132479
\(527\) 6123.38 4448.90i 0.506146 0.367736i
\(528\) 322.730 993.262i 0.0266004 0.0818677i
\(529\) 6903.40 21246.5i 0.567387 1.74624i
\(530\) 0 0
\(531\) −155.189 477.624i −0.0126830 0.0390341i
\(532\) 6425.53 0.523651
\(533\) −4042.94 12442.9i −0.328554 1.01118i
\(534\) 7805.61 + 5671.10i 0.632550 + 0.459574i
\(535\) 0 0
\(536\) 1521.34 1105.32i 0.122597 0.0890718i
\(537\) 9802.77 + 7122.13i 0.787748 + 0.572333i
\(538\) −6600.61 4795.63i −0.528945 0.384301i
\(539\) 7605.31 5525.58i 0.607762 0.441565i
\(540\) 0 0
\(541\) −16453.2 11953.9i −1.30754 0.949982i −0.307539 0.951535i \(-0.599505\pi\)
−0.999999 + 0.00155356i \(0.999505\pi\)
\(542\) 271.659 + 836.080i 0.0215290 + 0.0662596i
\(543\) 14314.0 1.13126
\(544\) 287.773 + 885.674i 0.0226804 + 0.0698032i
\(545\) 0 0
\(546\) 3604.49 11093.5i 0.282524 0.869519i
\(547\) −5636.82 + 17348.4i −0.440609 + 1.35606i 0.446619 + 0.894724i \(0.352628\pi\)
−0.887228 + 0.461331i \(0.847372\pi\)
\(548\) −7735.60 + 5620.24i −0.603008 + 0.438111i
\(549\) 1068.52 0.0830665
\(550\) 0 0
\(551\) 3961.26 0.306271
\(552\) −5265.53 + 3825.63i −0.406007 + 0.294981i
\(553\) −3406.24 + 10483.3i −0.261932 + 0.806143i
\(554\) 39.6601 122.061i 0.00304151 0.00936080i
\(555\) 0 0
\(556\) 2174.67 + 6692.95i 0.165875 + 0.510511i
\(557\) 2617.19 0.199092 0.0995458 0.995033i \(-0.468261\pi\)
0.0995458 + 0.995033i \(0.468261\pi\)
\(558\) 1256.76 + 3867.90i 0.0953454 + 0.293443i
\(559\) −17413.7 12651.8i −1.31757 0.957272i
\(560\) 0 0
\(561\) −1536.78 + 1116.54i −0.115656 + 0.0840290i
\(562\) 2891.68 + 2100.93i 0.217043 + 0.157691i
\(563\) 12665.1 + 9201.70i 0.948079 + 0.688820i 0.950352 0.311178i \(-0.100723\pi\)
−0.00227286 + 0.999997i \(0.500723\pi\)
\(564\) 2784.08 2022.75i 0.207856 0.151016i
\(565\) 0 0
\(566\) −10102.0 7339.50i −0.750207 0.545057i
\(567\) 4404.62 + 13556.0i 0.326237 + 1.00405i
\(568\) 4314.69 0.318733
\(569\) 2209.54 + 6800.27i 0.162792 + 0.501023i 0.998867 0.0475929i \(-0.0151550\pi\)
−0.836075 + 0.548616i \(0.815155\pi\)
\(570\) 0 0
\(571\) 2342.24 7208.67i 0.171663 0.528325i −0.827802 0.561020i \(-0.810409\pi\)
0.999465 + 0.0326951i \(0.0104090\pi\)
\(572\) −786.145 + 2419.51i −0.0574657 + 0.176861i
\(573\) 1256.74 913.076i 0.0916250 0.0665695i
\(574\) 19134.0 1.39136
\(575\) 0 0
\(576\) −500.383 −0.0361967
\(577\) −6272.46 + 4557.21i −0.452558 + 0.328803i −0.790605 0.612327i \(-0.790234\pi\)
0.338047 + 0.941129i \(0.390234\pi\)
\(578\) −2512.98 + 7734.17i −0.180841 + 0.556573i
\(579\) −3935.42 + 12112.0i −0.282471 + 0.869356i
\(580\) 0 0
\(581\) 9418.71 + 28987.8i 0.672554 + 2.06991i
\(582\) −12707.9 −0.905083
\(583\) −2086.20 6420.66i −0.148202 0.456117i
\(584\) −6769.93 4918.64i −0.479695 0.348519i
\(585\) 0 0
\(586\) −3951.71 + 2871.09i −0.278573 + 0.202395i
\(587\) −6946.97 5047.27i −0.488470 0.354894i 0.316126 0.948717i \(-0.397618\pi\)
−0.804596 + 0.593823i \(0.797618\pi\)
\(588\) 8939.70 + 6495.07i 0.626984 + 0.455531i
