Properties

Label 250.2.d.c.101.1
Level $250$
Weight $2$
Character 250.101
Analytic conductor $1.996$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [250,2,Mod(51,250)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("250.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(250, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 250 = 2 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 250.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.99626005053\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 50)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 101.1
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 250.101
Dual form 250.2.d.c.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{2} +(-2.34786 - 1.70582i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(2.34786 - 1.70582i) q^{6} -1.07768 q^{7} +(0.809017 - 0.587785i) q^{8} +(1.67557 + 5.15688i) q^{9} +(-0.638757 + 1.96589i) q^{11} +(0.896802 + 2.76007i) q^{12} +(1.79032 + 5.51005i) q^{13} +(0.333023 - 1.02494i) q^{14} +(0.309017 + 0.951057i) q^{16} +(-0.666977 + 0.484587i) q^{17} -5.42226 q^{18} +(-2.76007 + 2.00531i) q^{19} +(2.53025 + 1.83833i) q^{21} +(-1.67229 - 1.21499i) q^{22} +(-0.606480 + 1.86655i) q^{23} -2.90211 q^{24} -5.79360 q^{26} +(2.17229 - 6.68562i) q^{27} +(0.871864 + 0.633446i) q^{28} +(0.847859 + 0.616005i) q^{29} +(-1.71113 + 1.24321i) q^{31} -1.00000 q^{32} +(4.85317 - 3.52603i) q^{33} +(-0.254763 - 0.784079i) q^{34} +(1.67557 - 5.15688i) q^{36} +(2.68712 + 8.27012i) q^{37} +(-1.05425 - 3.24466i) q^{38} +(5.19572 - 15.9908i) q^{39} +(-2.03150 - 6.25232i) q^{41} +(-2.53025 + 1.83833i) q^{42} +7.47684 q^{43} +(1.67229 - 1.21499i) q^{44} +(-1.58779 - 1.15359i) q^{46} +(-6.99942 - 5.08538i) q^{47} +(0.896802 - 2.76007i) q^{48} -5.83860 q^{49} +2.39259 q^{51} +(1.79032 - 5.51005i) q^{52} +(-2.07768 - 1.50953i) q^{53} +(5.68712 + 4.13194i) q^{54} +(-0.871864 + 0.633446i) q^{56} +9.90096 q^{57} +(-0.847859 + 0.616005i) q^{58} +(1.45309 + 4.47214i) q^{59} +(-2.86858 + 8.82859i) q^{61} +(-0.653594 - 2.01155i) q^{62} +(-1.80573 - 5.55748i) q^{63} +(0.309017 - 0.951057i) q^{64} +(1.85375 + 5.70524i) q^{66} +(3.52874 - 2.56378i) q^{67} +0.824429 q^{68} +(4.60793 - 3.34786i) q^{69} +(-3.96740 - 2.88249i) q^{71} +(4.38670 + 3.18712i) q^{72} +(0.401017 - 1.23420i) q^{73} -8.69572 q^{74} +3.41164 q^{76} +(0.688378 - 2.11861i) q^{77} +(13.6026 + 9.88284i) q^{78} +(5.82141 + 4.22950i) q^{79} +(-3.34458 + 2.42998i) q^{81} +6.57408 q^{82} +(-12.1094 + 8.79798i) q^{83} +(-0.966469 - 2.97449i) q^{84} +(-2.31047 + 7.11089i) q^{86} +(-0.939859 - 2.89259i) q^{87} +(0.638757 + 1.96589i) q^{88} +(-3.61803 + 11.1352i) q^{89} +(-1.92940 - 5.93809i) q^{91} +(1.58779 - 1.15359i) q^{92} +6.13818 q^{93} +(6.99942 - 5.08538i) q^{94} +(2.34786 + 1.70582i) q^{96} +(-0.413147 - 0.300169i) q^{97} +(1.80423 - 5.55284i) q^{98} -11.2081 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{6} + 16 q^{7} + 2 q^{8} + 4 q^{9} - 4 q^{11} - 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{16} - 4 q^{17} - 4 q^{18} - 10 q^{19} + 16 q^{21} - 6 q^{22} - 12 q^{23} - 8 q^{24}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/250\mathbb{Z}\right)^\times\).

\(n\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.951057i −0.218508 + 0.672499i
\(3\) −2.34786 1.70582i −1.35554 0.984855i −0.998715 0.0506828i \(-0.983860\pi\)
−0.356822 0.934172i \(-0.616140\pi\)
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) 0 0
\(6\) 2.34786 1.70582i 0.958509 0.696398i
\(7\) −1.07768 −0.407326 −0.203663 0.979041i \(-0.565285\pi\)
−0.203663 + 0.979041i \(0.565285\pi\)
\(8\) 0.809017 0.587785i 0.286031 0.207813i
\(9\) 1.67557 + 5.15688i 0.558524 + 1.71896i
\(10\) 0 0
\(11\) −0.638757 + 1.96589i −0.192593 + 0.592739i 0.807404 + 0.589999i \(0.200872\pi\)
−0.999996 + 0.00273957i \(0.999128\pi\)
\(12\) 0.896802 + 2.76007i 0.258885 + 0.796765i
\(13\) 1.79032 + 5.51005i 0.496546 + 1.52821i 0.814533 + 0.580117i \(0.196993\pi\)
−0.317987 + 0.948095i \(0.603007\pi\)
\(14\) 0.333023 1.02494i 0.0890040 0.273926i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) −0.666977 + 0.484587i −0.161766 + 0.117530i −0.665723 0.746199i \(-0.731877\pi\)
0.503957 + 0.863729i \(0.331877\pi\)
\(18\) −5.42226 −1.27804
\(19\) −2.76007 + 2.00531i −0.633204 + 0.460050i −0.857509 0.514469i \(-0.827989\pi\)
0.224305 + 0.974519i \(0.427989\pi\)
\(20\) 0 0
\(21\) 2.53025 + 1.83833i 0.552146 + 0.401157i
\(22\) −1.67229 1.21499i −0.356533 0.259036i
\(23\) −0.606480 + 1.86655i −0.126460 + 0.389203i −0.994164 0.107877i \(-0.965595\pi\)
0.867704 + 0.497081i \(0.165595\pi\)
\(24\) −2.90211 −0.592391
\(25\) 0 0
\(26\) −5.79360 −1.13622
\(27\) 2.17229 6.68562i 0.418057 1.28665i
\(28\) 0.871864 + 0.633446i 0.164767 + 0.119710i
\(29\) 0.847859 + 0.616005i 0.157443 + 0.114389i 0.663718 0.747983i \(-0.268978\pi\)
−0.506274 + 0.862373i \(0.668978\pi\)
\(30\) 0 0
\(31\) −1.71113 + 1.24321i −0.307328 + 0.223287i −0.730749 0.682646i \(-0.760829\pi\)
0.423421 + 0.905933i \(0.360829\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.85317 3.52603i 0.844828 0.613804i
\(34\) −0.254763 0.784079i −0.0436914 0.134468i
\(35\) 0 0
\(36\) 1.67557 5.15688i 0.279262 0.859479i
\(37\) 2.68712 + 8.27012i 0.441761 + 1.35960i 0.885998 + 0.463690i \(0.153475\pi\)
−0.444237 + 0.895909i \(0.646525\pi\)
\(38\) −1.05425 3.24466i −0.171023 0.526354i
\(39\) 5.19572 15.9908i 0.831981 2.56057i
\(40\) 0 0
\(41\) −2.03150 6.25232i −0.317267 0.976449i −0.974811 0.223032i \(-0.928404\pi\)
0.657544 0.753416i \(-0.271596\pi\)
\(42\) −2.53025 + 1.83833i −0.390426 + 0.283661i
\(43\) 7.47684 1.14021 0.570103 0.821573i \(-0.306903\pi\)
0.570103 + 0.821573i \(0.306903\pi\)
\(44\) 1.67229 1.21499i 0.252107 0.183166i
\(45\) 0 0
\(46\) −1.58779 1.15359i −0.234106 0.170088i
\(47\) −6.99942 5.08538i −1.02097 0.741779i −0.0544892 0.998514i \(-0.517353\pi\)
−0.966482 + 0.256736i \(0.917353\pi\)
\(48\) 0.896802 2.76007i 0.129442 0.398382i
\(49\) −5.83860 −0.834085
\(50\) 0 0
\(51\) 2.39259 0.335029
\(52\) 1.79032 5.51005i 0.248273 0.764106i
\(53\) −2.07768 1.50953i −0.285392 0.207349i 0.435874 0.900008i \(-0.356439\pi\)
−0.721266 + 0.692658i \(0.756439\pi\)
\(54\) 5.68712 + 4.13194i 0.773920 + 0.562286i
\(55\) 0 0
\(56\) −0.871864 + 0.633446i −0.116508 + 0.0846478i
\(57\) 9.90096 1.31141
\(58\) −0.847859 + 0.616005i −0.111329 + 0.0808855i
\(59\) 1.45309 + 4.47214i 0.189176 + 0.582223i 0.999995 0.00307347i \(-0.000978319\pi\)
−0.810820 + 0.585296i \(0.800978\pi\)
\(60\) 0 0
\(61\) −2.86858 + 8.82859i −0.367284 + 1.13038i 0.581254 + 0.813722i \(0.302562\pi\)
−0.948538 + 0.316663i \(0.897438\pi\)
\(62\) −0.653594 2.01155i −0.0830065 0.255468i
