Properties

Label 2496.2.j.c.287.1
Level $2496$
Weight $2$
Character 2496.287
Analytic conductor $19.931$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2496,2,Mod(287,2496)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2496.287"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2496 = 2^{6} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2496.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.9306603445\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.18918897714528256.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3x^{10} + 5x^{8} + 4x^{6} + 20x^{4} + 48x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 287.1
Root \(1.28568 - 0.589097i\) of defining polynomial
Character \(\chi\) \(=\) 2496.287
Dual form 2496.2.j.c.287.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71683 - 0.229100i) q^{3} -3.12891 q^{5} +1.43366i q^{7} +(2.89503 + 0.786653i) q^{9} -1.55560i q^{11} -1.00000i q^{13} +(5.37181 + 0.716832i) q^{15} -1.57331i q^{17} +(0.328453 - 2.46136i) q^{21} -5.34141 q^{23} +4.79005 q^{25} +(-4.79005 - 2.01380i) q^{27} -7.17421 q^{29} +4.00000i q^{31} +(-0.356388 + 2.67071i) q^{33} -4.48580i q^{35} -4.65738i q^{37} +(-0.229100 + 1.71683i) q^{39} -9.64621i q^{41} -6.14644 q^{43} +(-9.05827 - 2.46136i) q^{45} -1.09740 q^{47} +4.94461 q^{49} +(-0.360444 + 2.70110i) q^{51} +10.2854 q^{53} +4.86733i q^{55} +2.47200i q^{59} -2.71278i q^{61} +(-1.12780 + 4.15050i) q^{63} +3.12891i q^{65} +6.86733 q^{67} +(9.17031 + 1.22372i) q^{69} -1.09740 q^{71} -2.71278 q^{73} +(-8.22372 - 1.09740i) q^{75} +2.23021 q^{77} +10.8673i q^{79} +(7.76236 + 4.55476i) q^{81} +12.7574i q^{83} +4.92272i q^{85} +(12.3169 + 1.64361i) q^{87} +11.8410i q^{89} +1.43366 q^{91} +(0.916400 - 6.86733i) q^{93} +8.86733 q^{97} +(1.22372 - 4.50351i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} + 8 q^{9} + 4 q^{25} - 4 q^{27} + 16 q^{33} - 20 q^{49} - 8 q^{51} + 16 q^{67} + 8 q^{73} - 12 q^{75} - 16 q^{91} + 40 q^{97} - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71683 0.229100i −0.991214 0.132271i
\(4\) 0 0
\(5\) −3.12891 −1.39929 −0.699645 0.714491i \(-0.746658\pi\)
−0.699645 + 0.714491i \(0.746658\pi\)
\(6\) 0 0
\(7\) 1.43366i 0.541874i 0.962597 + 0.270937i \(0.0873336\pi\)
−0.962597 + 0.270937i \(0.912666\pi\)
\(8\) 0 0
\(9\) 2.89503 + 0.786653i 0.965009 + 0.262218i
\(10\) 0 0
\(11\) 1.55560i 0.469031i −0.972112 0.234516i \(-0.924650\pi\)
0.972112 0.234516i \(-0.0753504\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 5.37181 + 0.716832i 1.38699 + 0.185085i
\(16\) 0 0
\(17\) 1.57331i 0.381583i −0.981631 0.190791i \(-0.938895\pi\)
0.981631 0.190791i \(-0.0611054\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0.328453 2.46136i 0.0716742 0.537113i
\(22\) 0 0
\(23\) −5.34141 −1.11376 −0.556881 0.830592i \(-0.688002\pi\)
