Properties

Label 2496.2.m.a.2209.6
Level $2496$
Weight $2$
Character 2496.2209
Analytic conductor $19.931$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(2209,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.2209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2209.6
Root \(-0.437016 + 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 2496.2209
Dual form 2496.2.m.a.2209.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.41421 q^{5} -1.00000 q^{9} +3.16228 q^{11} +(2.82843 - 2.23607i) q^{13} -1.41421i q^{15} -2.00000 q^{17} -6.32456 q^{19} +8.94427 q^{23} -3.00000 q^{25} -1.00000i q^{27} +4.47214i q^{29} -8.48528i q^{31} +3.16228i q^{33} +2.82843 q^{37} +(2.23607 + 2.82843i) q^{39} -9.48683i q^{41} +6.00000i q^{43} +1.41421 q^{45} -9.89949i q^{47} +7.00000 q^{49} -2.00000i q^{51} -4.47214i q^{53} -4.47214 q^{55} -6.32456i q^{57} -9.48683 q^{59} +13.4164i q^{61} +(-4.00000 + 3.16228i) q^{65} +12.6491 q^{67} +8.94427i q^{69} -15.5563i q^{71} +6.32456i q^{73} -3.00000i q^{75} +13.4164 q^{79} +1.00000 q^{81} +9.48683 q^{83} +2.82843 q^{85} -4.47214 q^{87} +9.48683i q^{89} +8.48528 q^{93} +8.94427 q^{95} +6.32456i q^{97} -3.16228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 16 q^{17} - 24 q^{25} + 56 q^{49} - 32 q^{65} + 8 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.41421 −0.632456 −0.316228 0.948683i \(-0.602416\pi\)
−0.316228 + 0.948683i \(0.602416\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.16228 0.953463 0.476731 0.879049i \(-0.341821\pi\)
0.476731 + 0.879049i \(0.341821\pi\)
\(12\) 0 0
\(13\) 2.82843 2.23607i 0.784465 0.620174i
\(14\) 0 0
\(15\) 1.41421i 0.365148i
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −6.32456 −1.45095 −0.725476 0.688247i \(-0.758380\pi\)
−0.725476 + 0.688247i \(0.758380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.94427 1.86501 0.932505 0.361158i \(-0.117618\pi\)
0.932505 + 0.361158i \(0.117618\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.47214i 0.830455i 0.909718 + 0.415227i \(0.136298\pi\)
−0.909718 + 0.415227i \(0.863702\pi\)
\(30\) 0 0
\(31\) 8.48528i 1.52400i −0.647576 0.762001i \(-0.724217\pi\)
0.647576 0.762001i \(-0.275783\pi\)
\(32\) 0 0
\(33\) 3.16228i 0.550482i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.82843 0.464991 0.232495 0.972598i \(-0.425311\pi\)
0.232495 + 0.972598i \(0.425311\pi\)
\(38\) 0 0
\(39\) 2.23607 + 2.82843i 0.358057 + 0.452911i
\(40\) 0 0
\(41\) 9.48683i 1.48159i −0.671729 0.740797i \(-0.734448\pi\)
0.671729 0.740797i \(-0.265552\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 0 0
\(45\) 1.41421 0.210819
\(46\) 0 0
\(47\) 9.89949i 1.44399i −0.691898 0.721995i \(-0.743225\pi\)
0.691898 0.721995i \(-0.256775\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 4.47214i 0.614295i −0.951662 0.307148i \(-0.900625\pi\)
0.951662 0.307148i \(-0.0993745\pi\)
\(54\) 0 0
\(55\) −4.47214 −0.603023
\(56\) 0 0
\(57\) 6.32456i 0.837708i
\(58\) 0 0
\(59\) −9.48683 −1.23508 −0.617540 0.786539i \(-0.711871\pi\)
−0.617540 + 0.786539i \(0.711871\pi\)
\(60\) 0 0
\(61\) 13.4164i 1.71780i 0.512148 + 0.858898i \(0.328850\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 + 3.16228i −0.496139 + 0.392232i
\(66\) 0 0
\(67\) 12.6491 1.54533 0.772667 0.634811i \(-0.218922\pi\)
0.772667 + 0.634811i \(0.218922\pi\)
\(68\) 0 0
\(69\) 8.94427i 1.07676i
\(70\) 0 0
\(71\) 15.5563i 1.84620i −0.384561 0.923099i \(-0.625647\pi\)
0.384561 0.923099i \(-0.374353\pi\)
\(72\) 0 0
\(73\) 6.32456i 0.740233i 0.928985 + 0.370117i \(0.120682\pi\)
−0.928985 + 0.370117i \(0.879318\pi\)
\(74\) 0 0
\(75\) 3.00000i 0.346410i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.4164 1.50946 0.754732 0.656033i \(-0.227767\pi\)
0.754732 + 0.656033i \(0.227767\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 9.48683 1.04132 0.520658 0.853766i \(-0.325687\pi\)
0.520658 + 0.853766i \(0.325687\pi\)
\(84\) 0 0
\(85\) 2.82843 0.306786
\(86\) 0 0