\(589\) −10831.7 + 7869.70i −0.757747 + 0.550536i
\(590\) 0 0
\(591\) −14808.9 10759.3i −1.03072 0.748865i
\(592\) −595.227 1831.92i −0.0413238 0.127182i
\(593\) 7557.43 0.523350 0.261675 0.965156i \(-0.415725\pi\)
0.261675 + 0.965156i \(0.415725\pi\)
\(594\) −1404.62 4322.98i −0.0970241 0.298610i
\(595\) 0 0
\(596\) 484.073 1489.82i 0.0332691 0.102392i
\(597\) 1423.87 4382.22i 0.0976133 0.300423i
\(598\) 12826.4 9318.93i 0.877108 0.637256i
\(599\) −1555.67 −0.106115 −0.0530577 0.998591i \(-0.516897\pi\)
−0.0530577 + 0.998591i \(0.516897\pi\)
\(600\) 0 0
\(601\) 3958.20 0.268650 0.134325 0.990937i \(-0.457113\pi\)
0.134325 + 0.990937i \(0.457113\pi\)
\(602\) 25467.3 18503.1i 1.72420 1.25271i
\(603\) 567.915 1747.86i 0.0383537 0.118041i
\(604\) 2394.80 7370.42i 0.161329 0.496520i
\(605\) 0 0
\(606\) 827.665 + 2547.29i 0.0554812 + 0.170753i
\(607\) 23128.2 1.54653 0.773266 0.634081i \(-0.218622\pi\)
0.773266 + 0.634081i \(0.218622\pi\)
\(608\) −509.045 1566.68i −0.0339547 0.104502i
\(609\) 8508.14 + 6181.52i 0.566120 + 0.411310i
\(610\) 0 0
\(611\) −6781.78 + 4927.25i −0.449037 + 0.326244i
\(612\) 736.305 + 534.957i 0.0486329 + 0.0353339i
\(613\) −7510.33 5456.58i −0.494844 0.359525i 0.312200 0.950016i \(-0.398934\pi\)
−0.807044 + 0.590491i \(0.798934\pi\)
\(614\) 10327.4 7503.26i 0.678792 0.493171i
\(615\) 0 0
\(616\) −3010.02 2186.91i −0.196878 0.143041i
\(617\) 1709.05 + 5259.91i 0.111513 + 0.343203i 0.991204 0.132344i \(-0.0422503\pi\)
−0.879691 + 0.475547i \(0.842250\pi\)
\(618\) 3112.23 0.202576
\(619\) −4872.99 14997.5i −0.316417 0.973831i −0.975167 0.221469i \(-0.928915\pi\)
0.658750 0.752361i \(-0.271085\pi\)
\(620\) 0 0
\(621\) −8753.60 + 26940.8i −0.565652 + 1.74090i
\(622\) 1900.21 5848.26i 0.122495 0.377000i
\(623\) 27807.4 20203.3i 1.78825 1.29924i
\(624\) −2990.38 −0.191844
\(625\) 0 0
\(626\) 11112.5 0.709496
\(627\) 2718.43 1975.06i 0.173148 0.125799i
\(628\) 2222.61 6840.48i 0.141229 0.434657i
\(629\) −1082.63 + 3331.99i −0.0686285 + 0.211217i
\(630\) 0 0
\(631\) 6785.23 + 20882.8i 0.428075 + 1.31748i 0.900019 + 0.435852i \(0.143553\pi\)
−0.471943 + 0.881629i \(0.656447\pi\)
\(632\) 2825.90 0.177861
\(633\) 1797.65 + 5532.59i 0.112875 + 0.347395i
\(634\) 5383.88 + 3911.62i 0.337258 + 0.245032i
\(635\) 0 0
\(636\) 6420.02 4664.42i 0.400268 0.290812i
\(637\) −21776.4 15821.5i −1.35449 0.984096i
\(638\) −1855.64 1348.20i −0.115149 0.0836610i
\(639\) 3411.45 2478.57i 0.211197 0.153444i
\(640\) 0 0
\(641\) 23240.6 + 16885.3i 1.43205 + 1.04045i 0.989630 + 0.143643i \(0.0458817\pi\)
0.442425 + 0.896806i \(0.354118\pi\)
\(642\) 688.003 + 2117.45i 0.0422949 + 0.130170i
\(643\) −19485.8 −1.19509 −0.597547 0.801834i \(-0.703858\pi\)
−0.597547 + 0.801834i \(0.703858\pi\)
\(644\) 7165.08 + 22051.8i 0.438422 + 1.34932i
\(645\) 0 0
\(646\) −925.877 + 2849.56i −0.0563903 + 0.173552i
\(647\) 5592.78 17212.8i 0.339838 1.04591i −0.624452 0.781063i \(-0.714678\pi\)