\(63\) −1.80573 5.55748i −0.227501 0.700177i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) 0 0
\(66\) 1.85375 + 5.70524i 0.228180 + 0.702267i
\(67\) 3.52874 2.56378i 0.431104 0.313216i −0.350986 0.936381i \(-0.614154\pi\)
0.782090 + 0.623165i \(0.214154\pi\)
\(68\) 0.824429 0.0999768
\(69\) 4.60793 3.34786i 0.554730 0.403035i
\(70\) 0 0
\(71\) −3.96740 2.88249i −0.470844 0.342088i 0.326926 0.945050i \(-0.393987\pi\)
−0.797770 + 0.602962i \(0.793987\pi\)
\(72\) 4.38670 + 3.18712i 0.516978 + 0.375606i
\(73\) 0.401017 1.23420i 0.0469355 0.144453i −0.924842 0.380351i \(-0.875803\pi\)
0.971778 + 0.235898i \(0.0758032\pi\)
\(74\) −8.69572 −1.01086
\(75\) 0 0
\(76\) 3.41164 0.391342
\(77\) 0.688378 2.11861i 0.0784480 0.241438i
\(78\) 13.6026 + 9.88284i 1.54019 + 1.11901i
\(79\) 5.82141 + 4.22950i 0.654960 + 0.475856i 0.864957 0.501846i \(-0.167345\pi\)
−0.209997 + 0.977702i \(0.567345\pi\)
\(80\) 0 0
\(81\) −3.34458 + 2.42998i −0.371620 + 0.269997i
\(82\) 6.57408 0.725986
\(83\) −12.1094 + 8.79798i −1.32918 + 0.965704i −0.329409 + 0.944187i \(0.606850\pi\)
−0.999768 + 0.0215168i \(0.993150\pi\)
\(84\) −0.966469 2.97449i −0.105450 0.324543i
\(85\) 0 0
\(86\) −2.31047 + 7.11089i −0.249144 + 0.766787i
\(87\) −0.939859 2.89259i −0.100763 0.310118i
\(88\) 0.638757 + 1.96589i 0.0680918 + 0.209565i
\(89\) −3.61803 + 11.1352i −0.383511 + 1.18032i 0.554044 + 0.832487i \(0.313084\pi\)
−0.937555 + 0.347838i \(0.886916\pi\)
\(90\) 0 0
\(91\) −1.92940 5.93809i −0.202256 0.622480i
\(92\) 1.58779 1.15359i 0.165538 0.120270i
\(93\) 6.13818 0.636500
\(94\) 6.99942 5.08538i 0.721935 0.524517i
\(95\) 0 0
\(96\) 2.34786 + 1.70582i 0.239627 + 0.174099i
\(97\) −0.413147 0.300169i −0.0419487 0.0304775i 0.566613 0.823984i \(-0.308253\pi\)
−0.608562 + 0.793506i \(0.708253\pi\)
\(98\) 1.80423 5.55284i 0.182254 0.560921i
\(99\) −11.2081 −1.12646
\(100\) 0 0
\(101\) −3.50766 −0.349025 −0.174513 0.984655i \(-0.555835\pi\)
−0.174513 + 0.984655i \(0.555835\pi\)
\(102\) −0.739350 + 2.27549i −0.0732066 + 0.225307i
\(103\) −3.75528 2.72837i −0.370019 0.268835i 0.387200 0.921996i \(-0.373442\pi\)
−0.757219 + 0.653161i \(0.773442\pi\)
\(104\) 4.68712 + 3.40540i 0.459610 + 0.333926i
\(105\) 0 0
\(106\) 2.07768 1.50953i 0.201802 0.146618i
\(107\) −7.60189 −0.734902 −0.367451 0.930043i \(-0.619769\pi\)
−0.367451 + 0.930043i \(0.619769\pi\)
\(108\) −5.68712 + 4.13194i −0.547244 + 0.397596i
\(109\) −0.922836 2.84020i −0.0883917 0.272042i 0.897084 0.441861i \(-0.145682\pi\)
−0.985475 + 0.169819i \(0.945682\pi\)
\(110\) 0 0
\(111\) 7.79834 24.0008i 0.740186 2.27806i
\(112\) −0.333023 1.02494i −0.0314677 0.0968475i
\(113\) −6.24170 19.2100i −0.587170 1.80712i −0.590377 0.807128i \(-0.701021\pi\)
0.00320699 0.999995i \(-0.498979\pi\)
\(114\) −3.05957 + 9.41637i −0.286555 + 0.881924i
\(115\) 0 0
\(116\) −0.323853 0.996718i −0.0300690 0.0925429i
\(117\) −25.4148 + 18.4649i −2.34960 + 1.70708i
\(118\) −4.70228 −0.432880
\(119\) 0.718791 0.522232i 0.0658914 0.0478729i
\(120\) 0 0
\(121\) 5.44246 + 3.95418i 0.494769 + 0.359471i
\(122\) −7.51005 5.45637i −0.679928 0.493996i
\(123\) −5.89565 + 18.1449i −0.531593 + 1.63607i
\(124\) 2.11507 0.189939
\(125\) 0 0
\(126\) 5.84348 0.520579
\(127\) −6.59783 + 20.3060i −0.585463 + 1.80187i 0.0119411 + 0.999929i \(0.496199\pi\)
−0.597404 + 0.801940i \(0.703801\pi\)
\(128\) 0.809017 + 0.587785i 0.0715077 + 0.0519534i
\(129\) −17.5546 12.7541i −1.54559 1.12294i
\(130\) 0 0
\(131\) 7.28730 5.29454i 0.636695 0.462586i −0.222018 0.975042i \(-0.571264\pi\)
0.858713 + 0.512457i \(0.171264\pi\)
\(132\) −5.99885 −0.522133
\(133\) 2.97449 2.16109i 0.257921 0.187390i
\(134\) 1.34786 + 4.14828i 0.116437 + 0.358357i
\(135\) 0 0
\(136\) −0.254763 + 0.784079i −0.0218457 + 0.0672342i
\(137\) −1.38795 4.27168i −0.118581 0.364955i 0.874096 0.485753i \(-0.161455\pi\)
−0.992677 + 0.120798i \(0.961455\pi\)
\(138\) 1.76007 + 5.41695i 0.149827 + 0.461121i
\(139\) 4.14204 12.7479i 0.351323 1.08126i −0.606788 0.794864i \(-0.707542\pi\)
0.958111 0.286398i \(-0.0924578\pi\)
\(140\) 0 0
\(141\) 7.75892 + 23.8795i 0.653419 + 2.01102i
\(142\) 3.96740 2.88249i 0.332937 0.241893i
\(143\) −11.9757 −1.00146
\(144\) −4.38670 + 3.18712i −0.365558 + 0.265594i
\(145\) 0 0
\(146\) 1.04988 + 0.762779i 0.0868883 + 0.0631281i
\(147\) 13.7082 + 9.95959i 1.13063 + 0.821453i
\(148\) 2.68712 8.27012i 0.220880 0.679800i
\(149\) 13.6139 1.11529 0.557646 0.830079i \(-0.311705\pi\)
0.557646 + 0.830079i \(0.311705\pi\)
\(150\) 0 0
\(151\) 8.79830 0.715996 0.357998 0.933722i \(-0.383459\pi\)
0.357998 + 0.933722i \(0.383459\pi\)
\(152\) −1.05425 + 3.24466i −0.0855113 + 0.263177i
\(153\) −3.61653 2.62756i −0.292379 0.212426i
\(154\) 1.80220 + 1.30937i 0.145225 + 0.105512i
\(155\) 0 0
\(156\) −13.6026 + 9.88284i −1.08908 + 0.791261i
\(157\) 11.8558 0.946195 0.473097 0.881010i \(-0.343136\pi\)
0.473097 + 0.881010i \(0.343136\pi\)
\(158\) −5.82141 + 4.22950i −0.463127 + 0.336481i
\(159\) 2.30313 + 7.08831i 0.182650 + 0.562139i
\(160\) 0 0
\(161\) 0.653594 2.01155i 0.0515104 0.158533i
\(162\) −1.27751 3.93179i −0.100371 0.308910i
\(163\) 4.62257 + 14.2268i 0.362068 + 1.11433i 0.951797 + 0.306729i \(0.0992344\pi\)
−0.589729 + 0.807601i \(0.700766\pi\)
\(164\) −2.03150 + 6.25232i −0.158634 + 0.488224i
\(165\) 0 0
\(166\) −4.62537 14.2354i −0.358999 1.10488i
\(167\) 17.4504 12.6785i 1.35035 0.981090i 0.351361 0.936240i \(-0.385719\pi\)
0.998994 0.0448496i \(-0.0142809\pi\)
\(168\) 3.12756 0.241296
\(169\) −16.6381 + 12.0883i −1.27986 + 0.929870i
\(170\) 0 0
\(171\) −14.9658 10.8733i −1.14447 0.831503i
\(172\) −6.04889 4.39477i −0.461223 0.335098i
\(173\) −1.38602 + 4.26574i −0.105377 + 0.324318i −0.989819 0.142333i \(-0.954540\pi\)
0.884441 + 0.466651i \(0.154540\pi\)
\(174\) 3.04145 0.230571
\(175\) 0 0
\(176\) −2.06706 −0.155811
\(177\) 4.21702 12.9786i 0.316970 0.975535i
\(178\) −9.47214 6.88191i −0.709967 0.515821i
\(179\) 12.2423 + 8.89456i 0.915033 + 0.664811i 0.942283 0.334818i \(-0.108675\pi\)
−0.0272495 + 0.999629i \(0.508675\pi\)
\(180\) 0 0
\(181\) 7.94542 5.77269i 0.590579 0.429081i −0.251944 0.967742i \(-0.581070\pi\)
0.842522 + 0.538661i \(0.181070\pi\)
\(182\) 6.24367 0.462812
\(183\) 21.7950 15.8350i 1.61113 1.17056i
\(184\) 0.606480 + 1.86655i 0.0447103 + 0.137604i
\(185\) 0 0
\(186\) −1.89680 + 5.83776i −0.139080 + 0.428045i
\(187\) −0.526610 1.62074i −0.0385096 0.118520i
\(188\) 2.67354 + 8.22832i 0.194988 + 0.600112i
\(189\) −2.34104 + 7.20498i −0.170286 + 0.524085i
\(190\) 0 0
\(191\) 6.01130 + 18.5009i 0.434962 + 1.33868i 0.893125 + 0.449808i \(0.148508\pi\)
−0.458163 + 0.888868i \(0.651492\pi\)
\(192\) −2.34786 + 1.70582i −0.169442 + 0.123107i
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 0.413147 0.300169i 0.0296622 0.0215509i
\(195\) 0 0