\(87\) −4.47214 −0.479463
\(88\) 0 0
\(89\) 9.48683i 1.00560i 0.864402 + 0.502801i \(0.167697\pi\)
−0.864402 + 0.502801i \(0.832303\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.48528 0.879883
\(94\) 0 0
\(95\) 8.94427 0.917663
\(96\) 0 0
\(97\) 6.32456i 0.642161i 0.947052 + 0.321081i \(0.104046\pi\)
−0.947052 + 0.321081i \(0.895954\pi\)
\(98\) 0 0
\(99\) −3.16228 −0.317821
\(100\) 0 0
\(101\) 4.47214i 0.444994i −0.974933 0.222497i \(-0.928579\pi\)
0.974933 0.222497i \(-0.0714208\pi\)
\(102\) 0 0
\(103\) 8.94427 0.881305 0.440653 0.897678i \(-0.354747\pi\)
0.440653 + 0.897678i \(0.354747\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000i 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) 16.9706 1.62549 0.812743 0.582623i \(-0.197974\pi\)
0.812743 + 0.582623i \(0.197974\pi\)
\(110\) 0 0
\(111\) 2.82843i 0.268462i
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) −12.6491 −1.17954
\(116\) 0 0
\(117\) −2.82843 + 2.23607i −0.261488 + 0.206725i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) 9.48683 0.855399
\(124\) 0 0
\(125\) 11.3137 1.01193
\(126\) 0 0
\(127\) −4.47214 −0.396838 −0.198419 0.980117i \(-0.563581\pi\)
−0.198419 + 0.980117i \(0.563581\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.41421i 0.121716i
\(136\) 0 0
\(137\) 3.16228i 0.270172i 0.990834 + 0.135086i \(0.0431310\pi\)
−0.990834 + 0.135086i \(0.956869\pi\)
\(138\) 0 0
\(139\) 6.00000i 0.508913i −0.967084 0.254457i \(-0.918103\pi\)
0.967084 0.254457i \(-0.0818966\pi\)
\(140\) 0 0
\(141\) 9.89949 0.833688
\(142\) 0 0
\(143\) 8.94427 7.07107i 0.747958 0.591312i
\(144\) 0 0
\(145\) 6.32456i 0.525226i
\(146\) 0 0
\(147\) 7.00000i 0.577350i
\(148\) 0 0
\(149\) 4.24264 0.347571 0.173785 0.984784i \(-0.444400\pi\)
0.173785 + 0.984784i \(0.444400\pi\)
\(150\) 0 0
\(151\) 8.48528i 0.690522i 0.938507 + 0.345261i \(0.112210\pi\)
−0.938507 + 0.345261i \(0.887790\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 12.0000i 0.963863i
\(156\) 0 0
\(157\) 17.8885i 1.42766i 0.700318 + 0.713831i \(0.253041\pi\)
−0.700318 + 0.713831i \(0.746959\pi\)
\(158\) 0 0
\(159\) 4.47214 0.354663
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.32456 0.495377 0.247689 0.968840i \(-0.420329\pi\)
0.247689 + 0.968840i \(0.420329\pi\)
\(164\) 0 0
\(165\) 4.47214i 0.348155i
\(166\) 0 0
\(167\) 9.89949i 0.766046i −0.923739 0.383023i \(-0.874883\pi\)
0.923739 0.383023i \(-0.125117\pi\)
\(168\) 0 0
\(169\) 3.00000 12.6491i 0.230769 0.973009i
\(170\) 0 0
\(171\) 6.32456 0.483651
\(172\) 0 0
\(173\) 4.47214i 0.340010i 0.985443 + 0.170005i \(0.0543784\pi\)
−0.985443 + 0.170005i \(0.945622\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 9.48683i 0.713074i
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 8.94427i 0.664822i 0.943135 + 0.332411i \(0.107862\pi\)
−0.943135 + 0.332411i \(0.892138\pi\)
\(182\) 0 0
\(183\) −13.4164 −0.991769
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) −6.32456 −0.462497
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.94427 0.647185 0.323592 0.946197i \(-0.395109\pi\)
0.323592 + 0.946197i \(0.395109\pi\)
\(192\) 0 0
\(193\) 12.6491i 0.910503i −0.890363 0.455251i \(-0.849549\pi\)
0.890363 0.455251i \(-0.150451\pi\)
\(194\) 0 0
\(195\) −3.16228 4.00000i −0.226455 0.286446i
\(196\) 0 0
\(197\) −21.2132 −1.51138 −0.755689 0.654931i \(-0.772698\pi\)
−0.755689 + 0.654931i \(0.772698\pi\)
\(198\) 0 0
\(199\) −13.4164 −0.951064 −0.475532 0.879698i \(-0.657744\pi\)
−0.475532 + 0.879698i \(0.657744\pi\)
\(200\) 0 0
\(201\) 12.6491i 0.892199i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 13.4164i 0.937043i
\(206\) 0 0
\(207\) −8.94427 −0.621670
\(208\) 0 0
\(209\) −20.0000 −1.38343
\(210\) 0 0
\(211\) 12.0000i 0.826114i −0.910705 0.413057i \(-0.864461\pi\)
0.910705 0.413057i \(-0.135539\pi\)
\(212\) 0 0
\(213\) 15.5563 1.06590
\(214\) 0 0
\(215\) 8.48528i 0.578691i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.32456 −0.427374