0.964290 0.264850i \(-0.0853223\pi\)
\(648\) 2956.29 2147.87i 0.179219 0.130211i
\(649\) −957.312 −0.0579010
\(650\) 0 0
\(651\) −35545.4 −2.13999
\(652\) −4317.34 + 3136.73i −0.259325 + 0.188411i
\(653\) −8126.61 + 25011.1i −0.487012 + 1.49887i 0.342033 + 0.939688i \(0.388885\pi\)
−0.829045 + 0.559181i \(0.811115\pi\)
\(654\) −2421.08 + 7451.33i −0.144758 + 0.445520i
\(655\) 0 0
\(656\) −1515.84 4665.27i −0.0902188 0.277665i
\(657\) −8178.22 −0.485636
\(658\) −3788.44 11659.6i −0.224451 0.690789i
\(659\) 832.956 + 605.178i 0.0492373 + 0.0357730i 0.612132 0.790756i \(-0.290312\pi\)
−0.562894 + 0.826529i \(0.690312\pi\)
\(660\) 0 0
\(661\) 3435.86 2496.30i 0.202178 0.146891i −0.482090 0.876122i \(-0.660122\pi\)
0.684267 + 0.729231i \(0.260122\pi\)
\(662\) 1395.03 + 1013.55i 0.0819024 + 0.0595056i
\(663\) 4400.29 + 3197.00i 0.257757 + 0.187272i
\(664\) 6321.66 4592.95i 0.369470 0.268435i
\(665\) 0 0
\(666\) −1522.97 1106.50i −0.0886092 0.0643784i
\(667\) 4417.18 + 13594.7i 0.256422 + 0.789187i
\(668\) −6457.21 −0.374007
\(669\) −6045.50 18606.1i −0.349376 1.07527i
\(670\) 0 0
\(671\) 629.420 1937.15i 0.0362123 0.111450i
\(672\) 1351.45 4159.33i 0.0775793 0.238764i
\(673\) −11280.4 + 8195.71i −0.646105 + 0.469422i −0.861942 0.507007i \(-0.830752\pi\)
0.215837 + 0.976429i \(0.430752\pi\)
\(674\) −11456.0 −0.654699
\(675\) 0 0
\(676\) −1503.68 −0.0855532
\(677\) 10884.1 7907.76i 0.617887 0.448921i −0.234296 0.972165i \(-0.575278\pi\)
0.852183 + 0.523244i \(0.175278\pi\)
\(678\) −3618.27 + 11135.9i −0.204954 + 0.630784i
\(679\) −13989.7 + 43056.0i −0.790688 + 2.43349i
\(680\) 0 0
\(681\) −2499.87 7693.82i −0.140669 0.432934i
\(682\) 7752.51 0.435277
\(683\) 5946.43 + 18301.2i 0.333139 + 1.02530i 0.967632 + 0.252367i \(0.0812089\pi\)
−0.634493 + 0.772928i \(0.718791\pi\)
\(684\) −1302.46 946.290i −0.0728080 0.0528981i
\(685\) 0 0
\(686\) 14529.2 10556.1i 0.808642 0.587513i
\(687\) −917.629 666.697i −0.0509603 0.0370248i
\(688\) −6529.01 4743.61i −0.361797 0.262861i
\(689\) −15638.7 + 11362.1i −0.864710 + 0.628249i
\(690\) 0 0
\(691\) −18585.0 13502.8i −1.02316 0.743373i −0.0562356 0.998418i \(-0.517910\pi\)
−0.966929 + 0.255045i \(0.917910\pi\)
\(692\) −4082.39 12564.3i −0.224262 0.690206i
\(693\) −3636.17 −0.199317
\(694\) 1431.13 + 4404.58i 0.0782783 + 0.240916i
\(695\) 0 0
\(696\) 833.150 2564.17i 0.0453743 0.139648i
\(697\) −2757.09 + 8485.44i −0.149831 + 0.461132i
\(698\) 7206.96 5236.16i 0.390813 0.283942i
\(699\) −14839.0 −0.802953
\(700\) 0 0
\(701\) −4226.67 −0.227730 −0.113865 0.993496i \(-0.536323\pi\)
−0.113865 + 0.993496i \(0.536323\pi\)
\(702\) −10529.4 + 7650.05i −0.566106 + 0.411300i
\(703\) 1915.08 5894.00i 0.102743 0.316211i
\(704\) −294.753 + 907.156i −0.0157797 + 0.0485650i
\(705\) 0 0
\(706\) 4692.01 + 14440.5i 0.250122 + 0.769796i
\(707\) 9541.71 0.507572
\(708\) −347.729 1070.20i −0.0184583 0.0568088i