\(196\) 4.72353 + 3.43184i 0.337395 + 0.245132i
\(197\) 1.13818 + 0.826937i 0.0810920 + 0.0589168i 0.627593 0.778542i \(-0.284040\pi\)
−0.546501 + 0.837459i \(0.684040\pi\)
\(198\) 3.46351 10.6596i 0.246141 0.757543i
\(199\) 13.7199 0.972575 0.486288 0.873799i \(-0.338351\pi\)
0.486288 + 0.873799i \(0.338351\pi\)
\(200\) 0 0
\(201\) −12.6583 −0.892850
\(202\) 1.08393 3.33598i 0.0762648 0.234719i
\(203\) −0.913723 0.663859i −0.0641308 0.0465938i
\(204\) −1.93564 1.40633i −0.135522 0.0984626i
\(205\) 0 0
\(206\) 3.75528 2.72837i 0.261643 0.190095i
\(207\) −10.6418 −0.739655
\(208\) −4.68712 + 3.40540i −0.324994 + 0.236122i
\(209\) −2.17921 6.70692i −0.150739 0.463927i
\(210\) 0 0
\(211\) −5.18484 + 15.9573i −0.356939 + 1.09855i 0.597937 + 0.801543i \(0.295987\pi\)
−0.954877 + 0.297003i \(0.904013\pi\)
\(212\) 0.793604 + 2.44246i 0.0545050 + 0.167749i
\(213\) 4.39790 + 13.5353i 0.301339 + 0.927426i
\(214\) 2.34911 7.22982i 0.160582 0.494221i
\(215\) 0 0
\(216\) −2.17229 6.68562i −0.147805 0.454899i
\(217\) 1.84406 1.33979i 0.125183 0.0909506i
\(218\) 2.98636 0.202262
\(219\) −3.04686 + 2.21367i −0.205888 + 0.149586i
\(220\) 0 0
\(221\) −3.86420 2.80751i −0.259934 0.188853i
\(222\) 20.4163 + 14.8333i 1.37025 + 0.995547i
\(223\) 3.61054 11.1121i 0.241779 0.744121i −0.754370 0.656449i \(-0.772058\pi\)
0.996149 0.0876712i \(-0.0279425\pi\)
\(224\) 1.07768 0.0720058
\(225\) 0 0
\(226\) 20.1986 1.34359
\(227\) 0.220299 0.678012i 0.0146218 0.0450012i −0.943479 0.331431i \(-0.892469\pi\)
0.958101 + 0.286430i \(0.0924686\pi\)
\(228\) −8.01005 5.81964i −0.530478 0.385415i
\(229\) −16.5176 12.0008i −1.09152 0.793034i −0.111862 0.993724i \(-0.535682\pi\)
−0.979655 + 0.200690i \(0.935682\pi\)
\(230\) 0 0
\(231\) −5.23018 + 3.79995i −0.344121 + 0.250018i
\(232\) 1.04801 0.0688053
\(233\) 12.1679 8.84046i 0.797143 0.579158i −0.112932 0.993603i \(-0.536024\pi\)
0.910074 + 0.414445i \(0.136024\pi\)
\(234\) −9.70759 29.8769i −0.634605 1.95311i
\(235\) 0 0
\(236\) 1.45309 4.47214i 0.0945878 0.291111i
\(237\) −6.45309 19.8606i −0.419173 1.29008i
\(238\) 0.274554 + 0.844989i 0.0177967 + 0.0547725i
\(239\) 1.29364 3.98141i 0.0836786 0.257536i −0.900460 0.434940i \(-0.856770\pi\)
0.984138 + 0.177403i \(0.0567697\pi\)
\(240\) 0 0
\(241\) −9.09011 27.9765i −0.585546 1.80212i −0.597068 0.802191i \(-0.703668\pi\)
0.0115222 0.999934i \(-0.496332\pi\)
\(242\) −5.44246 + 3.95418i −0.349855 + 0.254184i
\(243\) −9.09132 −0.583209
\(244\) 7.51005 5.45637i 0.480781 0.349308i
\(245\) 0 0
\(246\) −15.4350 11.2142i −0.984100 0.714991i
\(247\) −15.9908 11.6180i −1.01747 0.739234i
\(248\) −0.653594 + 2.01155i −0.0415032 + 0.127734i
\(249\) 43.4389 2.75283
\(250\) 0 0
\(251\) −23.6695 −1.49400 −0.747002 0.664822i \(-0.768508\pi\)
−0.747002 + 0.664822i \(0.768508\pi\)
\(252\) −1.80573 + 5.55748i −0.113751 + 0.350088i
\(253\) −3.28205 2.38455i −0.206341 0.149915i
\(254\) −17.2733 12.5498i −1.08383 0.787446i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −4.34928 −0.271300 −0.135650 0.990757i \(-0.543312\pi\)
−0.135650 + 0.990757i \(0.543312\pi\)
\(258\) 17.5546 12.7541i 1.09290 0.794037i
\(259\) −2.89587 8.91257i −0.179941 0.553800i
\(260\) 0 0
\(261\) −1.75602 + 5.40446i −0.108695 + 0.334528i
\(262\) 2.78350 + 8.56674i 0.171965 + 0.529255i
\(263\) 0.697446 + 2.14652i 0.0430064 + 0.132360i 0.970254 0.242088i \(-0.0778322\pi\)
−0.927248 + 0.374448i \(0.877832\pi\)
\(264\) 1.85375 5.70524i 0.114090 0.351133i
\(265\) 0 0
\(266\) 1.13615 + 3.49672i 0.0696620 + 0.214398i
\(267\) 27.4892 19.9721i 1.68231 1.22227i
\(268\) −4.36176 −0.266437
\(269\) 6.92470 5.03109i 0.422206 0.306751i −0.356319 0.934365i \(-0.615968\pi\)
0.778525 + 0.627614i \(0.215968\pi\)
\(270\) 0 0
\(271\) 19.3808 + 14.0809i 1.17730 + 0.855356i 0.991864 0.127300i \(-0.0406312\pi\)
0.185433 + 0.982657i \(0.440631\pi\)
\(272\) −0.666977 0.484587i −0.0404414 0.0293824i
\(273\) −5.59934 + 17.2330i −0.338887 + 1.04299i
\(274\) 4.49151 0.271342
\(275\) 0 0
\(276\) −5.69572 −0.342842
\(277\) −2.20234 + 6.77810i −0.132326 + 0.407257i −0.995164 0.0982226i \(-0.968684\pi\)
0.862839 + 0.505479i \(0.168684\pi\)
\(278\) 10.8440 + 7.87863i 0.650380 + 0.472529i
\(279\) −9.27819 6.74100i −0.555471 0.403573i
\(280\) 0 0
\(281\) −1.82620 + 1.32681i −0.108942 + 0.0791511i −0.640922 0.767606i \(-0.721448\pi\)
0.531980 + 0.846757i \(0.321448\pi\)
\(282\) −25.1084 −1.49518
\(283\) 7.86171 5.71186i 0.467330 0.339535i −0.329070 0.944306i \(-0.606735\pi\)
0.796400 + 0.604771i \(0.206735\pi\)
\(284\) 1.51541 + 4.66396i 0.0899232 + 0.276755i
\(285\) 0 0
\(286\) 3.70071 11.3896i 0.218827 0.673481i
\(287\) 2.18932 + 6.73802i 0.129231 + 0.397733i
\(288\) −1.67557 5.15688i −0.0987339 0.303872i
\(289\) −5.04325 + 15.5215i −0.296662 + 0.913032i
\(290\) 0 0
\(291\) 0.457977 + 1.40951i 0.0268471 + 0.0826269i
\(292\) −1.04988 + 0.762779i −0.0614393 + 0.0446383i
\(293\) 6.52369 0.381118 0.190559 0.981676i \(-0.438970\pi\)
0.190559 + 0.981676i \(0.438970\pi\)
\(294\) −13.7082 + 9.95959i −0.799479 + 0.580855i
\(295\) 0 0
\(296\) 7.03498 + 5.11121i 0.408900 + 0.297083i
\(297\) 11.7556 + 8.54097i 0.682131 + 0.495597i
\(298\) −4.20692 + 12.9476i −0.243700 + 0.750032i
\(299\) −11.3706 −0.657578
\(300\) 0 0
\(301\) −8.05766 −0.464436
\(302\) −2.71883 + 8.36768i −0.156451 + 0.481506i
\(303\) 8.23549 + 5.98343i 0.473117 + 0.343739i
\(304\) −2.76007 2.00531i −0.158301 0.115012i
\(305\) 0 0
\(306\) 3.61653 2.62756i 0.206743 0.150208i
\(307\) −20.7081 −1.18187 −0.590937 0.806718i \(-0.701242\pi\)
−0.590937 + 0.806718i \(0.701242\pi\)
\(308\) −1.80220 + 1.30937i −0.102690 + 0.0746085i
\(309\) 4.16276 + 12.8117i 0.236811 + 0.728830i
\(310\) 0 0
\(311\) 2.46261 7.57914i 0.139642 0.429773i −0.856641 0.515912i \(-0.827453\pi\)
0.996283 + 0.0861391i \(0.0274530\pi\)
\(312\) −5.19572 15.9908i −0.294150 0.905299i
\(313\) −1.44938 4.46075i −0.0819240 0.252136i 0.901702 0.432358i \(-0.142318\pi\)
−0.983626 + 0.180222i \(0.942318\pi\)
\(314\) −3.66364 + 11.2755i −0.206751 + 0.636314i
\(315\) 0 0
\(316\) −2.22358 6.84348i −0.125086 0.384976i
\(317\) 11.5686 8.40508i 0.649758 0.472077i −0.213431 0.976958i \(-0.568464\pi\)
0.863189 + 0.504882i \(0.168464\pi\)
\(318\) −7.45309 −0.417948
\(319\) −1.75258 + 1.27332i −0.0981255 + 0.0712923i
\(320\) 0 0
\(321\) 17.8482 + 12.9674i 0.996187 + 0.723772i
\(322\) 1.71113 + 1.24321i 0.0953575 + 0.0692813i
\(323\) 0.869158 2.67499i 0.0483613 0.148841i
\(324\) 4.13412 0.229674
\(325\) 0 0
\(326\) −14.9590 −0.828500
\(327\) −2.67818 + 8.24258i −0.148103 + 0.455815i
\(328\) −5.31854 3.86415i −0.293667 0.213362i
\(329\) 7.54316 + 5.48043i 0.415868 + 0.302146i
\(330\) 0 0
\(331\) −28.7771 + 20.9078i −1.58174 + 1.14920i −0.667063 + 0.745002i \(0.732449\pi\)