\(220\) 0 0
\(221\) −5.65685 + 4.47214i −0.380521 + 0.300828i
\(222\) 0 0
\(223\) 8.48528i 0.568216i −0.958792 0.284108i \(-0.908302\pi\)
0.958792 0.284108i \(-0.0916975\pi\)
\(224\) 0 0
\(225\) 3.00000 0.200000
\(226\) 0 0
\(227\) −15.8114 −1.04944 −0.524719 0.851275i \(-0.675830\pi\)
−0.524719 + 0.851275i \(0.675830\pi\)
\(228\) 0 0
\(229\) 11.3137 0.747631 0.373815 0.927503i \(-0.378049\pi\)
0.373815 + 0.927503i \(0.378049\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 14.0000i 0.913259i
\(236\) 0 0
\(237\) 13.4164i 0.871489i
\(238\) 0 0
\(239\) 9.89949i 0.640345i −0.947359 0.320173i \(-0.896259\pi\)
0.947359 0.320173i \(-0.103741\pi\)
\(240\) 0 0
\(241\) 18.9737i 1.22220i 0.791553 + 0.611101i \(0.209273\pi\)
−0.791553 + 0.611101i \(0.790727\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −9.89949 −0.632456
\(246\) 0 0
\(247\) −17.8885 + 14.1421i −1.13822 + 0.899843i
\(248\) 0 0
\(249\) 9.48683i 0.601204i
\(250\) 0 0
\(251\) 20.0000i 1.26239i 0.775625 + 0.631194i \(0.217435\pi\)
−0.775625 + 0.631194i \(0.782565\pi\)
\(252\) 0 0
\(253\) 28.2843 1.77822
\(254\) 0 0
\(255\) 2.82843i 0.177123i
\(256\) 0 0
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.47214i 0.276818i
\(262\) 0 0
\(263\) 26.8328 1.65458 0.827291 0.561773i \(-0.189881\pi\)
0.827291 + 0.561773i \(0.189881\pi\)
\(264\) 0 0
\(265\) 6.32456i 0.388514i
\(266\) 0 0
\(267\) −9.48683 −0.580585
\(268\) 0 0
\(269\) 22.3607i 1.36335i −0.731653 0.681677i \(-0.761251\pi\)
0.731653 0.681677i \(-0.238749\pi\)
\(270\) 0 0
\(271\) 5.65685i 0.343629i 0.985129 + 0.171815i \(0.0549630\pi\)
−0.985129 + 0.171815i \(0.945037\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.48683 −0.572078
\(276\) 0 0
\(277\) 26.8328i 1.61223i −0.591761 0.806114i \(-0.701567\pi\)
0.591761 0.806114i \(-0.298433\pi\)
\(278\) 0 0
\(279\) 8.48528i 0.508001i
\(280\) 0 0
\(281\) 15.8114i 0.943228i −0.881805 0.471614i \(-0.843672\pi\)
0.881805 0.471614i \(-0.156328\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 0 0
\(285\) 8.94427i 0.529813i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −6.32456 −0.370752
\(292\) 0 0
\(293\) −26.8701 −1.56977 −0.784883 0.619644i \(-0.787277\pi\)
−0.784883 + 0.619644i \(0.787277\pi\)
\(294\) 0 0
\(295\) 13.4164 0.781133
\(296\) 0 0
\(297\) 3.16228i 0.183494i
\(298\) 0 0
\(299\) 25.2982 20.0000i 1.46303 1.15663i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 4.47214 0.256917
\(304\) 0 0
\(305\) 18.9737i 1.08643i
\(306\) 0 0
\(307\) 25.2982 1.44385 0.721923 0.691974i \(-0.243259\pi\)
0.721923 + 0.691974i \(0.243259\pi\)
\(308\) 0 0
\(309\) 8.94427i 0.508822i
\(310\) 0 0
\(311\) 8.94427 0.507183 0.253592 0.967311i \(-0.418388\pi\)
0.253592 + 0.967311i \(0.418388\pi\)
\(312\) 0 0
\(313\) −4.00000 −0.226093 −0.113047 0.993590i \(-0.536061\pi\)
−0.113047 + 0.993590i \(0.536061\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.24264 0.238290 0.119145 0.992877i \(-0.461985\pi\)
0.119145 + 0.992877i \(0.461985\pi\)
\(318\) 0 0
\(319\) 14.1421i 0.791808i
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 12.6491 0.703815
\(324\) 0 0
\(325\) −8.48528 + 6.70820i −0.470679 + 0.372104i
\(326\) 0 0
\(327\) 16.9706i 0.938474i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 12.6491 0.695258 0.347629 0.937632i \(-0.386987\pi\)
0.347629 + 0.937632i \(0.386987\pi\)
\(332\) 0 0
\(333\) −2.82843 −0.154997
\(334\) 0 0
\(335\) −17.8885 −0.977356
\(336\) 0 0
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) 14.0000i 0.760376i
\(340\) 0 0
\(341\) 26.8328i 1.45308i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 12.6491i 0.681005i
\(346\) 0 0
\(347\) 8.00000i 0.429463i −0.976673 0.214731i \(-0.931112\pi\)
0.976673 0.214731i \(-0.0688876\pi\)
\(348\) 0 0
\(349\) −2.82843 −0.151402 −0.0757011 0.997131i \(-0.524119\pi\)
−0.0757011 + 0.997131i \(0.524119\pi\)
\(350\) 0 0
\(351\) −2.23607 2.82843i −0.119352 0.150970i
\(352\) 0 0
\(353\) 9.48683i 0.504933i 0.967606 + 0.252467i \(0.0812418\pi\)