\(709\) −18626.9 13533.2i −0.986668 0.716856i −0.0274791 0.999622i \(-0.508748\pi\)
−0.959189 + 0.282766i \(0.908748\pi\)
\(710\) 0 0
\(711\) 2234.33 1623.34i 0.117854 0.0856257i
\(712\) −7128.94 5179.48i −0.375236 0.272625i
\(713\) −39086.5 28398.0i −2.05302 1.49160i
\(714\) −6435.35 + 4675.56i −0.337307 + 0.245068i
\(715\) 0 0
\(716\) −8952.98 6504.72i −0.467302 0.339515i
\(717\) −3902.29 12010.0i −0.203255 0.625554i
\(718\) −18627.8 −0.968222
\(719\) −1901.30 5851.59i −0.0986181 0.303515i 0.889562 0.456815i \(-0.151010\pi\)
−0.988180 + 0.153300i \(0.951010\pi\)
\(720\) 0 0
\(721\) 3426.16 10544.7i 0.176972 0.544665i
\(722\) −2601.30 + 8005.98i −0.134086 + 0.412676i
\(723\) −22398.2 + 16273.3i −1.15214 + 0.837080i
\(724\) −13073.2 −0.671078
\(725\) 0 0
\(726\) 9713.04 0.496536
\(727\) −23394.3 + 16997.0i −1.19346 + 0.867101i −0.993626 0.112729i \(-0.964041\pi\)
−0.199836 + 0.979829i \(0.564041\pi\)
\(728\) −3292.02 + 10131.8i −0.167597 + 0.515810i
\(729\) 6675.94 20546.4i 0.339173 1.04387i
\(730\) 0 0
\(731\) 4535.97 + 13960.3i 0.229506 + 0.706346i
\(732\) 2394.22 0.120892
\(733\) 3372.68 + 10380.1i 0.169949 + 0.523051i 0.999367 0.0355788i \(-0.0113275\pi\)
−0.829417 + 0.558629i \(0.811327\pi\)
\(734\) 12472.3 + 9061.65i 0.627194 + 0.455683i
\(735\) 0 0
\(736\) 4809.06 3493.99i 0.240848 0.174987i
\(737\) −2834.21 2059.17i −0.141655 0.102918i
\(738\) −3878.47 2817.87i −0.193453 0.140552i
\(739\) 11697.6 8498.82i 0.582278 0.423050i −0.257266 0.966341i \(-0.582822\pi\)
0.839545 + 0.543290i \(0.182822\pi\)
\(740\) 0 0
\(741\) −7783.72 5655.20i −0.385887 0.280363i
\(742\) −8736.06 26886.8i −0.432225 1.33025i
\(743\) −22720.1 −1.12183 −0.560915 0.827874i \(-0.689550\pi\)
−0.560915 + 0.827874i \(0.689550\pi\)
\(744\) 2815.98 + 8666.71i 0.138762 + 0.427066i
\(745\) 0 0
\(746\) −5519.15 + 16986.2i −0.270872 + 0.833659i
\(747\) 2359.87 7262.93i 0.115586 0.355739i
\(748\) 1403.56 1019.75i 0.0686086 0.0498471i
\(749\) 7931.62 0.386936
\(750\) 0 0
\(751\) 400.556 0.0194627 0.00973135 0.999953i \(-0.496902\pi\)
0.00973135 + 0.999953i \(0.496902\pi\)
\(752\) −2542.73 + 1847.40i −0.123303 + 0.0895847i
\(753\) −1668.33 + 5134.59i −0.0807401 + 0.248493i
\(754\) −2029.49 + 6246.12i −0.0980233 + 0.301685i
\(755\) 0 0
\(756\) −5881.92 18102.7i −0.282968 0.870885i
\(757\) −8445.77 −0.405504 −0.202752 0.979230i \(-0.564989\pi\)
−0.202752 + 0.979230i \(0.564989\pi\)
\(758\) −2623.00 8072.77i −0.125688 0.386829i
\(759\) 9809.52 + 7127.03i 0.469121 + 0.340837i
\(760\) 0 0
\(761\) −7569.25 + 5499.38i −0.360559 + 0.261961i −0.753285 0.657694i \(-0.771532\pi\)
0.392726 + 0.919655i \(0.371532\pi\)
\(762\) −10743.0 7805.26i −0.510733 0.371069i
\(763\) 22580.8 + 16405.9i 1.07140 + 0.778419i
\(764\) −1147.80 + 833.922i −0.0543531 + 0.0394898i
\(765\) 0 0
\(766\) 8832.39 + 6417.11i 0.416615 + 0.302689i
\(767\) 847.041 + 2606.92i 0.0398760 + 0.122726i
\(768\) −1121.20 −0.0526793