−0.914672 + 0.404196i \(0.867551\pi\)
\(332\) 14.9680 0.821477
\(333\) −38.1455 + 27.7143i −2.09036 + 1.51874i
\(334\) 6.66547 + 20.5142i 0.364718 + 1.12249i
\(335\) 0 0
\(336\) −0.966469 + 2.97449i −0.0527252 + 0.162272i
\(337\) −2.33686 7.19211i −0.127297 0.391779i 0.867016 0.498281i \(-0.166035\pi\)
−0.994313 + 0.106501i \(0.966035\pi\)
\(338\) −6.35520 19.5593i −0.345677 1.06389i
\(339\) −18.1141 + 55.7495i −0.983824 + 3.02790i
\(340\) 0 0
\(341\) −1.35102 4.15801i −0.0731617 0.225169i
\(342\) 14.9658 10.8733i 0.809260 0.587962i
\(343\) 13.8359 0.747071
\(344\) 6.04889 4.39477i 0.326134 0.236950i
\(345\) 0 0
\(346\) −3.62866 2.63637i −0.195078 0.141732i
\(347\) 11.9295 + 8.66728i 0.640409 + 0.465284i 0.859991 0.510310i \(-0.170469\pi\)
−0.219582 + 0.975594i \(0.570469\pi\)
\(348\) −0.939859 + 2.89259i −0.0503817 + 0.155059i
\(349\) −7.61178 −0.407449 −0.203725 0.979028i \(-0.565305\pi\)
−0.203725 + 0.979028i \(0.565305\pi\)
\(350\) 0 0
\(351\) 40.7271 2.17385
\(352\) 0.638757 1.96589i 0.0340459 0.104782i
\(353\) 26.0230 + 18.9068i 1.38506 + 1.00631i 0.996387 + 0.0849343i \(0.0270680\pi\)
0.388678 + 0.921374i \(0.372932\pi\)
\(354\) 11.0403 + 8.02124i 0.586785 + 0.426324i
\(355\) 0 0
\(356\) 9.47214 6.88191i 0.502022 0.364740i
\(357\) −2.57845 −0.136466
\(358\) −12.2423 + 8.89456i −0.647026 + 0.470092i
\(359\) −10.7988 33.2352i −0.569937 1.75408i −0.652807 0.757524i \(-0.726409\pi\)
0.0828704 0.996560i \(-0.473591\pi\)
\(360\) 0 0
\(361\) −2.27459 + 7.00046i −0.119715 + 0.368445i
\(362\) 3.03488 + 9.34041i 0.159510 + 0.490921i
\(363\) −6.03302 18.5677i −0.316651 0.974552i
\(364\) −1.92940 + 5.93809i −0.101128 + 0.311240i
\(365\) 0 0
\(366\) 8.32495 + 25.6216i 0.435152 + 1.33926i
\(367\) −8.93423 + 6.49110i −0.466363 + 0.338832i −0.796022 0.605268i \(-0.793066\pi\)
0.329659 + 0.944100i \(0.393066\pi\)
\(368\) −1.96261 −0.102308
\(369\) 28.8385 20.9524i 1.50127 1.09074i
\(370\) 0 0
\(371\) 2.23909 + 1.62679i 0.116248 + 0.0844588i
\(372\) −4.96589 3.60793i −0.257470 0.187063i
\(373\) 6.31632 19.4396i 0.327047 1.00655i −0.643462 0.765478i \(-0.722502\pi\)
0.970508 0.241068i \(-0.0774976\pi\)
\(374\) 1.70415 0.0881193
\(375\) 0 0
\(376\) −8.65176 −0.446181
\(377\) −1.87628 + 5.77459i −0.0966332 + 0.297406i
\(378\) −6.12892 4.45292i −0.315238 0.229034i
\(379\) 2.82662 + 2.05366i 0.145193 + 0.105489i 0.658011 0.753009i \(-0.271398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(380\) 0 0
\(381\) 50.1292 36.4210i 2.56820 1.86590i
\(382\) −19.4530 −0.995301
\(383\) −15.8471 + 11.5136i −0.809751 + 0.588318i −0.913758 0.406258i \(-0.866833\pi\)
0.104008 + 0.994577i \(0.466833\pi\)
\(384\) −0.896802 2.76007i −0.0457647 0.140849i
\(385\) 0 0
\(386\) −1.85410 + 5.70634i −0.0943713 + 0.290445i
\(387\) 12.5280 + 38.5571i 0.636832 + 1.95997i
\(388\) 0.157808 + 0.485684i 0.00801150 + 0.0246569i
\(389\) 3.15799 9.71930i 0.160117 0.492788i −0.838527 0.544861i \(-0.816583\pi\)
0.998643 + 0.0520722i \(0.0165826\pi\)
\(390\) 0 0
\(391\) −0.500000 1.53884i −0.0252861 0.0778226i
\(392\) −4.72353 + 3.43184i −0.238574 + 0.173334i
\(393\) −26.1411 −1.31864
\(394\) −1.13818 + 0.826937i −0.0573407 + 0.0416605i
\(395\) 0 0
\(396\) 9.06758 + 6.58798i 0.455663 + 0.331059i
\(397\) 18.2073 + 13.2284i 0.913797 + 0.663912i 0.941972 0.335691i \(-0.108970\pi\)
−0.0281755 + 0.999603i \(0.508970\pi\)
\(398\) −4.23967 + 13.0484i −0.212516 + 0.654056i
\(399\) −10.6701 −0.534173
\(400\) 0 0
\(401\) 30.3084 1.51353 0.756765 0.653687i \(-0.226779\pi\)
0.756765 + 0.653687i \(0.226779\pi\)
\(402\) 3.91164 12.0388i 0.195095 0.600440i
\(403\) −9.91361 7.20266i −0.493832 0.358790i
\(404\) 2.83776 + 2.06175i 0.141184 + 0.102576i
\(405\) 0 0
\(406\) 0.913723 0.663859i 0.0453473 0.0329468i
\(407\) −17.9746 −0.890967
\(408\) 1.93564 1.40633i 0.0958287 0.0696236i
\(409\) −4.76281 14.6584i −0.235506 0.724813i −0.997054 0.0767043i \(-0.975560\pi\)
0.761548 0.648109i \(-0.224440\pi\)
\(410\) 0 0
\(411\) −4.02800 + 12.3969i −0.198687 + 0.611494i
\(412\) 1.43439 + 4.41460i 0.0706673 + 0.217492i
\(413\) −1.56597 4.81955i −0.0770561 0.237154i
\(414\) 3.28849 10.1209i 0.161621 0.497417i
\(415\) 0 0
\(416\) −1.79032 5.51005i −0.0877778 0.270152i
\(417\) −31.4705 + 22.8647i −1.54112 + 1.11969i
\(418\) 7.05207 0.344928
\(419\) −17.1755 + 12.4787i −0.839076 + 0.609624i −0.922112 0.386922i \(-0.873538\pi\)
0.0830364 + 0.996547i \(0.473538\pi\)
\(420\) 0 0
\(421\) −26.5536 19.2923i −1.29414 0.940249i −0.294261 0.955725i \(-0.595074\pi\)
−0.999880 + 0.0154761i \(0.995074\pi\)
\(422\) −13.5741 9.86215i −0.660776 0.480082i
\(423\) 14.4966 44.6161i 0.704851 2.16931i
\(424\) −2.56816 −0.124721
\(425\) 0 0
\(426\) −14.2319 −0.689538
\(427\) 3.09142 9.51442i 0.149604 0.460435i
\(428\) 6.15006 + 4.46828i 0.297274 + 0.215982i
\(429\) 28.1173 + 20.4284i 1.35752 + 0.986295i
\(430\) 0 0
\(431\) 0.680214 0.494204i 0.0327647 0.0238050i −0.571282 0.820754i \(-0.693554\pi\)
0.604047 + 0.796949i \(0.293554\pi\)
\(432\) 7.02967 0.338215
\(433\) −27.5350 + 20.0053i −1.32325 + 0.961394i −0.323360 + 0.946276i \(0.604813\pi\)
−0.999886 + 0.0151184i \(0.995187\pi\)
\(434\) 0.704367 + 2.16782i 0.0338107 + 0.104059i
\(435\) 0 0
\(436\) −0.922836 + 2.84020i −0.0441958 + 0.136021i
\(437\) −2.06909 6.36801i −0.0989780 0.304623i
\(438\) −1.16380 3.58180i −0.0556083 0.171145i
\(439\) −0.492305 + 1.51516i −0.0234964 + 0.0723145i −0.962117 0.272636i \(-0.912104\pi\)
0.938621 + 0.344951i \(0.112104\pi\)
\(440\) 0 0
\(441\) −9.78298 30.1089i −0.465856 1.43376i
\(442\) 3.86420 2.80751i 0.183801 0.133540i
\(443\) 24.6238 1.16991 0.584955 0.811065i \(-0.301112\pi\)
0.584955 + 0.811065i \(0.301112\pi\)
\(444\) −20.4163 + 14.8333i −0.968916 + 0.703958i
\(445\) 0 0
\(446\) 9.45251 + 6.86765i 0.447589 + 0.325193i
\(447\) −31.9634 23.2228i −1.51182 1.09840i
\(448\) −0.333023 + 1.02494i −0.0157338 + 0.0484238i
\(449\) −34.1186 −1.61016 −0.805078 0.593169i \(-0.797876\pi\)
−0.805078 + 0.593169i \(0.797876\pi\)
\(450\) 0 0
\(451\) 13.5890 0.639882
\(452\) −6.24170 + 19.2100i −0.293585 + 0.903561i
\(453\) −20.6572 15.0083i −0.970559 0.705152i
\(454\) 0.576751 + 0.419034i 0.0270683 + 0.0196663i
\(455\) 0 0
\(456\) 8.01005 5.81964i 0.375105 0.272530i
\(457\) 3.48932 0.163224 0.0816118 0.996664i \(-0.473993\pi\)
0.0816118 + 0.996664i \(0.473993\pi\)
\(458\) 16.5176 12.0008i 0.771819 0.560759i
\(459\) 1.79090 + 5.51182i 0.0835920 + 0.257270i
\(460\) 0 0
\(461\) 4.16714 12.8251i 0.194083 0.597326i −0.805903 0.592048i \(-0.798320\pi\)
0.999986 0.00527875i \(-0.00168028\pi\)
\(462\) −1.99775 6.14845i −0.0929438 0.286052i
\(463\) 0.576011 + 1.77278i 0.0267695 + 0.0823881i 0.963549 0.267533i \(-0.0862084\pi\)
−0.936779 + 0.349921i \(0.886208\pi\)
