Properties

Label 2496.4.cx
Level $2496$
Weight $4$
Character orbit 2496.cx
Rep. character $\chi_{2496}(175,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $672$
Sturm bound $1792$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2496.cx (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1792\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2496, [\chi])\).

Total New Old
Modular forms 5440 672 4768
Cusp forms 5312 672 4640
Eisenstein series 128 0 128

Trace form

\( 672 q - 16800 q^{25} - 432 q^{43} + 288 q^{55} + 4128 q^{59} + 448 q^{71} + 592 q^{73} + 1104 q^{75} + 27216 q^{81} - 176 q^{89} - 5192 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2496, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2496, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2496, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(832, [\chi])\)\(^{\oplus 2}\)