\(769\) −3534.39 10877.7i −0.165739 0.510092i 0.833351 0.552744i \(-0.186419\pi\)
−0.999090 + 0.0426520i \(0.986419\pi\)
\(770\) 0 0
\(771\) −8775.26 + 27007.5i −0.409901 + 1.26154i
\(772\) 3594.26 11062.0i 0.167565 0.515713i
\(773\) −3042.74 + 2210.68i −0.141578 + 0.102862i −0.656320 0.754483i \(-0.727888\pi\)
0.514742 + 0.857345i \(0.327888\pi\)
\(774\) −7887.19 −0.366278
\(775\) 0 0
\(776\) 11606.2 0.536907
\(777\) 13310.8 9670.89i 0.614573 0.446514i
\(778\) 7990.78 24593.1i 0.368231 1.13330i
\(779\) 4877.04 15010.0i 0.224311 0.690357i
\(780\) 0 0
\(781\) −2483.92 7644.72i −0.113805 0.350256i
\(782\) −10811.9 −0.494413
\(783\) −3626.13 11160.1i −0.165501 0.509360i
\(784\) −8164.72 5932.01i −0.371935 0.270227i
\(785\) 0 0
\(786\) −8842.83 + 6424.69i −0.401289 + 0.291554i
\(787\) 18476.0 + 13423.6i 0.836848 + 0.608005i 0.921488 0.388406i \(-0.126974\pi\)
−0.0846407 + 0.996412i \(0.526974\pi\)
\(788\) 13525.2 + 9826.60i 0.611439 + 0.444236i
\(789\) −2831.36 + 2057.10i −0.127756 + 0.0928198i
\(790\) 0 0
\(791\) 33746.6 + 24518.4i 1.51693 + 1.10211i
\(792\) 288.065 + 886.573i 0.0129242 + 0.0397765i
\(793\) −5832.12 −0.261166
\(794\) 1256.17 + 3866.08i 0.0561457 + 0.172799i
\(795\) 0 0
\(796\) −1300.44 + 4002.33i −0.0579055 + 0.178215i
\(797\) 49.8475 153.415i 0.00221542 0.00681836i −0.949943 0.312424i \(-0.898859\pi\)
0.952158 + 0.305606i \(0.0988590\pi\)
\(798\) 11383.6 8270.65i 0.504980 0.366889i
\(799\) 5716.62 0.253116
\(800\) 0 0
\(801\) −8611.91 −0.379884
\(802\) 14517.7 10547.7i 0.639199 0.464405i
\(803\) −4817.42 + 14826.5i −0.211710 + 0.651576i
\(804\) 1272.51 3916.40i 0.0558185 0.171792i
\(805\) 0 0
\(806\) −6859.51 21111.4i −0.299772 0.922602i
\(807\) −17866.4 −0.779342
\(808\) −755.915 2326.47i −0.0329121 0.101293i
\(809\) −8390.60 6096.13i −0.364645 0.264930i 0.390342 0.920670i \(-0.372357\pi\)
−0.754987 + 0.655740i \(0.772357\pi\)
\(810\) 0 0
\(811\) −34337.8 + 24947.9i −1.48676 + 1.08020i −0.511463 + 0.859305i \(0.670896\pi\)
−0.975299 + 0.220890i \(0.929104\pi\)
\(812\) −7770.57 5645.65i −0.335830 0.243994i
\(813\) 1557.44 + 1131.54i 0.0671854 + 0.0488130i
\(814\) −2903.11 + 2109.23i −0.125005 + 0.0908214i
\(815\) 0 0
\(816\) 1649.82 + 1198.66i 0.0707785 + 0.0514236i
\(817\) −8023.72 24694.5i −0.343592 1.05747i
\(818\) −17311.5 −0.739954
\(819\) 3217.32 + 9901.91i 0.137268 + 0.422467i
\(820\) 0 0
\(821\) 8552.50 26321.9i 0.363562 1.11893i −0.587315 0.809359i \(-0.699815\pi\)
0.950877 0.309570i \(-0.100185\pi\)
\(822\) −6470.39 + 19913.8i −0.274551 + 0.844980i
\(823\) −9200.39 + 6684.48i −0.389679 + 0.283118i −0.765324 0.643645i \(-0.777421\pi\)
0.375645 + 0.926764i \(0.377421\pi\)
\(824\) −2842.43 −0.120171
\(825\) 0 0
\(826\) −4008.79 −0.168866
\(827\) −2678.57 + 1946.09i −0.112628 + 0.0818287i −0.642673 0.766140i \(-0.722175\pi\)
0.530046 + 0.847969i \(0.322175\pi\)
\(828\) 1795.22 5525.12i 0.0753480 0.231897i
\(829\) −7520.64 + 23146.2i −0.315082 + 0.969722i 0.660639 + 0.750704i \(0.270285\pi\)