−0.967606 + 0.252467i \(0.918758\pi\)
\(354\) 0 0
\(355\) 22.0000i 1.16764i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0416i 1.26887i −0.772977 0.634434i \(-0.781233\pi\)
0.772977 0.634434i \(-0.218767\pi\)
\(360\) 0 0
\(361\) 21.0000 1.10526
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 8.94427i 0.468165i
\(366\) 0 0
\(367\) −8.94427 −0.466887 −0.233444 0.972370i \(-0.574999\pi\)
−0.233444 + 0.972370i \(0.574999\pi\)
\(368\) 0 0
\(369\) 9.48683i 0.493865i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.47214i 0.231558i −0.993275 0.115779i \(-0.963063\pi\)
0.993275 0.115779i \(-0.0369365\pi\)
\(374\) 0 0
\(375\) 11.3137i 0.584237i
\(376\) 0 0
\(377\) 10.0000 + 12.6491i 0.515026 + 0.651462i
\(378\) 0 0
\(379\) −31.6228 −1.62435 −0.812176 0.583412i \(-0.801717\pi\)
−0.812176 + 0.583412i \(0.801717\pi\)
\(380\) 0 0
\(381\) 4.47214i 0.229114i
\(382\) 0 0
\(383\) 7.07107i 0.361315i −0.983546 0.180657i \(-0.942177\pi\)
0.983546 0.180657i \(-0.0578225\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.00000i 0.304997i
\(388\) 0 0
\(389\) 22.3607i 1.13373i −0.823810 0.566866i \(-0.808156\pi\)
0.823810 0.566866i \(-0.191844\pi\)
\(390\) 0 0
\(391\) −17.8885 −0.904663
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −18.9737 −0.954669
\(396\) 0 0
\(397\) −14.1421 −0.709773 −0.354887 0.934909i \(-0.615481\pi\)
−0.354887 + 0.934909i \(0.615481\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.4605i 1.42125i 0.703571 + 0.710625i \(0.251588\pi\)
−0.703571 + 0.710625i \(0.748412\pi\)
\(402\) 0 0
\(403\) −18.9737 24.0000i −0.945146 1.19553i
\(404\) 0 0
\(405\) −1.41421 −0.0702728
\(406\) 0 0
\(407\) 8.94427 0.443351
\(408\) 0 0
\(409\) 31.6228i 1.56365i −0.623501 0.781823i \(-0.714290\pi\)
0.623501 0.781823i \(-0.285710\pi\)
\(410\) 0 0
\(411\) −3.16228 −0.155984
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −13.4164 −0.658586
\(416\) 0 0
\(417\) 6.00000 0.293821
\(418\) 0 0
\(419\) 16.0000i 0.781651i 0.920465 + 0.390826i \(0.127810\pi\)
−0.920465 + 0.390826i \(0.872190\pi\)
\(420\) 0 0
\(421\) −33.9411 −1.65419 −0.827095 0.562063i \(-0.810008\pi\)
−0.827095 + 0.562063i \(0.810008\pi\)
\(422\) 0 0
\(423\) 9.89949i 0.481330i
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 7.07107 + 8.94427i 0.341394 + 0.431834i
\(430\) 0 0
\(431\) 15.5563i 0.749323i 0.927162 + 0.374661i \(0.122241\pi\)
−0.927162 + 0.374661i \(0.877759\pi\)
\(432\) 0 0
\(433\) −4.00000 −0.192228 −0.0961139 0.995370i \(-0.530641\pi\)
−0.0961139 + 0.995370i \(0.530641\pi\)
\(434\) 0 0
\(435\) 6.32456 0.303239
\(436\) 0 0
\(437\) −56.5685 −2.70604
\(438\) 0 0
\(439\) −8.94427 −0.426887 −0.213443 0.976955i \(-0.568468\pi\)
−0.213443 + 0.976955i \(0.568468\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) 16.0000i 0.760183i −0.924949 0.380091i \(-0.875893\pi\)
0.924949 0.380091i \(-0.124107\pi\)
\(444\) 0 0
\(445\) 13.4164i 0.635999i
\(446\) 0 0
\(447\) 4.24264i 0.200670i
\(448\) 0 0
\(449\) 34.7851i 1.64161i −0.571210 0.820804i \(-0.693526\pi\)
0.571210 0.820804i \(-0.306474\pi\)
\(450\) 0 0
\(451\) 30.0000i 1.41264i
\(452\) 0 0
\(453\) −8.48528 −0.398673
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.9737i 0.887551i 0.896138 + 0.443775i \(0.146361\pi\)
−0.896138 + 0.443775i \(0.853639\pi\)
\(458\) 0 0
\(459\) 2.00000i 0.0933520i
\(460\) 0 0
\(461\) −29.6985 −1.38320 −0.691598 0.722282i \(-0.743093\pi\)
−0.691598 + 0.722282i \(0.743093\pi\)
\(462\) 0 0
\(463\) 5.65685i 0.262896i 0.991323 + 0.131448i \(0.0419627\pi\)
−0.991323 + 0.131448i \(0.958037\pi\)
\(464\) 0 0
\(465\) −12.0000 −0.556487
\(466\) 0 0
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −17.8885 −0.824261
\(472\) 0 0
\(473\) 18.9737i 0.872410i
\(474\) 0 0
\(475\) 18.9737 0.870572
\(476\) 0 0
\(477\) 4.47214i 0.204765i
\(478\) 0 0
\(479\) 9.89949i 0.452319i 0.974090 + 0.226160i \(0.0726171\pi\)
−0.974090 + 0.226160i \(0.927383\pi\)
\(480\) 0 0