−0.556881 + 0.830592i \(0.688002\pi\)
\(24\) 0 0
\(25\) 4.79005 0.958011
\(26\) 0 0
\(27\) −4.79005 2.01380i −0.921846 0.387556i
\(28\) 0 0
\(29\) −7.17421 −1.33222 −0.666109 0.745855i \(-0.732041\pi\)
−0.666109 + 0.745855i \(0.732041\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) −0.356388 + 2.67071i −0.0620392 + 0.464910i
\(34\) 0 0
\(35\) 4.48580i 0.758239i
\(36\) 0 0
\(37\) 4.65738i 0.765669i −0.923817 0.382834i \(-0.874948\pi\)
0.923817 0.382834i \(-0.125052\pi\)
\(38\) 0 0
\(39\) −0.229100 + 1.71683i −0.0366854 + 0.274913i
\(40\) 0 0
\(41\) 9.64621i 1.50649i −0.657743 0.753243i \(-0.728489\pi\)
0.657743 0.753243i \(-0.271511\pi\)
\(42\) 0 0
\(43\) −6.14644 −0.937323 −0.468662 0.883378i \(-0.655264\pi\)
−0.468662 + 0.883378i \(0.655264\pi\)
\(44\) 0 0
\(45\) −9.05827 2.46136i −1.35033 0.366918i
\(46\) 0 0
\(47\) −1.09740 −0.160072 −0.0800362 0.996792i \(-0.525504\pi\)
−0.0800362 + 0.996792i \(0.525504\pi\)
\(48\) 0 0
\(49\) 4.94461 0.706372
\(50\) 0 0
\(51\) −0.360444 + 2.70110i −0.0504723 + 0.378230i
\(52\) 0 0
\(53\) 10.2854 1.41281 0.706405 0.707808i \(-0.250316\pi\)
0.706405 + 0.707808i \(0.250316\pi\)
\(54\) 0 0
\(55\) 4.86733i 0.656311i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.47200i 0.321827i 0.986969 + 0.160914i \(0.0514440\pi\)
−0.986969 + 0.160914i \(0.948556\pi\)
\(60\) 0 0
\(61\) 2.71278i 0.347335i −0.984804 0.173668i \(-0.944438\pi\)
0.984804 0.173668i \(-0.0555619\pi\)
\(62\) 0 0
\(63\) −1.12780 + 4.15050i −0.142089 + 0.522913i
\(64\) 0 0
\(65\) 3.12891i 0.388093i
\(66\) 0 0
\(67\) 6.86733 0.838978 0.419489 0.907760i \(-0.362209\pi\)
0.419489 + 0.907760i \(0.362209\pi\)
\(68\) 0 0
\(69\) 9.17031 + 1.22372i 1.10398 + 0.147318i
\(70\) 0 0
\(71\) −1.09740 −0.130238 −0.0651188 0.997878i \(-0.520743\pi\)
−0.0651188 + 0.997878i \(0.520743\pi\)
\(72\) 0 0
\(73\) −2.71278 −0.317506 −0.158753 0.987318i \(-0.550747\pi\)
−0.158753 + 0.987318i \(0.550747\pi\)
\(74\) 0 0
\(75\) −8.22372 1.09740i −0.949593 0.126717i
\(76\) 0 0
\(77\) 2.23021 0.254156
\(78\) 0 0
\(79\) 10.8673i 1.22267i 0.791372 + 0.611335i \(0.209367\pi\)
−0.791372 + 0.611335i \(0.790633\pi\)
\(80\) 0 0
\(81\) 7.76236 + 4.55476i 0.862484 + 0.506084i
\(82\) 0 0
\(83\) 12.7574i 1.40031i 0.713992 + 0.700154i \(0.246885\pi\)
−0.713992 + 0.700154i \(0.753115\pi\)
\(84\) 0 0
\(85\) 4.92272i 0.533944i
\(86\) 0 0
\(87\) 12.3169 + 1.64361i 1.32051 + 0.176214i
\(88\) 0 0
\(89\) 11.8410i 1.25515i 0.778558 + 0.627573i \(0.215951\pi\)
−0.778558 + 0.627573i \(0.784049\pi\)
\(90\) 0 0
\(91\) 1.43366 0.150289
\(92\) 0 0
\(93\) 0.916400 6.86733i 0.0950262 0.712109i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.86733 0.900341 0.450170 0.892943i \(-0.351363\pi\)
0.450170 + 0.892943i \(0.351363\pi\)
\(98\) 0 0