−0.975721 + 0.219018i \(0.929715\pi\)
\(830\) 0 0
\(831\) −86.8491 267.294i −0.00362547 0.0111580i
\(832\) 2731.14 0.113804
\(833\) 5672.36 + 17457.7i 0.235937 + 0.726139i
\(834\) 12467.5 + 9058.19i 0.517644 + 0.376090i
\(835\) 0 0
\(836\) −2482.77 + 1803.84i −0.102713 + 0.0746257i
\(837\) 32086.7 + 23312.4i 1.32506 + 0.962716i
\(838\) 9290.88 + 6750.22i 0.382993 + 0.278261i
\(839\) 11147.2 8098.89i 0.458692 0.333260i −0.334326 0.942458i \(-0.608509\pi\)
0.793018 + 0.609198i \(0.208509\pi\)
\(840\) 0 0
\(841\) 14940.7 + 10855.0i 0.612598 + 0.445079i
\(842\) 2278.50 + 7012.51i 0.0932570 + 0.287015i
\(843\) 7827.16 0.319789
\(844\) −1641.81 5052.97i −0.0669591 0.206079i
\(845\) 0 0
\(846\) −949.197 + 2921.33i −0.0385746 + 0.118720i
\(847\) 10692.8 32909.1i 0.433777 1.33503i
\(848\) −5863.47 + 4260.06i −0.237444 + 0.172513i
\(849\) −27343.8 −1.10535
\(850\) 0 0
\(851\) 22363.2 0.900822
\(852\) 7643.97 5553.67i 0.307369 0.223316i
\(853\) 4042.80 12442.5i 0.162278 0.499439i −0.836548 0.547894i \(-0.815430\pi\)
0.998825 + 0.0484548i \(0.0154297\pi\)
\(854\) 2635.73 8111.93i 0.105612 0.325040i
\(855\) 0 0
\(856\) −628.360 1933.89i −0.0250898 0.0772186i
\(857\) −17624.7 −0.702508 −0.351254 0.936280i \(-0.614245\pi\)
−0.351254 + 0.936280i \(0.614245\pi\)
\(858\) 1721.53 + 5298.32i 0.0684988 + 0.210818i
\(859\) 834.395 + 606.224i 0.0331423 + 0.0240793i 0.604233 0.796808i \(-0.293480\pi\)
−0.571091 + 0.820887i \(0.693480\pi\)
\(860\) 0 0
\(861\) 33898.1 24628.4i 1.34175 0.974836i
\(862\) 15566.9 + 11310.0i 0.615093 + 0.446891i
\(863\) 29957.6 + 21765.5i 1.18166 + 0.858523i 0.992357 0.123396i \(-0.0393786\pi\)
0.189299 + 0.981920i \(0.439379\pi\)
\(864\) −3947.83 + 2868.27i −0.155449 + 0.112940i
\(865\) 0 0
\(866\) −2561.31 1860.90i −0.100505 0.0730209i
\(867\) 5503.02 + 16936.6i 0.215562 + 0.663432i
\(868\) 32464.0 1.26947
\(869\) −1626.84 5006.91i −0.0635062 0.195452i
\(870\) 0 0
\(871\) −3099.74 + 9540.02i −0.120586 + 0.371127i
\(872\) 2211.20 6805.38i 0.0858724 0.264288i
\(873\) 9176.59 6667.18i 0.355762 0.258477i
\(874\) 19125.2 0.740183
\(875\) 0 0
\(876\) −18324.7 −0.706776
\(877\) −34138.6 + 24803.1i −1.31446 + 0.955008i −0.314472 + 0.949267i \(0.601827\pi\)
−0.999984 + 0.00574075i \(0.998173\pi\)
\(878\) 1027.99 3163.84i 0.0395138 0.121611i
\(879\) −3305.38 + 10172.9i −0.126835 + 0.390357i
\(880\) 0 0
\(881\) −2050.56 6310.96i −0.0784165 0.241341i 0.904162 0.427190i \(-0.140497\pi\)
−0.982578 + 0.185849i \(0.940497\pi\)
\(882\) −9863.15 −0.376542
\(883\) 1739.74 + 5354.36i 0.0663044 + 0.204064i 0.978720 0.205202i \(-0.0657850\pi\)
−0.912415 + 0.409266i \(0.865785\pi\)
\(884\) −4018.83 2919.85i −0.152905 0.111092i
\(885\) 0 0
\(886\) 10462.6 7601.49i 0.396723 0.288236i
\(887\) 26624.6 + 19343.9i 1.00786 + 0.732250i 0.963758 0.266777i \(-0.0859589\pi\)
0.0440972 + 0.999027i \(0.485959\pi\)
\(888\) −3412.47 2479.31i −0.128959 0.0936938i