\(481\) 8.00000 6.32456i 0.364769 0.288375i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.94427i 0.406138i
\(486\) 0 0
\(487\) 14.1421i 0.640841i 0.947275 + 0.320421i \(0.103824\pi\)
−0.947275 + 0.320421i \(0.896176\pi\)
\(488\) 0 0
\(489\) 6.32456i 0.286006i
\(490\) 0 0
\(491\) 8.00000i 0.361035i 0.983572 + 0.180517i \(0.0577772\pi\)
−0.983572 + 0.180517i \(0.942223\pi\)
\(492\) 0 0
\(493\) 8.94427i 0.402830i
\(494\) 0 0
\(495\) 4.47214 0.201008
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 25.2982 1.13250 0.566252 0.824232i \(-0.308393\pi\)
0.566252 + 0.824232i \(0.308393\pi\)
\(500\) 0 0
\(501\) 9.89949 0.442277
\(502\) 0 0
\(503\) −8.94427 −0.398805 −0.199403 0.979918i \(-0.563900\pi\)
−0.199403 + 0.979918i \(0.563900\pi\)
\(504\) 0 0
\(505\) 6.32456i 0.281439i
\(506\) 0 0
\(507\) 12.6491 + 3.00000i 0.561767 + 0.133235i
\(508\) 0 0
\(509\) 18.3848 0.814891 0.407445 0.913230i \(-0.366420\pi\)
0.407445 + 0.913230i \(0.366420\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.32456i 0.279236i
\(514\) 0 0
\(515\) −12.6491 −0.557386
\(516\) 0 0
\(517\) 31.3050i 1.37679i
\(518\) 0 0
\(519\) −4.47214 −0.196305
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 26.0000i 1.13690i −0.822718 0.568450i \(-0.807543\pi\)
0.822718 0.568450i \(-0.192457\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.9706i 0.739249i
\(528\) 0 0
\(529\) 57.0000 2.47826
\(530\) 0 0
\(531\) 9.48683 0.411693
\(532\) 0 0
\(533\) −21.2132 26.8328i −0.918846 1.16226i
\(534\) 0 0
\(535\) 16.9706i 0.733701i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 22.1359 0.953463
\(540\) 0 0
\(541\) 33.9411 1.45924 0.729621 0.683851i \(-0.239696\pi\)
0.729621 + 0.683851i \(0.239696\pi\)
\(542\) 0 0
\(543\) −8.94427 −0.383835
\(544\) 0 0
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) 22.0000i 0.940652i 0.882493 + 0.470326i \(0.155864\pi\)
−0.882493 + 0.470326i \(0.844136\pi\)
\(548\) 0 0
\(549\) 13.4164i 0.572598i
\(550\) 0 0
\(551\) 28.2843i 1.20495i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.00000i 0.169791i
\(556\) 0 0
\(557\) −21.2132 −0.898832 −0.449416 0.893323i \(-0.648368\pi\)
−0.449416 + 0.893323i \(0.648368\pi\)
\(558\) 0 0
\(559\) 13.4164 + 16.9706i 0.567454 + 0.717778i
\(560\) 0 0
\(561\) 6.32456i 0.267023i
\(562\) 0 0
\(563\) 24.0000i 1.01148i 0.862686 + 0.505740i \(0.168780\pi\)
−0.862686 + 0.505740i \(0.831220\pi\)
\(564\) 0 0
\(565\) −19.7990 −0.832950
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.0000 1.92842 0.964210 0.265139i \(-0.0854179\pi\)
0.964210 + 0.265139i \(0.0854179\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i 0.908223 + 0.418487i \(0.137439\pi\)
−0.908223 + 0.418487i \(0.862561\pi\)
\(572\) 0 0
\(573\) 8.94427i 0.373652i
\(574\) 0 0
\(575\) −26.8328 −1.11901
\(576\) 0 0
\(577\) 12.6491i 0.526589i −0.964715 0.263295i \(-0.915191\pi\)
0.964715 0.263295i \(-0.0848092\pi\)
\(578\) 0 0
\(579\) 12.6491 0.525679
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 14.1421i 0.585707i
\(584\) 0 0
\(585\) 4.00000 3.16228i 0.165380 0.130744i
\(586\) 0 0
\(587\) −9.48683 −0.391564 −0.195782 0.980647i \(-0.562724\pi\)
−0.195782 + 0.980647i \(0.562724\pi\)
\(588\) 0 0
\(589\) 53.6656i 2.21125i
\(590\) 0 0
\(591\) 21.2132i 0.872595i
\(592\) 0 0
\(593\) 22.1359i 0.909014i 0.890743 + 0.454507i \(0.150185\pi\)
−0.890743 + 0.454507i \(0.849815\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 13.4164i 0.549097i
\(598\) 0 0
\(599\) 17.8885 0.730906 0.365453 0.930830i \(-0.380914\pi\)
0.365453 + 0.930830i \(0.380914\pi\)
\(600\) 0 0
\(601\) −20.0000 −0.815817 −0.407909 0.913023i \(-0.633742\pi\)
−0.407909 + 0.913023i \(0.633742\pi\)
\(602\) 0 0
\(603\) −12.6491 −0.515112
\(604\) 0 0
\(605\) 1.41421 0.0574960
\(606\) 0 0
\(607\) −26.8328 −1.08911 −0.544555 0.838725i \(-0.683302\pi\)
−0.544555 + 0.838725i \(0.683302\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.1359 28.0000i −0.895524 1.13276i
\(612\) 0 0