\(464\) −0.323853 + 0.996718i −0.0150345 + 0.0462715i
\(465\) 0 0
\(466\) 4.64771 + 14.3042i 0.215301 + 0.662628i
\(467\) −10.5508 + 7.66561i −0.488233 + 0.354722i −0.804504 0.593947i \(-0.797569\pi\)
0.316271 + 0.948669i \(0.397569\pi\)
\(468\) 31.4144 1.45213
\(469\) −3.80287 + 2.76294i −0.175600 + 0.127581i
\(470\) 0 0
\(471\) −27.8357 20.2238i −1.28260 0.931865i
\(472\) 3.80423 + 2.76393i 0.175104 + 0.127220i
\(473\) −4.77588 + 14.6987i −0.219595 + 0.675845i
\(474\) 20.8826 0.959171
\(475\) 0 0
\(476\) −0.888474 −0.0407231
\(477\) 4.30313 13.2437i 0.197027 0.606386i
\(478\) 3.38679 + 2.46065i 0.154908 + 0.112547i
\(479\) −10.0171 7.27787i −0.457694 0.332534i 0.334932 0.942242i \(-0.391287\pi\)
−0.792626 + 0.609708i \(0.791287\pi\)
\(480\) 0 0
\(481\) −40.7579 + 29.6124i −1.85840 + 1.35021i
\(482\) 29.4162 1.33987
\(483\) −4.96589 + 3.60793i −0.225956 + 0.164167i
\(484\) −2.07884 6.39800i −0.0944925 0.290818i
\(485\) 0 0
\(486\) 2.80937 8.64636i 0.127436 0.392207i
\(487\) −1.39647 4.29789i −0.0632800 0.194756i 0.914418 0.404771i \(-0.132649\pi\)
−0.977698 + 0.210015i \(0.932649\pi\)
\(488\) 2.86858 + 8.82859i 0.129855 + 0.399651i
\(489\) 13.4152 41.2878i 0.606657 1.86710i
\(490\) 0 0
\(491\) 8.48797 + 26.1233i 0.383057 + 1.17893i 0.937880 + 0.346959i \(0.112786\pi\)
−0.554824 + 0.831968i \(0.687214\pi\)
\(492\) 15.4350 11.2142i 0.695864 0.505575i
\(493\) −0.864011 −0.0389131
\(494\) 15.9908 11.6180i 0.719459 0.522718i
\(495\) 0 0
\(496\) −1.71113 1.24321i −0.0768320 0.0558217i
\(497\) 4.27560 + 3.10641i 0.191787 + 0.139341i
\(498\) −13.4234 + 41.3128i −0.601515 + 1.85127i
\(499\) 13.4814 0.603510 0.301755 0.953385i \(-0.402427\pi\)
0.301755 + 0.953385i \(0.402427\pi\)
\(500\) 0 0
\(501\) −62.5983 −2.79669
\(502\) 7.31427 22.5110i 0.326452 1.00472i
\(503\) 22.5145 + 16.3577i 1.00387 + 0.729355i 0.962915 0.269806i \(-0.0869597\pi\)
0.0409559 + 0.999161i \(0.486960\pi\)
\(504\) −4.72747 3.43471i −0.210578 0.152994i
\(505\) 0 0
\(506\) 3.28205 2.38455i 0.145905 0.106006i
\(507\) 59.6844 2.65068
\(508\) 17.2733 12.5498i 0.766381 0.556808i
\(509\) −6.20182 19.0873i −0.274891 0.846028i −0.989248 0.146246i \(-0.953281\pi\)
0.714357 0.699781i \(-0.246719\pi\)
\(510\) 0 0
\(511\) −0.432169 + 1.33008i −0.0191180 + 0.0588393i
\(512\) −0.309017 0.951057i −0.0136568 0.0420312i
\(513\) 7.41106 + 22.8089i 0.327206 + 1.00704i
\(514\) 1.34400 4.13641i 0.0592813 0.182449i
\(515\) 0 0
\(516\) 6.70524 + 20.6366i 0.295182 + 0.908476i
\(517\) 14.4682 10.5118i 0.636313 0.462308i
\(518\) 9.37123 0.411748
\(519\) 10.5308 7.65105i 0.462249 0.335844i
\(520\) 0 0
\(521\) 23.5901 + 17.1392i 1.03350 + 0.750881i 0.969006 0.247037i \(-0.0794569\pi\)
0.0644931 + 0.997918i \(0.479457\pi\)
\(522\) −4.59731 3.34014i −0.201219 0.146194i
\(523\) −3.61732 + 11.1330i −0.158174 + 0.486811i −0.998469 0.0553197i \(-0.982382\pi\)
0.840294 + 0.542131i \(0.182382\pi\)
\(524\) −9.00760 −0.393499
\(525\) 0 0
\(526\) −2.25698 −0.0984092
\(527\) 0.538842 1.65838i 0.0234723 0.0722404i
\(528\) 4.85317 + 3.52603i 0.211207 + 0.153451i
\(529\) 15.4912 + 11.2550i 0.673530 + 0.489348i
\(530\) 0 0
\(531\) −20.6275 + 14.9868i −0.895157 + 0.650370i
\(532\) −3.67667 −0.159404
\(533\) 30.8135 22.3873i 1.33468 0.969703i
\(534\) 10.4999 + 32.3155i 0.454377 + 1.39843i
\(535\) 0 0
\(536\) 1.34786 4.14828i 0.0582186 0.179179i
\(537\) −13.5707 41.7663i −0.585619 1.80235i
\(538\) 2.64500 + 8.14047i 0.114034 + 0.350961i
\(539\) 3.72945 11.4781i 0.160639 0.494395i
\(540\) 0 0
\(541\) −9.24566 28.4552i −0.397502 1.22339i −0.926996 0.375072i \(-0.877618\pi\)
0.529494 0.848314i \(-0.322382\pi\)
\(542\) −19.3808 + 14.0809i −0.832475 + 0.604828i
\(543\) −28.5019 −1.22313
\(544\) 0.666977 0.484587i 0.0285964 0.0207765i
\(545\) 0 0
\(546\) −14.6593 10.6506i −0.627358 0.455803i
\(547\) −1.53050 1.11198i −0.0654396 0.0475447i 0.554585 0.832127i \(-0.312877\pi\)
−0.620024 + 0.784583i \(0.712877\pi\)
\(548\) −1.38795 + 4.27168i −0.0592905 + 0.182477i
\(549\) −50.3344 −2.14822
\(550\) 0 0
\(551\) −3.57543 −0.152319
\(552\) 1.76007 5.41695i 0.0749137 0.230561i
\(553\) −6.27364 4.55807i −0.266782 0.193829i
\(554\) −5.76580 4.18910i −0.244965 0.177978i
\(555\) 0 0
\(556\) −10.8440 + 7.87863i −0.459888 + 0.334128i
\(557\) −2.95618 −0.125257 −0.0626287 0.998037i \(-0.519948\pi\)
−0.0626287 + 0.998037i \(0.519948\pi\)
\(558\) 9.27819 6.74100i 0.392777 0.285369i
\(559\) 13.3859 + 41.1977i 0.566165 + 1.74248i
\(560\) 0 0
\(561\) −1.52828 + 4.70357i −0.0645241 + 0.198585i
\(562\) −0.697547 2.14683i −0.0294243 0.0905586i
\(563\) −2.86862 8.82870i −0.120898 0.372085i 0.872234 0.489089i \(-0.162671\pi\)
−0.993131 + 0.117004i \(0.962671\pi\)
\(564\) 7.75892 23.8795i 0.326710 1.00551i
\(565\) 0 0
\(566\) 3.00290 + 9.24199i 0.126221 + 0.388470i
\(567\) 3.60440 2.61875i 0.151370 0.109977i
\(568\) −4.90398 −0.205766
\(569\) 11.7064 8.50522i 0.490759 0.356557i −0.314717 0.949186i \(-0.601910\pi\)
0.805476 + 0.592628i \(0.201910\pi\)
\(570\) 0 0
\(571\) 4.11663 + 2.99091i 0.172276 + 0.125166i 0.670582 0.741835i \(-0.266044\pi\)
−0.498306 + 0.867001i \(0.666044\pi\)
\(572\) 9.68858 + 7.03916i 0.405100 + 0.294322i
\(573\) 17.4455 53.6916i 0.728795 2.24300i
\(574\) −7.08478 −0.295713
\(575\) 0 0
\(576\) 5.42226 0.225928
\(577\) −5.21453 + 16.0487i −0.217084 + 0.668116i 0.781915 + 0.623385i \(0.214243\pi\)
−0.998999 + 0.0447308i \(0.985757\pi\)
\(578\) −13.2034 9.59284i −0.549190 0.399010i
\(579\) −14.0872 10.2349i −0.585442 0.425349i
\(580\) 0 0
\(581\) 13.0501 9.48144i 0.541409 0.393356i
\(582\) −1.48205 −0.0614328
\(583\) 4.29470 3.12028i 0.177868 0.129229i
\(584\) −0.401017 1.23420i −0.0165942 0.0510717i
\(585\) 0 0
\(586\) −2.01593 + 6.20440i −0.0832774 + 0.256301i
\(587\) 13.6260 + 41.9364i 0.562403 + 1.73090i 0.675543 + 0.737320i \(0.263909\pi\)
−0.113140 + 0.993579i \(0.536091\pi\)
\(588\) −5.23607 16.1150i −0.215932 0.664570i
\(589\) 2.22982 6.86269i 0.0918783 0.282772i
\(590\) 0 0
\(591\) −1.26168 3.88306i −0.0518987 0.159728i
\(592\) −7.03498 + 5.11121i −0.289136 + 0.210070i
\(593\) −31.1398 −1.27876 −0.639380 0.768891i \(-0.720809\pi\)
−0.639380 + 0.768891i \(0.720809\pi\)
\(594\) −11.7556 + 8.54097i −0.482340 + 0.350440i
\(595\) 0 0
\(596\) −11.0138 8.00203i −0.451145 0.327776i
\(597\) −32.2123 23.4036i −1.31836 0.957846i
\(598\) 3.51371 10.8141i 0.143686 0.442220i
\(599\) 28.6194 1.16936 0.584678 0.811265i \(-0.301221\pi\)
0.584678 + 0.811265i \(0.301221\pi\)
\(600\) 0 0
\(601\) 38.8122 1.58318 0.791592 0.611050i \(-0.209253\pi\)
0.791592 + 0.611050i \(0.209253\pi\)
\(602\) 2.48995 7.66329i 0.101483 0.312332i
\(603\) 19.1337 + 13.9015i 0.779186 + 0.566112i
\(604\) −7.11798 5.17151i −0.289626 0.210426i
\(605\) 0 0
\(606\) −8.23549 + 5.98343i −0.334544 + 0.243060i