\(889\) −38271.9 + 27806.2i −1.44387 + 1.04903i
\(890\) 0 0
\(891\) −5507.49 4001.42i −0.207079 0.150452i
\(892\) 5521.42 + 16993.2i 0.207254 + 0.637863i
\(893\) −10112.2 −0.378938
\(894\) −1060.04 3262.47i −0.0396567 0.122051i
\(895\) 0 0
\(896\) −1234.29 + 3798.76i −0.0460210 + 0.141638i
\(897\) 10728.6 33019.1i 0.399349 1.22907i
\(898\) −8994.87 + 6535.16i −0.334257 + 0.242852i
\(899\) 20013.6 0.742483
\(900\) 0 0
\(901\) 13182.4 0.487425
\(902\) −7393.22 + 5371.49i −0.272913 + 0.198283i
\(903\) 21302.0 65560.7i 0.785033 2.41608i
\(904\) 3304.60 10170.5i 0.121581 0.374189i
\(905\) 0 0
\(906\) −5244.21 16140.0i −0.192304 0.591850i
\(907\) 23738.5 0.869046 0.434523 0.900661i \(-0.356917\pi\)
0.434523 + 0.900661i \(0.356917\pi\)
\(908\) 2283.16 + 7026.85i 0.0834464 + 0.256822i
\(909\) −1934.11 1405.21i −0.0705724 0.0512738i
\(910\) 0 0
\(911\) −10584.2 + 7689.85i −0.384928 + 0.279666i −0.763374 0.645957i \(-0.776459\pi\)
0.378446 + 0.925623i \(0.376459\pi\)
\(912\) −2918.39 2120.33i −0.105962 0.0769859i
\(913\) −11777.1 8556.53i −0.426904 0.310164i
\(914\) 2131.53 1548.65i 0.0771386 0.0560445i
\(915\) 0 0
\(916\) 838.081 + 608.901i 0.0302303 + 0.0219636i
\(917\) 12032.9 + 37033.5i 0.433328 + 1.33364i
\(918\) 8875.62 0.319106
\(919\) −983.027 3025.45i −0.0352852 0.108597i 0.931863 0.362811i \(-0.118183\pi\)
−0.967148 + 0.254215i \(0.918183\pi\)
\(920\) 0 0
\(921\) 8638.24 26585.8i 0.309055 0.951174i
\(922\) −5229.86 + 16095.8i −0.186807 + 0.574933i
\(923\) −18620.1 + 13528.3i −0.664017 + 0.482436i
\(924\) −8147.48 −0.290078
\(925\) 0 0
\(926\) −25378.8 −0.900647
\(927\) −2247.40 + 1632.83i −0.0796270 + 0.0578524i
\(928\) −760.925 + 2341.89i −0.0269166 + 0.0828407i
\(929\) 12964.0 39899.2i 0.457843 1.40910i −0.409921 0.912121i \(-0.634444\pi\)
0.867764 0.496976i \(-0.165556\pi\)
\(930\) 0 0
\(931\) −10033.9 30881.1i −0.353220 1.08710i
\(932\) 13552.7 0.476322
\(933\) −4161.16 12806.7i −0.146013 0.449382i
\(934\) −1329.01 965.585i −0.0465596 0.0338275i
\(935\) 0 0
\(936\) 2159.41 1568.90i 0.0754085 0.0547875i
\(937\) −3361.80 2442.49i −0.117210 0.0851577i 0.527636 0.849470i \(-0.323078\pi\)
−0.644846 + 0.764313i \(0.723078\pi\)
\(938\) −11868.4 8622.90i −0.413131 0.300157i
\(939\) 19687.0 14303.5i 0.684198 0.497099i
\(940\) 0 0
\(941\) −14793.5 10748.1i −0.512490 0.372346i 0.301277 0.953537i \(-0.402587\pi\)
−0.813767 + 0.581191i \(0.802587\pi\)
\(942\) −4867.14 14979.5i −0.168344 0.518110i
\(943\) 56951.2 1.96669
\(944\) 317.585 + 977.426i 0.0109497 + 0.0336997i
\(945\) 0 0
\(946\) −4645.99 + 14298.9i −0.159677 + 0.491434i
\(947\) −14999.2 + 46162.9i −0.514688 + 1.58405i 0.269160 + 0.963096i \(0.413254\pi\)
−0.783848 + 0.620953i \(0.786746\pi\)
\(948\) 5006.41 3637.37i 0.171520 0.124616i
\(949\) 44637.6 1.52687
\(950\) 0 0
\(951\) 14573.0 0.496911
\(952\) 5877.48 4270.24i 0.200095 0.145377i
\(953\) 10609.5 32652.7i 0.360625 1.10989i −0.592051 0.805900i \(-0.701682\pi\)