\(613\) −42.4264 −1.71359 −0.856793 0.515660i \(-0.827547\pi\)
−0.856793 + 0.515660i \(0.827547\pi\)
\(614\) 0 0
\(615\) −13.4164 −0.541002
\(616\) 0 0
\(617\) 28.4605i 1.14578i 0.819633 + 0.572888i \(0.194177\pi\)
−0.819633 + 0.572888i \(0.805823\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 8.94427i 0.358921i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 20.0000i 0.798723i
\(628\) 0 0
\(629\) −5.65685 −0.225554
\(630\) 0 0
\(631\) 48.0833i 1.91416i 0.289817 + 0.957082i \(0.406406\pi\)
−0.289817 + 0.957082i \(0.593594\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) 6.32456 0.250982
\(636\) 0 0
\(637\) 19.7990 15.6525i 0.784465 0.620174i
\(638\) 0 0
\(639\) 15.5563i 0.615400i
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) −25.2982 −0.997664 −0.498832 0.866699i \(-0.666238\pi\)
−0.498832 + 0.866699i \(0.666238\pi\)
\(644\) 0 0
\(645\) 8.48528 0.334108
\(646\) 0 0
\(647\) 35.7771 1.40654 0.703271 0.710922i \(-0.251722\pi\)
0.703271 + 0.710922i \(0.251722\pi\)
\(648\) 0 0
\(649\) −30.0000 −1.17760
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.4164i 0.525025i 0.964929 + 0.262512i \(0.0845510\pi\)
−0.964929 + 0.262512i \(0.915449\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.32456i 0.246744i
\(658\) 0 0
\(659\) 36.0000i 1.40236i −0.712984 0.701180i \(-0.752657\pi\)
0.712984 0.701180i \(-0.247343\pi\)
\(660\) 0 0
\(661\) −8.48528 −0.330039 −0.165020 0.986290i \(-0.552769\pi\)
−0.165020 + 0.986290i \(0.552769\pi\)
\(662\) 0 0
\(663\) −4.47214 5.65685i −0.173683 0.219694i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 40.0000i 1.54881i
\(668\) 0 0
\(669\) 8.48528 0.328060
\(670\) 0 0
\(671\) 42.4264i 1.63785i
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 0 0
\(675\) 3.00000i 0.115470i
\(676\) 0 0
\(677\) 22.3607i 0.859391i −0.902974 0.429695i \(-0.858621\pi\)
0.902974 0.429695i \(-0.141379\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 15.8114i 0.605894i
\(682\) 0 0
\(683\) 9.48683 0.363004 0.181502 0.983391i \(-0.441904\pi\)
0.181502 + 0.983391i \(0.441904\pi\)
\(684\) 0 0
\(685\) 4.47214i 0.170872i
\(686\) 0 0
\(687\) 11.3137i 0.431645i
\(688\) 0 0
\(689\) −10.0000 12.6491i −0.380970 0.481893i
\(690\) 0 0
\(691\) 12.6491 0.481195 0.240597 0.970625i \(-0.422657\pi\)
0.240597 + 0.970625i \(0.422657\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.48528i 0.321865i
\(696\) 0 0
\(697\) 18.9737i 0.718679i
\(698\) 0 0
\(699\) 6.00000i 0.226941i
\(700\) 0 0
\(701\) 13.4164i 0.506731i 0.967371 + 0.253365i \(0.0815375\pi\)
−0.967371 + 0.253365i \(0.918463\pi\)
\(702\) 0 0
\(703\) −17.8885 −0.674679
\(704\) 0 0
\(705\) −14.0000 −0.527271
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16.9706 0.637343 0.318671 0.947865i \(-0.396763\pi\)
0.318671 + 0.947865i \(0.396763\pi\)
\(710\) 0 0
\(711\) −13.4164 −0.503155
\(712\) 0 0
\(713\) 75.8947i 2.84228i
\(714\) 0 0
\(715\) −12.6491 + 10.0000i −0.473050 + 0.373979i
\(716\) 0 0
\(717\) 9.89949 0.369703
\(718\) 0 0
\(719\) −26.8328 −1.00070 −0.500348 0.865825i \(-0.666794\pi\)
−0.500348 + 0.865825i \(0.666794\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −18.9737 −0.705638
\(724\) 0 0
\(725\) 13.4164i 0.498273i
\(726\) 0 0
\(727\) −31.3050 −1.16104 −0.580518 0.814247i \(-0.697150\pi\)
−0.580518 + 0.814247i \(0.697150\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 12.0000i 0.443836i
\(732\) 0 0
\(733\) −5.65685 −0.208941 −0.104470 0.994528i \(-0.533315\pi\)
−0.104470 + 0.994528i \(0.533315\pi\)
\(734\) 0 0
\(735\) 9.89949i 0.365148i
\(736\) 0 0
\(737\) 40.0000 1.47342
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) −14.1421 17.8885i −0.519524 0.657152i
\(742\) 0 0
\(743\) 35.3553i 1.29706i −0.761188 0.648531i \(-0.775384\pi\)
0.761188 0.648531i \(-0.224616\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) −9.48683 −0.347105
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 26.8328 0.979143 0.489572 0.871963i \(-0.337153\pi\)