\(607\) 6.78331 0.275326 0.137663 0.990479i \(-0.456041\pi\)
0.137663 + 0.990479i \(0.456041\pi\)
\(608\) 2.76007 2.00531i 0.111936 0.0813261i
\(609\) 1.01287 + 3.11729i 0.0410436 + 0.126319i
\(610\) 0 0
\(611\) 15.4894 47.6716i 0.626636 1.92859i
\(612\) 1.38139 + 4.25148i 0.0558394 + 0.171856i
\(613\) 10.4525 + 32.1696i 0.422174 + 1.29932i 0.905674 + 0.423974i \(0.139365\pi\)
−0.483500 + 0.875344i \(0.660635\pi\)
\(614\) 6.39915 19.6946i 0.258249 0.794808i
\(615\) 0 0
\(616\) −0.688378 2.11861i −0.0277355 0.0853612i
\(617\) −10.6287 + 7.72217i −0.427894 + 0.310883i −0.780806 0.624773i \(-0.785191\pi\)
0.352913 + 0.935656i \(0.385191\pi\)
\(618\) −13.4710 −0.541882
\(619\) 22.6836 16.4806i 0.911732 0.662412i −0.0297205 0.999558i \(-0.509462\pi\)
0.941452 + 0.337146i \(0.109462\pi\)
\(620\) 0 0
\(621\) 11.1616 + 8.10938i 0.447900 + 0.325418i
\(622\) 6.44720 + 4.68416i 0.258509 + 0.187818i
\(623\) 3.89910 12.0002i 0.156214 0.480777i
\(624\) 16.8137 0.673086
\(625\) 0 0
\(626\) 4.69031 0.187462
\(627\) −6.32431 + 19.4642i −0.252569 + 0.777326i
\(628\) −9.59153 6.96866i −0.382744 0.278080i
\(629\) −5.79985 4.21384i −0.231255 0.168017i
\(630\) 0 0
\(631\) 23.0144 16.7209i 0.916187 0.665649i −0.0263851 0.999652i \(-0.508400\pi\)
0.942572 + 0.334003i \(0.108400\pi\)
\(632\) 7.19566 0.286228
\(633\) 39.3935 28.6211i 1.56575 1.13759i
\(634\) 4.41881 + 13.5997i 0.175494 + 0.540114i
\(635\) 0 0
\(636\) 2.30313 7.08831i 0.0913250 0.281070i
\(637\) −10.4530 32.1709i −0.414162 1.27466i
\(638\) −0.669425 2.06028i −0.0265028 0.0815672i
\(639\) 8.21696 25.2892i 0.325058 1.00043i
\(640\) 0 0
\(641\) 7.87785 + 24.2455i 0.311156 + 0.957641i 0.977308 + 0.211824i \(0.0679405\pi\)
−0.666151 + 0.745817i \(0.732059\pi\)
\(642\) −17.8482 + 12.9674i −0.704411 + 0.511784i
\(643\) 13.7340 0.541617 0.270809 0.962633i \(-0.412709\pi\)
0.270809 + 0.962633i \(0.412709\pi\)
\(644\) −1.71113 + 1.24321i −0.0674280 + 0.0489893i
\(645\) 0 0
\(646\) 2.27549 + 1.65324i 0.0895278 + 0.0650458i
\(647\) 31.1702 + 22.6465i 1.22543 + 0.890324i 0.996539 0.0831286i \(-0.0264912\pi\)
0.228887 + 0.973453i \(0.426491\pi\)
\(648\) −1.27751 + 3.93179i −0.0501855 + 0.154455i
\(649\) −9.71991 −0.381540
\(650\) 0 0
\(651\) −6.61502 −0.259263
\(652\) 4.62257 14.2268i 0.181034 0.557165i
\(653\) −11.2149 8.14808i −0.438872 0.318859i 0.346315 0.938118i \(-0.387433\pi\)
−0.785187 + 0.619259i \(0.787433\pi\)
\(654\) −7.01155 5.09419i −0.274173 0.199199i
\(655\) 0 0
\(656\) 5.31854 3.86415i 0.207654 0.150870i
\(657\) 7.03656 0.274523
\(658\) −7.54316 + 5.48043i −0.294063 + 0.213649i
\(659\) 8.36885 + 25.7567i 0.326004 + 1.00334i 0.970985 + 0.239139i \(0.0768651\pi\)
−0.644981 + 0.764198i \(0.723135\pi\)
\(660\) 0 0
\(661\) −7.25043 + 22.3145i −0.282009 + 0.867934i 0.705270 + 0.708938i \(0.250826\pi\)
−0.987279 + 0.158996i \(0.949174\pi\)
\(662\) −10.9919 33.8296i −0.427212 1.31482i
\(663\) 4.28350 + 13.1833i 0.166357 + 0.511996i
\(664\) −4.62537 + 14.2354i −0.179499 + 0.552442i
\(665\) 0 0
\(666\) −14.5703 44.8427i −0.564587 1.73762i
\(667\) −1.66402 + 1.20898i −0.0644310 + 0.0468118i
\(668\) −21.5699 −0.834565
\(669\) −27.4322 + 19.9307i −1.06059 + 0.770565i
\(670\) 0 0
\(671\) −15.5237 11.2786i −0.599287 0.435407i
\(672\) −2.53025 1.83833i −0.0976065 0.0709152i
\(673\) −3.39760 + 10.4567i −0.130968 + 0.403078i −0.994941 0.100460i \(-0.967969\pi\)
0.863973 + 0.503538i \(0.167969\pi\)
\(674\) 7.56224 0.291286
\(675\) 0 0
\(676\) 20.5659 0.790994
\(677\) 11.3279 34.8638i 0.435368 1.33992i −0.457341 0.889291i \(-0.651198\pi\)
0.892709 0.450633i \(-0.148802\pi\)
\(678\) −47.4234 34.4551i −1.82128 1.32324i
\(679\) 0.445242 + 0.323487i 0.0170868 + 0.0124143i
\(680\) 0 0
\(681\) −1.67380 + 1.21608i −0.0641400 + 0.0466005i
\(682\) 4.37199 0.167412
\(683\) −8.26475 + 6.00469i −0.316242 + 0.229763i −0.734570 0.678533i \(-0.762616\pi\)
0.418328 + 0.908296i \(0.362616\pi\)
\(684\) 5.71644 + 17.5934i 0.218574 + 0.672700i
\(685\) 0 0
\(686\) −4.27554 + 13.1588i −0.163241 + 0.502404i
\(687\) 18.3100 + 56.3522i 0.698568 + 2.14997i
\(688\) 2.31047 + 7.11089i 0.0880858 + 0.271100i
\(689\) 4.59783 14.1507i 0.175163 0.539097i
\(690\) 0 0
\(691\) 1.68239 + 5.17786i 0.0640011 + 0.196975i 0.977944 0.208868i \(-0.0669779\pi\)
−0.913943 + 0.405843i \(0.866978\pi\)
\(692\) 3.62866 2.63637i 0.137941 0.100220i
\(693\) 12.0788 0.458837
\(694\) −11.9295 + 8.66728i −0.452837 + 0.329006i
\(695\) 0 0
\(696\) −2.46058 1.78772i −0.0932681 0.0677633i
\(697\) 4.38476 + 3.18572i 0.166085 + 0.120668i
\(698\) 2.35217 7.23924i 0.0890310 0.274009i
\(699\) −43.6486 −1.65094
\(700\) 0 0
\(701\) 13.9633 0.527387 0.263694 0.964606i \(-0.415059\pi\)
0.263694 + 0.964606i \(0.415059\pi\)
\(702\) −12.5854 + 38.7338i −0.475005 + 1.46191i
\(703\) −24.0008 17.4376i −0.905208 0.657672i
\(704\) 1.67229 + 1.21499i 0.0630267 + 0.0457916i
\(705\) 0 0
\(706\) −26.0230 + 18.9068i −0.979388 + 0.711567i
\(707\) 3.78015 0.142167
\(708\) −11.0403 + 8.02124i −0.414920 + 0.301457i
\(709\) 5.98835 + 18.4302i 0.224897 + 0.692162i 0.998302 + 0.0582499i \(0.0185520\pi\)
−0.773405 + 0.633912i \(0.781448\pi\)
\(710\) 0 0
\(711\) −12.0568 + 37.1071i −0.452167 + 1.39163i
\(712\) 3.61803 + 11.1352i 0.135592 + 0.417308i
\(713\) −1.28275 3.94790i −0.0480393 0.147850i
\(714\) 0.796786 2.45225i 0.0298190 0.0917733i
\(715\) 0 0
\(716\) −4.67615 14.3917i −0.174756 0.537843i
\(717\) −9.82885 + 7.14108i −0.367065 + 0.266688i
\(718\) 34.9455 1.30415
\(719\) −7.97223 + 5.79216i −0.297314 + 0.216011i −0.726434 0.687236i \(-0.758824\pi\)
0.429120 + 0.903247i \(0.358824\pi\)
\(720\) 0 0
\(721\) 4.04701 + 2.94032i 0.150718 + 0.109503i
\(722\) −5.95495 4.32652i −0.221620 0.161017i
\(723\) −26.3805 + 81.1909i −0.981103 + 3.01952i
\(724\) −9.82108 −0.364998
\(725\) 0 0
\(726\) 19.5233 0.724576
\(727\) 10.9658 33.7494i 0.406700 1.25169i −0.512767 0.858528i \(-0.671380\pi\)
0.919467 0.393167i \(-0.128620\pi\)
\(728\) −5.05124 3.66994i −0.187211 0.136017i
\(729\) 31.3789 + 22.7981i 1.16218 + 0.844373i
\(730\) 0 0
\(731\) −4.98688 + 3.62318i −0.184446 + 0.134008i
\(732\) −26.9401 −0.995735
\(733\) −22.3126 + 16.2111i −0.824135 + 0.598769i −0.917894 0.396826i \(-0.870112\pi\)
0.0937592 + 0.995595i \(0.470112\pi\)
\(734\) −3.41257 10.5028i −0.125960 0.387666i
\(735\) 0 0
\(736\) 0.606480 1.86655i 0.0223551 0.0688021i
\(737\) 2.78611 + 8.57476i 0.102628 + 0.315855i
\(738\) 11.0153 + 33.9017i 0.405480 + 1.24794i
\(739\) −11.9642 + 36.8219i −0.440109 + 1.35452i 0.447651 + 0.894208i \(0.352261\pi\)
−0.887760 + 0.460307i \(0.847739\pi\)
\(740\) 0 0
\(741\) 17.7259 + 54.5547i 0.651178 + 2.00412i
\(742\) −2.23909 + 1.62679i −0.0821994 + 0.0597214i
\(743\) −13.3434 −0.489520 −0.244760 0.969584i \(-0.578709\pi\)