0.952676 0.303988i \(-0.0983184\pi\)
\(954\) −2188.83 + 6736.52i −0.0742830 + 0.228620i
\(955\) 0 0
\(956\) 3564.01 + 10968.9i 0.120573 + 0.371087i
\(957\) −5022.81 −0.169660
\(958\) 6810.57 + 20960.8i 0.229686 + 0.706902i
\(959\) 60347.6 + 43845.1i 2.03204 + 1.47636i
\(960\) 0 0
\(961\) −30624.1 + 22249.7i −1.02797 + 0.746861i
\(962\) 8312.51 + 6039.39i 0.278593 + 0.202409i
\(963\) −1607.74 1168.09i −0.0537993 0.0390875i
\(964\) 20456.5 14862.5i 0.683465 0.496566i
\(965\) 0 0
\(966\) 41077.9 + 29844.8i 1.36818 + 0.994038i
\(967\) −2010.06 6186.33i −0.0668451 0.205728i 0.912055 0.410068i \(-0.134495\pi\)
−0.978900 + 0.204340i \(0.934495\pi\)
\(968\) −8871.02 −0.294551
\(969\) 2027.52 + 6240.06i 0.0672170 + 0.206873i
\(970\) 0 0
\(971\) 8528.41 26247.7i 0.281864 0.867487i −0.705457 0.708752i \(-0.749258\pi\)
0.987321 0.158735i \(-0.0507416\pi\)
\(972\) −2616.52 + 8052.83i −0.0863426 + 0.265735i
\(973\) 44415.5 32269.8i 1.46341 1.06323i
\(974\) 15708.9 0.516782
\(975\) 0 0
\(976\) −2186.66 −0.0717146
\(977\) 16486.8 11978.4i 0.539877 0.392244i −0.284162 0.958776i \(-0.591715\pi\)
0.824039 + 0.566533i \(0.191715\pi\)
\(978\) −3611.21 + 11114.1i −0.118071 + 0.363386i
\(979\) −5072.89 + 15612.8i −0.165608 + 0.509689i
\(980\) 0 0
\(981\) −2161.03 6650.96i −0.0703327 0.216462i
\(982\) 41047.7 1.33390
\(983\) 1573.89 + 4843.95i 0.0510675 + 0.157170i 0.973338 0.229375i \(-0.0736683\pi\)
−0.922270 + 0.386545i \(0.873668\pi\)
\(984\) −8690.40 6313.94i −0.281544 0.204554i
\(985\) 0 0
\(986\) 3623.39 2632.54i 0.117031 0.0850277i
\(987\) −21719.3 15780.0i −0.700440 0.508900i
\(988\) 7108.95 + 5164.96i 0.228913 + 0.166315i
\(989\) 75801.9 55073.3i 2.43717 1.77071i
\(990\) 0 0
\(991\) −1089.49 791.563i −0.0349232 0.0253732i 0.570187 0.821515i \(-0.306871\pi\)
−0.605110 + 0.796142i \(0.706871\pi\)
\(992\) −2571.87 7915.39i −0.0823154 0.253341i
\(993\) 3776.05 0.120674
\(994\) −10401.5 32012.7i −0.331908 1.02151i
\(995\) 0 0
\(996\) 5287.71 16273.9i 0.168220 0.517729i
\(997\) 6923.45 21308.2i 0.219928 0.676868i −0.778839 0.627224i \(-0.784191\pi\)
0.998767 0.0496443i \(-0.0158088\pi\)
\(998\) −33449.1 + 24302.2i −1.06093 + 0.770814i
\(999\) −18358.3 −0.581411
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 250.4.d.c.51.3 32
5.2 odd 4 250.4.e.b.199.3 32
5.3 odd 4 50.4.e.a.39.6 yes 32
5.4 even 2 250.4.d.d.51.6 32
25.4 even 10 1250.4.a.m.1.12 16
25.9 even 10 250.4.d.d.201.6 32
25.12 odd 20 50.4.e.a.9.6 32
25.13 odd 20 250.4.e.b.49.3 32
25.16 even 5 inner 250.4.d.c.201.3 32
25.21 even 5 1250.4.a.n.1.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.4.e.a.9.6 32 25.12 odd 20
50.4.e.a.39.6 yes 32 5.3 odd 4
250.4.d.c.51.3 32 1.1 even 1 trivial
250.4.d.c.201.3 32 25.16 even 5 inner
250.4.d.d.51.6 32 5.4 even 2
250.4.d.d.201.6 32 25.9 even 10
250.4.e.b.49.3 32 25.13 odd 20
250.4.e.b.199.3 32 5.2 odd 4
1250.4.a.m.1.12 16 25.4 even 10
1250.4.a.n.1.5 16 25.21 even 5