Properties

Label 25.3
Level 25
Weight 3
Dimension 36
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 150
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 25 = 5^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(150\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(25))\).

Total New Old
Modular forms 64 56 8
Cusp forms 36 36 0
Eisenstein series 28 20 8

Trace form

\( 36 q - 10 q^{2} - 10 q^{3} - 10 q^{4} - 10 q^{5} - 18 q^{6} - 10 q^{7} - 10 q^{8} - 10 q^{9} - 10 q^{10} - 18 q^{11} - 10 q^{12} - 10 q^{13} - 10 q^{14} - 10 q^{15} + 46 q^{16} + 60 q^{17} + 140 q^{18}+ \cdots + 170 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
25.3.c \(\chi_{25}(7, \cdot)\) 25.3.c.a 4 2
25.3.f \(\chi_{25}(2, \cdot)\) 25.3.f.a 32 8