−0.244760 + 0.969584i \(0.578709\pi\)
\(744\) 4.96589 3.60793i 0.182058 0.132273i
\(745\) 0 0
\(746\) 16.5363 + 12.0144i 0.605439 + 0.439877i
\(747\) −65.6602 47.7050i −2.40238 1.74543i
\(748\) −0.526610 + 1.62074i −0.0192548 + 0.0592601i
\(749\) 8.19243 0.299345
\(750\) 0 0
\(751\) 13.3487 0.487099 0.243550 0.969888i \(-0.421688\pi\)
0.243550 + 0.969888i \(0.421688\pi\)
\(752\) 2.67354 8.22832i 0.0974940 0.300056i
\(753\) 55.5726 + 40.3759i 2.02518 + 1.47138i
\(754\) −4.91216 3.56889i −0.178890 0.129971i
\(755\) 0 0
\(756\) 6.12892 4.45292i 0.222907 0.161951i
\(757\) 33.3735 1.21298 0.606490 0.795091i \(-0.292577\pi\)
0.606490 + 0.795091i \(0.292577\pi\)
\(758\) −2.82662 + 2.05366i −0.102667 + 0.0745922i
\(759\) 3.63818 + 11.1972i 0.132058 + 0.406432i
\(760\) 0 0
\(761\) −0.678475 + 2.08813i −0.0245947 + 0.0756947i −0.962600 0.270925i \(-0.912671\pi\)
0.938006 + 0.346620i \(0.112671\pi\)
\(762\) 19.1477 + 58.9304i 0.693646 + 2.13482i
\(763\) 0.994526 + 3.06083i 0.0360042 + 0.110810i
\(764\) 6.01130 18.5009i 0.217481 0.669338i
\(765\) 0 0
\(766\) −6.05307 18.6294i −0.218706 0.673108i
\(767\) −22.0402 + 16.0131i −0.795825 + 0.578201i
\(768\) 2.90211 0.104721
\(769\) −14.0154 + 10.1828i −0.505408 + 0.367200i −0.811079 0.584937i \(-0.801119\pi\)
0.305671 + 0.952137i \(0.401119\pi\)
\(770\) 0 0
\(771\) 10.2115 + 7.41908i 0.367758 + 0.267192i
\(772\) −4.85410 3.52671i −0.174703 0.126929i
\(773\) −5.05119 + 15.5460i −0.181679 + 0.559150i −0.999875 0.0157888i \(-0.994974\pi\)
0.818197 + 0.574939i \(0.194974\pi\)
\(774\) −40.5413 −1.45723
\(775\) 0 0
\(776\) −0.510678 −0.0183323
\(777\) −8.40414 + 25.8653i −0.301497 + 0.927912i
\(778\) 8.26773 + 6.00686i 0.296413 + 0.215356i
\(779\) 18.1449 + 13.1831i 0.650110 + 0.472333i
\(780\) 0 0
\(781\) 8.20086 5.95828i 0.293450 0.213204i
\(782\) 1.61803 0.0578608
\(783\) 5.96017 4.33032i 0.212999 0.154753i
\(784\) −1.80423 5.55284i −0.0644366 0.198316i
\(785\) 0 0
\(786\) 8.07804 24.8616i 0.288134 0.886786i
\(787\) −15.1572 46.6492i −0.540297 1.66286i −0.731917 0.681394i \(-0.761374\pi\)
0.191620 0.981469i \(-0.438626\pi\)
\(788\) −0.434746 1.33801i −0.0154872 0.0476647i
\(789\) 2.02407 6.22944i 0.0720587 0.221774i
\(790\) 0 0
\(791\) 6.72658 + 20.7023i 0.239170 + 0.736088i
\(792\) −9.06758 + 6.58798i −0.322202 + 0.234094i
\(793\) −53.7816 −1.90984
\(794\) −18.2073 + 13.2284i −0.646152 + 0.469457i
\(795\) 0 0
\(796\) −11.0996 8.06433i −0.393415 0.285833i
\(797\) 31.3513 + 22.7780i 1.11052 + 0.806840i 0.982745 0.184963i \(-0.0592167\pi\)
0.127774 + 0.991803i \(0.459217\pi\)
\(798\) 3.29724 10.1479i 0.116721 0.359231i
\(799\) 7.13277 0.252339
\(800\) 0 0
\(801\) −63.4849 −2.24313
\(802\) −9.36582 + 28.8250i −0.330719 + 1.01785i
\(803\) 2.17016 + 1.57671i 0.0765832 + 0.0556410i
\(804\) 10.2408 + 7.44038i 0.361165 + 0.262402i
\(805\) 0 0
\(806\) 9.91361 7.20266i 0.349192 0.253703i
\(807\) −24.8404 −0.874422
\(808\) −2.83776 + 2.06175i −0.0998319 + 0.0725322i
\(809\) 3.57476 + 11.0020i 0.125682 + 0.386809i 0.994025 0.109156i \(-0.0348147\pi\)
−0.868343 + 0.495964i \(0.834815\pi\)
\(810\) 0 0
\(811\) 13.7829 42.4193i 0.483982 1.48954i −0.349468 0.936948i \(-0.613638\pi\)
0.833450 0.552595i \(-0.186362\pi\)
\(812\) 0.349011 + 1.07415i 0.0122479 + 0.0376951i
\(813\) −21.4837 66.1201i −0.753467 2.31893i
\(814\) 5.55445 17.0948i 0.194683 0.599174i
\(815\) 0 0
\(816\) 0.739350 + 2.27549i 0.0258824 + 0.0796579i
\(817\) −20.6366 + 14.9934i −0.721984 + 0.524552i
\(818\) 15.4128 0.538896
\(819\) 27.3891 19.8994i 0.957053 0.695340i
\(820\) 0 0
\(821\) −30.8655 22.4251i −1.07721 0.782640i −0.100017 0.994986i \(-0.531890\pi\)
−0.977195 + 0.212346i \(0.931890\pi\)
\(822\) −10.5454 7.66171i −0.367814 0.267233i
\(823\) 15.7372 48.4340i 0.548563 1.68830i −0.163801 0.986493i \(-0.552376\pi\)
0.712364 0.701810i \(-0.247624\pi\)
\(824\) −4.64178 −0.161704
\(825\) 0 0
\(826\) 5.06757 0.176323
\(827\) 9.86857 30.3723i 0.343164 1.05615i −0.619396 0.785079i \(-0.712622\pi\)
0.962560 0.271070i \(-0.0873776\pi\)
\(828\) 8.60938 + 6.25508i 0.299197 + 0.217379i
\(829\) 26.0284 + 18.9107i 0.904004 + 0.656797i 0.939491 0.342573i \(-0.111298\pi\)
−0.0354873 + 0.999370i \(0.511298\pi\)
\(830\) 0 0
\(831\) 16.7330 12.1572i 0.580461 0.421730i
\(832\) 5.79360 0.200857
\(833\) 3.89421 2.82931i 0.134926 0.0980298i
\(834\) −12.0207 36.9958i −0.416242 1.28106i
\(835\) 0 0
\(836\) −2.17921 + 6.70692i −0.0753695 + 0.231964i
\(837\) 4.59455 + 14.1406i 0.158811 + 0.488769i
\(838\) −6.56044 20.1910i −0.226627 0.697485i
\(839\) −9.31121 + 28.6570i −0.321459 + 0.989348i 0.651555 + 0.758601i \(0.274117\pi\)
−0.973014 + 0.230747i \(0.925883\pi\)
\(840\) 0 0
\(841\) −8.62209 26.5361i −0.297313 0.915037i
\(842\) 26.5536 19.2923i 0.915096 0.664856i
\(843\) 6.55097 0.225627
\(844\) 13.5741 9.86215i 0.467239 0.339469i
\(845\) 0 0
\(846\) 37.9527 + 27.5742i 1.30484 + 0.948022i
\(847\) −5.86525 4.26136i −0.201532 0.146422i
\(848\) 0.793604 2.44246i 0.0272525 0.0838745i
\(849\) −28.2016 −0.967876
\(850\) 0 0
\(851\) −17.0663 −0.585025
\(852\) 4.39790 13.5353i 0.150670 0.463713i
\(853\) 17.3966 + 12.6394i 0.595649 + 0.432765i 0.844332 0.535820i \(-0.179998\pi\)
−0.248683 + 0.968585i \(0.579998\pi\)
\(854\) 8.09345 + 5.88024i 0.276952 + 0.201218i
\(855\) 0 0
\(856\) −6.15006 + 4.46828i −0.210205 + 0.152723i
\(857\) −40.1894 −1.37284 −0.686422 0.727204i \(-0.740819\pi\)
−0.686422 + 0.727204i \(0.740819\pi\)
\(858\) −28.1173 + 20.4284i −0.959910 + 0.697416i
\(859\) −16.4439 50.6091i −0.561058 1.72676i −0.679382 0.733785i \(-0.737752\pi\)
0.118323 0.992975i \(-0.462248\pi\)
\(860\) 0 0
\(861\) 6.35364 19.5545i 0.216532 0.666416i
\(862\) 0.259819 + 0.799639i 0.00884945 + 0.0272358i
\(863\) 3.37194 + 10.3778i 0.114782 + 0.353264i 0.991902 0.127009i \(-0.0405377\pi\)
−0.877119 + 0.480273i \(0.840538\pi\)
\(864\) −2.17229 + 6.68562i −0.0739027 + 0.227449i
\(865\) 0 0
\(866\) −10.5174 32.3693i −0.357396 1.09995i
\(867\) 38.3178 27.8395i 1.30134 0.945479i
\(868\) −2.27938 −0.0773672
\(869\) −12.0332 + 8.74265i −0.408199 + 0.296574i
\(870\) 0 0
\(871\) 20.4441 + 14.8535i 0.692723 + 0.503293i
\(872\) −2.41602 1.75534i −0.0818167 0.0594433i
\(873\) 0.855677 2.63350i 0.0289603 0.0891306i
\(874\) 6.69572 0.226486
\(875\) 0 0
\(876\) 3.76612 0.127246
\(877\) −1.74877 + 5.38217i −0.0590519 + 0.181743i −0.976231 0.216732i \(-0.930460\pi\)
0.917179 + 0.398475i \(0.130460\pi\)
\(878\) −1.28887 0.936419i −0.0434973 0.0316026i
\(879\) −15.3167 11.1282i −0.516620 0.375346i
\(880\) 0 0
\(881\) −12.3606 + 8.98051i −0.416440 + 0.302561i −0.776204 0.630482i \(-0.782857\pi\)
0.359764 + 0.933043i \(0.382857\pi\)
\(882\) 31.6584 1.06599
\(883\) −20.6662 + 15.0149i −0.695473 + 0.505291i −0.878455 0.477826i \(-0.841425\pi\)
