Properties

Label 2499.2.a.w
Level $2499$
Weight $2$
Character orbit 2499.a
Self dual yes
Analytic conductor $19.955$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2499,2,Mod(1,2499)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2499, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2499.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2499 = 3 \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2499.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,4,5,4,-1,0,3,4,-4,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.9546154651\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.14013.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 6x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{3} + 1) q^{5} - \beta_1 q^{6} + ( - \beta_{3} - \beta_1 + 1) q^{8} + q^{9} + (\beta_{3} + \beta_{2} - \beta_1 - 1) q^{10} + \beta_1 q^{11}+ \cdots + \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 4 q^{3} + 5 q^{4} + 4 q^{5} - q^{6} + 3 q^{8} + 4 q^{9} - 4 q^{10} + q^{11} + 5 q^{12} + 10 q^{13} + 4 q^{15} - q^{16} - 4 q^{17} - q^{18} + 13 q^{19} + 11 q^{20} - 13 q^{22} + 3 q^{23}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 6x^{2} + 6x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta _1 - 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.20800
1.53652
−0.372845
−2.37167
−2.20800 1.00000 2.87525 0.275456 −2.20800 0 −1.93254 1.00000 −0.608206
1.2 −1.53652 1.00000 0.360904 4.05503 −1.53652 0 2.51851 1.00000 −6.23065
1.3 0.372845 1.00000 −1.86099 −1.81240 0.372845 0 −1.43955 1.00000 −0.675744
1.4 2.37167 1.00000 3.62484 1.48191 2.37167 0 3.85358 1.00000 3.51460
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2499.2.a.w 4
3.b odd 2 1 7497.2.a.bm 4
7.b odd 2 1 2499.2.a.v 4
7.c even 3 2 357.2.i.d 8
21.c even 2 1 7497.2.a.bn 4
21.h odd 6 2 1071.2.i.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.i.d 8 7.c even 3 2
1071.2.i.f 8 21.h odd 6 2
2499.2.a.v 4 7.b odd 2 1
2499.2.a.w 4 1.a even 1 1 trivial
7497.2.a.bm 4 3.b odd 2 1
7497.2.a.bn 4 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2499))\):

\( T_{2}^{4} + T_{2}^{3} - 6T_{2}^{2} - 6T_{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{4} - 4T_{5}^{3} - 3T_{5}^{2} + 12T_{5} - 3 \) Copy content Toggle raw display
\( T_{11}^{4} - T_{11}^{3} - 6T_{11}^{2} + 6T_{11} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} - 6 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( (T - 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots - 3 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} - 6 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$13$ \( T^{4} - 10 T^{3} + \cdots - 103 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 13 T^{3} + \cdots - 367 \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + \cdots + 27 \) Copy content Toggle raw display
$29$ \( T^{4} - 7 T^{3} + \cdots + 147 \) Copy content Toggle raw display
$31$ \( T^{4} + 6 T^{3} + \cdots - 63 \) Copy content Toggle raw display
$37$ \( T^{4} + 6 T^{3} + \cdots - 21 \) Copy content Toggle raw display
$41$ \( T^{4} - 26 T^{3} + \cdots - 4527 \) Copy content Toggle raw display
$43$ \( T^{4} + 4 T^{3} + \cdots - 929 \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots - 189 \) Copy content Toggle raw display
$53$ \( T^{4} - 15 T^{3} + \cdots - 1827 \) Copy content Toggle raw display
$59$ \( T^{4} - 15 T^{3} + \cdots + 2457 \) Copy content Toggle raw display
$61$ \( T^{4} + 11 T^{3} + \cdots - 1477 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots + 16349 \) Copy content Toggle raw display
$71$ \( T^{4} - 15 T^{3} + \cdots - 531 \) Copy content Toggle raw display
$73$ \( T^{4} - 3 T^{3} + \cdots + 6951 \) Copy content Toggle raw display
$79$ \( T^{4} - 5 T^{3} + \cdots + 2557 \) Copy content Toggle raw display
$83$ \( T^{4} + 12 T^{3} + \cdots - 783 \) Copy content Toggle raw display
$89$ \( T^{4} - 16 T^{3} + \cdots + 12537 \) Copy content Toggle raw display
$97$ \( T^{4} - 3 T^{3} + \cdots + 15567 \) Copy content Toggle raw display
show more
show less