0.489572 + 0.871963i \(0.337153\pi\)
\(752\) 0 0
\(753\) −20.0000 −0.728841
\(754\) 0 0
\(755\) 12.0000i 0.436725i
\(756\) 0 0
\(757\) 40.2492i 1.46288i 0.681904 + 0.731441i \(0.261152\pi\)
−0.681904 + 0.731441i \(0.738848\pi\)
\(758\) 0 0
\(759\) 28.2843i 1.02665i
\(760\) 0 0
\(761\) 15.8114i 0.573162i 0.958056 + 0.286581i \(0.0925188\pi\)
−0.958056 + 0.286581i \(0.907481\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.82843 −0.102262
\(766\) 0 0
\(767\) −26.8328 + 21.2132i −0.968877 + 0.765964i
\(768\) 0 0
\(769\) 25.2982i 0.912277i 0.889909 + 0.456139i \(0.150768\pi\)
−0.889909 + 0.456139i \(0.849232\pi\)
\(770\) 0 0
\(771\) 22.0000i 0.792311i
\(772\) 0 0
\(773\) 7.07107 0.254329 0.127164 0.991882i \(-0.459412\pi\)
0.127164 + 0.991882i \(0.459412\pi\)
\(774\) 0 0
\(775\) 25.4558i 0.914401i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 60.0000i 2.14972i
\(780\) 0 0
\(781\) 49.1935i 1.76028i
\(782\) 0 0
\(783\) 4.47214 0.159821
\(784\) 0 0
\(785\) 25.2982i 0.902932i
\(786\) 0 0
\(787\) −12.6491 −0.450892 −0.225446 0.974256i \(-0.572384\pi\)
−0.225446 + 0.974256i \(0.572384\pi\)
\(788\) 0 0
\(789\) 26.8328i 0.955274i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.0000 + 37.9473i 1.06533 + 1.34755i
\(794\) 0 0
\(795\) −6.32456 −0.224309
\(796\) 0 0
\(797\) 49.1935i 1.74252i −0.490819 0.871262i \(-0.663302\pi\)
0.490819 0.871262i \(-0.336698\pi\)
\(798\) 0 0
\(799\) 19.7990i 0.700438i
\(800\) 0 0
\(801\) 9.48683i 0.335201i
\(802\) 0 0
\(803\) 20.0000i 0.705785i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 22.3607 0.787133
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −6.32456 −0.222085 −0.111043 0.993816i \(-0.535419\pi\)
−0.111043 + 0.993816i \(0.535419\pi\)
\(812\) 0 0
\(813\) −5.65685 −0.198395
\(814\) 0 0
\(815\) −8.94427 −0.313304
\(816\) 0 0
\(817\) 37.9473i 1.32761i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.5563 0.542920 0.271460 0.962450i \(-0.412493\pi\)
0.271460 + 0.962450i \(0.412493\pi\)
\(822\) 0 0
\(823\) 8.94427 0.311778 0.155889 0.987775i \(-0.450176\pi\)
0.155889 + 0.987775i \(0.450176\pi\)
\(824\) 0 0
\(825\) 9.48683i 0.330289i
\(826\) 0 0
\(827\) −3.16228 −0.109963 −0.0549816 0.998487i \(-0.517510\pi\)
−0.0549816 + 0.998487i \(0.517510\pi\)
\(828\) 0 0
\(829\) 22.3607i 0.776619i 0.921529 + 0.388309i \(0.126941\pi\)
−0.921529 + 0.388309i \(0.873059\pi\)
\(830\) 0 0
\(831\) 26.8328 0.930820
\(832\) 0 0
\(833\) −14.0000 −0.485071
\(834\) 0 0
\(835\) 14.0000i 0.484490i
\(836\) 0 0
\(837\) −8.48528 −0.293294
\(838\) 0 0
\(839\) 24.0416i 0.830009i −0.909819 0.415005i \(-0.863780\pi\)
0.909819 0.415005i \(-0.136220\pi\)
\(840\) 0 0
\(841\) 9.00000 0.310345
\(842\) 0 0
\(843\) 15.8114 0.544573
\(844\) 0 0
\(845\) −4.24264 + 17.8885i −0.145951 + 0.615385i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 25.2982 0.867212
\(852\) 0 0
\(853\) −14.1421 −0.484218 −0.242109 0.970249i \(-0.577839\pi\)
−0.242109 + 0.970249i \(0.577839\pi\)
\(854\) 0 0
\(855\) −8.94427 −0.305888
\(856\) 0 0
\(857\) −38.0000 −1.29806 −0.649028 0.760765i \(-0.724824\pi\)
−0.649028 + 0.760765i \(0.724824\pi\)
\(858\) 0 0
\(859\) 20.0000i 0.682391i −0.939992 0.341196i \(-0.889168\pi\)
0.939992 0.341196i \(-0.110832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.0122i 1.39607i 0.716063 + 0.698036i \(0.245942\pi\)
−0.716063 + 0.698036i \(0.754058\pi\)
\(864\) 0 0
\(865\) 6.32456i 0.215041i
\(866\) 0 0
\(867\) 13.0000i 0.441503i
\(868\) 0 0
\(869\) 42.4264 1.43922
\(870\) 0 0
\(871\) 35.7771 28.2843i 1.21226 0.958376i
\(872\) 0 0
\(873\) 6.32456i 0.214054i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.1421 0.477546 0.238773 0.971075i \(-0.423255\pi\)
0.238773 + 0.971075i \(0.423255\pi\)
\(878\) 0 0
\(879\) 26.8701i 0.906305i
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) 0 0
\(885\) 13.4164i 0.450988i
\(886\) 0 0
\(887\) −35.7771 −1.20128 −0.600639 0.799521i \(-0.705087\pi\)