0.182982 + 0.983116i \(0.441425\pi\)
\(884\) 1.47599 + 4.54264i 0.0496431 + 0.152786i
\(885\) 0 0
\(886\) −7.60916 + 23.4186i −0.255635 + 0.786763i
\(887\) −0.521792 1.60591i −0.0175201 0.0539212i 0.941914 0.335853i \(-0.109025\pi\)
−0.959434 + 0.281932i \(0.909025\pi\)
\(888\) −7.79834 24.0008i −0.261695 0.805415i
\(889\) 7.11037 21.8835i 0.238474 0.733948i
\(890\) 0 0
\(891\) −2.64070 8.12724i −0.0884668 0.272273i
\(892\) −9.45251 + 6.86765i −0.316493 + 0.229946i
\(893\) 29.5167 0.987738
\(894\) 31.9634 23.2228i 1.06902 0.776686i
\(895\) 0 0
\(896\) −0.871864 0.633446i −0.0291269 0.0211620i
\(897\) 26.6965 + 19.3962i 0.891371 + 0.647619i
\(898\) 10.5432 32.4487i 0.351832 1.08283i
\(899\) −2.21662 −0.0739284
\(900\) 0 0
\(901\) 2.11727 0.0705363
\(902\) −4.19924 + 12.9239i −0.139819 + 0.430320i
\(903\) 18.9183 + 13.7449i 0.629560 + 0.457402i
\(904\) −16.3410 11.8724i −0.543493 0.394871i
\(905\) 0 0
\(906\) 20.6572 15.0083i 0.686289 0.498618i
\(907\) −1.58315 −0.0525677 −0.0262838 0.999655i \(-0.508367\pi\)
−0.0262838 + 0.999655i \(0.508367\pi\)
\(908\) −0.576751 + 0.419034i −0.0191402 + 0.0139061i
\(909\) −5.87733 18.0886i −0.194939 0.599960i
\(910\) 0 0
\(911\) −1.28770 + 3.96315i −0.0426635 + 0.131305i −0.970120 0.242627i \(-0.921991\pi\)
0.927456 + 0.373932i \(0.121991\pi\)
\(912\) 3.05957 + 9.41637i 0.101312 + 0.311807i
\(913\) −9.56093 29.4255i −0.316421 0.973843i
\(914\) −1.07826 + 3.31854i −0.0356657 + 0.109768i
\(915\) 0 0
\(916\) 6.30918 + 19.4177i 0.208461 + 0.641578i
\(917\) −7.85341 + 5.70584i −0.259342 + 0.188423i
\(918\) −5.79547 −0.191279
\(919\) 29.8895 21.7160i 0.985963 0.716344i 0.0269300 0.999637i \(-0.491427\pi\)
0.959033 + 0.283293i \(0.0914269\pi\)
\(920\) 0 0
\(921\) 48.6197 + 35.3243i 1.60207 + 1.16397i
\(922\) 10.9097 + 7.92637i 0.359292 + 0.261041i
\(923\) 8.77970 27.0211i 0.288987 0.889412i
\(924\) 6.46486 0.212678
\(925\) 0 0
\(926\) −1.86401 −0.0612552
\(927\) 7.77764 23.9371i 0.255451 0.786198i
\(928\) −0.847859 0.616005i −0.0278323 0.0202214i
\(929\) 10.7812 + 7.83301i 0.353720 + 0.256993i 0.750428 0.660952i \(-0.229847\pi\)
−0.396708 + 0.917945i \(0.629847\pi\)
\(930\) 0 0
\(931\) 16.1150 11.7082i 0.528146 0.383721i
\(932\) −15.0403 −0.492661
\(933\) −18.7105 + 13.5940i −0.612554 + 0.445047i
\(934\) −4.03005 12.4032i −0.131867 0.405846i
\(935\) 0 0
\(936\) −9.70759 + 29.8769i −0.317303 + 0.976557i
\(937\) 14.6167 + 44.9856i 0.477507 + 1.46961i 0.842547 + 0.538623i \(0.181055\pi\)
−0.365040 + 0.930992i \(0.618945\pi\)
\(938\) −1.45257 4.47054i −0.0474279 0.145968i
\(939\) −4.20628 + 12.9456i −0.137267 + 0.422463i
\(940\) 0 0
\(941\) 6.21002 + 19.1125i 0.202441 + 0.623049i 0.999809 + 0.0195553i \(0.00622505\pi\)
−0.797368 + 0.603493i \(0.793775\pi\)
\(942\) 27.8357 20.2238i 0.906936 0.658928i
\(943\) 12.9024 0.420159
\(944\) −3.80423 + 2.76393i −0.123817 + 0.0899583i
\(945\) 0 0
\(946\) −12.5034 9.08427i −0.406521 0.295355i
\(947\) −25.5742 18.5807i −0.831049 0.603793i 0.0888068 0.996049i \(-0.471695\pi\)
−0.919856 + 0.392256i \(0.871695\pi\)
\(948\) −6.45309 + 19.8606i −0.209586 + 0.645041i
\(949\) 7.51846 0.244060
\(950\) 0 0
\(951\) −41.4990 −1.34570
\(952\) 0.274554 0.844989i 0.00889833 0.0273863i
\(953\) −24.7901 18.0111i −0.803031 0.583436i 0.108771 0.994067i \(-0.465308\pi\)
−0.911802 + 0.410631i \(0.865308\pi\)
\(954\) 11.2657 + 8.18504i 0.364742 + 0.265000i
\(955\) 0 0
\(956\) −3.38679 + 2.46065i −0.109537 + 0.0795831i
\(957\) 6.28686 0.203225
\(958\) 10.0171 7.27787i 0.323639 0.235137i
\(959\) 1.49578 + 4.60352i 0.0483011 + 0.148656i
\(960\) 0 0
\(961\) −8.19713 + 25.2282i −0.264424 + 0.813812i
\(962\) −15.5681 47.9138i −0.501937 1.54480i
\(963\) −12.7375 39.2020i −0.410460 1.26327i
\(964\) −9.09011 + 27.9765i −0.292773 + 0.901062i
\(965\) 0 0
\(966\) −1.89680 5.83776i −0.0610286 0.187827i
\(967\) 12.8779 9.35631i 0.414124 0.300879i −0.361145 0.932510i \(-0.617614\pi\)
0.775269 + 0.631631i \(0.217614\pi\)
\(968\) 6.72725 0.216222
\(969\) −6.60372 + 4.79788i −0.212142 + 0.154130i
\(970\) 0 0
\(971\) −41.1459 29.8942i −1.32043 0.959351i −0.999927 0.0121047i \(-0.996147\pi\)
−0.320507 0.947246i \(-0.603853\pi\)
\(972\) 7.35503 + 5.34375i 0.235913 + 0.171401i
\(973\) −4.46381 + 13.7382i −0.143103 + 0.440426i
\(974\) 4.51906 0.144800
\(975\) 0 0
\(976\) −9.28293 −0.297139
\(977\) 5.12432 15.7710i 0.163942 0.504560i −0.835015 0.550227i \(-0.814541\pi\)
0.998957 + 0.0456666i \(0.0145412\pi\)
\(978\) 35.1215 + 25.5173i 1.12306 + 0.815952i
\(979\) −19.5795 14.2253i −0.625763 0.454644i
\(980\) 0 0
\(981\) 13.1003 9.51790i 0.418259 0.303883i
\(982\) −27.4676 −0.876528
\(983\) −2.17446 + 1.57984i −0.0693546 + 0.0503891i −0.621922 0.783079i \(-0.713648\pi\)
0.552568 + 0.833468i \(0.313648\pi\)
\(984\) 5.89565 + 18.1449i 0.187946 + 0.578440i
\(985\) 0 0
\(986\) 0.266994 0.821724i 0.00850283 0.0261690i
\(987\) −8.36166 25.7345i −0.266155 0.819140i
\(988\) 6.10793 + 18.7983i 0.194319 + 0.598053i
\(989\) −4.53455 + 13.9559i −0.144190 + 0.443772i
\(990\) 0 0
\(991\) −5.94835 18.3071i −0.188956 0.581545i 0.811038 0.584993i \(-0.198903\pi\)
−0.999994 + 0.00344733i \(0.998903\pi\)
\(992\) 1.71113 1.24321i 0.0543284 0.0394719i
\(993\) 103.230 3.27589
\(994\) −4.27560 + 3.10641i −0.135614 + 0.0985293i
\(995\) 0 0
\(996\) −35.1428 25.5327i −1.11354 0.809036i
\(997\) 34.7455 + 25.2441i 1.10040 + 0.799489i 0.981125 0.193372i \(-0.0619425\pi\)
0.119277 + 0.992861i \(0.461942\pi\)
\(998\) −4.16598 + 12.8216i −0.131872 + 0.405860i
\(999\) 61.1280 1.93401
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 250.2.d.c.101.1 8
5.2 odd 4 50.2.e.a.29.1 yes 8
5.3 odd 4 250.2.e.a.149.2 8
5.4 even 2 250.2.d.b.101.2 8
15.2 even 4 450.2.l.b.379.2 8
20.7 even 4 400.2.y.a.129.2 8
25.6 even 5 inner 250.2.d.c.151.1 8
25.8 odd 20 50.2.e.a.19.1 8
25.9 even 10 1250.2.a.i.1.1 4
25.12 odd 20 1250.2.b.c.1249.1 8
25.13 odd 20 1250.2.b.c.1249.8 8
25.16 even 5 1250.2.a.h.1.4 4
25.17 odd 20 250.2.e.a.99.2 8
25.19 even 10 250.2.d.b.151.2 8
75.8 even 20 450.2.l.b.19.2 8
100.59 odd 10 10000.2.a.bb.1.4 4
100.83 even 20 400.2.y.a.369.2 8
100.91 odd 10 10000.2.a.o.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.2.e.a.19.1 8 25.8 odd 20
50.2.e.a.29.1 yes 8 5.2 odd 4
250.2.d.b.101.2 8 5.4 even 2
250.2.d.b.151.2 8 25.19 even 10
250.2.d.c.101.1 8 1.1 even 1 trivial
250.2.d.c.151.1 8 25.6 even 5 inner
250.2.e.a.99.2 8 25.17 odd 20
250.2.e.a.149.2 8 5.3 odd 4
400.2.y.a.129.2 8 20.7 even 4
400.2.y.a.369.2 8 100.83 even 20
450.2.l.b.19.2 8 75.8 even 20
450.2.l.b.379.2 8 15.2 even 4
1250.2.a.h.1.4 4 25.16 even 5
1250.2.a.i.1.1 4 25.9 even 10
1250.2.b.c.1249.1 8 25.12 odd 20
1250.2.b.c.1249.8 8 25.13 odd 20
10000.2.a.o.1.1 4 100.91 odd 10
10000.2.a.bb.1.4 4 100.59 odd 10