−0.600639 + 0.799521i \(0.705087\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.16228 0.105940
\(892\) 0 0
\(893\) 62.6099i 2.09516i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20.0000 + 25.2982i 0.667781 + 0.844683i
\(898\) 0 0
\(899\) 37.9473 1.26561
\(900\) 0 0
\(901\) 8.94427i 0.297977i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.6491i 0.420471i
\(906\) 0 0
\(907\) 52.0000i 1.72663i −0.504664 0.863316i \(-0.668384\pi\)
0.504664 0.863316i \(-0.331616\pi\)
\(908\) 0 0
\(909\) 4.47214i 0.148331i
\(910\) 0 0
\(911\) −17.8885 −0.592674 −0.296337 0.955083i \(-0.595765\pi\)
−0.296337 + 0.955083i \(0.595765\pi\)
\(912\) 0 0
\(913\) 30.0000 0.992855
\(914\) 0 0
\(915\) 18.9737 0.627250
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −31.3050 −1.03266 −0.516328 0.856391i \(-0.672701\pi\)
−0.516328 + 0.856391i \(0.672701\pi\)
\(920\) 0 0
\(921\) 25.2982i 0.833605i
\(922\) 0 0
\(923\) −34.7851 44.0000i −1.14496 1.44828i
\(924\) 0 0
\(925\) −8.48528 −0.278994
\(926\) 0 0
\(927\) −8.94427 −0.293768
\(928\) 0 0
\(929\) 34.7851i 1.14126i 0.821207 + 0.570630i \(0.193301\pi\)
−0.821207 + 0.570630i \(0.806699\pi\)
\(930\) 0 0
\(931\) −44.2719 −1.45095
\(932\) 0 0
\(933\) 8.94427i 0.292822i
\(934\) 0 0
\(935\) 8.94427 0.292509
\(936\) 0 0
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) 0 0
\(939\) 4.00000i 0.130535i
\(940\) 0 0
\(941\) 26.8701 0.875939 0.437969 0.898990i \(-0.355698\pi\)
0.437969 + 0.898990i \(0.355698\pi\)
\(942\) 0 0
\(943\) 84.8528i 2.76319i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.48683 −0.308281 −0.154140 0.988049i \(-0.549261\pi\)
−0.154140 + 0.988049i \(0.549261\pi\)
\(948\) 0 0
\(949\) 14.1421 + 17.8885i 0.459073 + 0.580687i
\(950\) 0 0
\(951\) 4.24264i 0.137577i
\(952\) 0 0
\(953\) −46.0000 −1.49009 −0.745043 0.667016i \(-0.767571\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(954\) 0 0
\(955\) −12.6491 −0.409316
\(956\) 0 0
\(957\) −14.1421 −0.457150
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −41.0000 −1.32258
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) 17.8885i 0.575853i
\(966\) 0 0
\(967\) 2.82843i 0.0909561i −0.998965 0.0454780i \(-0.985519\pi\)
0.998965 0.0454780i \(-0.0144811\pi\)
\(968\) 0 0
\(969\) 12.6491i 0.406348i
\(970\) 0 0
\(971\) 28.0000i 0.898563i −0.893390 0.449281i \(-0.851680\pi\)
0.893390 0.449281i \(-0.148320\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.70820 8.48528i −0.214834 0.271746i
\(976\) 0 0
\(977\) 9.48683i 0.303511i −0.988418 0.151755i \(-0.951507\pi\)
0.988418 0.151755i \(-0.0484926\pi\)
\(978\) 0 0
\(979\) 30.0000i 0.958804i
\(980\) 0 0
\(981\) −16.9706 −0.541828
\(982\) 0 0
\(983\) 29.6985i 0.947235i −0.880731 0.473617i \(-0.842948\pi\)
0.880731 0.473617i \(-0.157052\pi\)
\(984\) 0 0
\(985\) 30.0000 0.955879
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 53.6656i 1.70647i
\(990\) 0 0
\(991\) 26.8328 0.852372 0.426186 0.904635i \(-0.359857\pi\)
0.426186 + 0.904635i \(0.359857\pi\)
\(992\) 0 0
\(993\) 12.6491i 0.401407i
\(994\) 0 0
\(995\) 18.9737 0.601506
\(996\) 0 0
\(997\) 53.6656i 1.69961i −0.527099 0.849804i \(-0.676720\pi\)
0.527099 0.849804i \(-0.323280\pi\)
\(998\) 0 0
\(999\) 2.82843i 0.0894875i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.m.a.2209.6 yes 8
4.3 odd 2 inner 2496.2.m.a.2209.1 8
8.3 odd 2 inner 2496.2.m.a.2209.8 yes 8
8.5 even 2 inner 2496.2.m.a.2209.3 yes 8
13.12 even 2 inner 2496.2.m.a.2209.7 yes 8
52.51 odd 2 inner 2496.2.m.a.2209.4 yes 8
104.51 odd 2 inner 2496.2.m.a.2209.5 yes 8
104.77 even 2 inner 2496.2.m.a.2209.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2496.2.m.a.2209.1 8 4.3 odd 2 inner
2496.2.m.a.2209.2 yes 8 104.77 even 2 inner
2496.2.m.a.2209.3 yes 8 8.5 even 2 inner
2496.2.m.a.2209.4 yes 8 52.51 odd 2 inner
2496.2.m.a.2209.5 yes 8 104.51 odd 2 inner
2496.2.m.a.2209.6 yes 8 1.1 even 1 trivial
2496.2.m.a.2209.7 yes 8 13.12 even 2 inner
2496.2.m.a.2209.8 yes 8 8.3 odd 2 inner