\(99\) 1.22372 4.50351i 0.122988 0.452619i
\(100\) 0 0
\(101\) 4.94400 0.491947 0.245973 0.969277i \(-0.420892\pi\)
0.245973 + 0.969277i \(0.420892\pi\)
\(102\) 0 0
\(103\) 2.71278i 0.267298i −0.991029 0.133649i \(-0.957331\pi\)
0.991029 0.133649i \(-0.0426694\pi\)
\(104\) 0 0
\(105\) −1.02770 + 7.70137i −0.100293 + 0.751577i
\(106\) 0 0
\(107\) 11.5992i 1.12134i 0.828040 + 0.560670i \(0.189456\pi\)
−0.828040 + 0.560670i \(0.810544\pi\)
\(108\) 0 0
\(109\) 14.5028i 1.38912i 0.719435 + 0.694560i \(0.244401\pi\)
−0.719435 + 0.694560i \(0.755599\pi\)
\(110\) 0 0
\(111\) −1.06701 + 7.99594i −0.101276 + 0.758941i
\(112\) 0 0
\(113\) 19.2924i 1.81488i −0.420183 0.907439i \(-0.638034\pi\)
0.420183 0.907439i \(-0.361966\pi\)
\(114\) 0 0
\(115\) 16.7128 1.55847
\(116\) 0 0
\(117\) 0.786653 2.89503i 0.0727261 0.267645i
\(118\) 0 0
\(119\) 2.25559 0.206770
\(120\) 0 0
\(121\) 8.58011 0.780010
\(122\) 0 0
\(123\) −2.20995 + 16.5609i −0.199264 + 1.49325i
\(124\) 0 0
\(125\) 0.656905 0.0587554
\(126\) 0 0
\(127\) 10.4474i 0.927060i 0.886081 + 0.463530i \(0.153417\pi\)
−0.886081 + 0.463530i \(0.846583\pi\)
\(128\) 0 0
\(129\) 10.5524 + 1.40815i 0.929088 + 0.123981i
\(130\) 0 0
\(131\) 8.94622i 0.781635i −0.920468 0.390818i \(-0.872192\pi\)
0.920468 0.390818i \(-0.127808\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 14.9876 + 6.30099i 1.28993 + 0.542303i
\(136\) 0 0
\(137\) 17.1824i 1.46799i −0.679153 0.733997i \(-0.737653\pi\)
0.679153 0.733997i \(-0.262347\pi\)
\(138\) 0 0
\(139\) 6.14644 0.521334 0.260667 0.965429i \(-0.416057\pi\)
0.260667 + 0.965429i \(0.416057\pi\)
\(140\) 0 0
\(141\) 1.88405 + 0.251415i 0.158666 + 0.0211729i
\(142\) 0 0
\(143\) −1.55560 −0.130086
\(144\) 0 0
\(145\) 22.4474 1.86416
\(146\) 0 0
\(147\) −8.48906 1.13281i −0.700166 0.0934325i
\(148\) 0 0
\(149\) 7.45141 0.610443 0.305222 0.952281i \(-0.401269\pi\)
0.305222 + 0.952281i \(0.401269\pi\)
\(150\) 0 0
\(151\) 20.5939i 1.67591i 0.545743 + 0.837953i \(0.316248\pi\)
−0.545743 + 0.837953i \(0.683752\pi\)
\(152\) 0 0
\(153\) 1.23764 4.55476i 0.100058 0.368230i
\(154\) 0 0
\(155\) 12.5156i 1.00528i
\(156\) 0 0
\(157\) 6.86733i 0.548073i 0.961719 + 0.274036i \(0.0883588\pi\)
−0.961719 + 0.274036i \(0.911641\pi\)
\(158\) 0 0
\(159\) −17.6583 2.35639i −1.40040 0.186874i
\(160\) 0 0
\(161\) 7.65779i 0.603519i
\(162\) 0 0
\(163\) 16.7128 1.30905 0.654523 0.756042i \(-0.272870\pi\)
0.654523 + 0.756042i \(0.272870\pi\)
\(164\) 0 0
\(165\) 1.11511 8.35639i 0.0868108 0.650544i
\(166\) 0 0
\(167\) −20.3290 −1.57311 −0.786554 0.617521i \(-0.788137\pi\)
−0.786554 + 0.617521i \(0.788137\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.42501 −0.336427 −0.168214 0.985751i \(-0.553800\pi\)
−0.168214 + 0.985751i \(0.553800\pi\)
\(174\) 0 0
\(175\) 6.86733i 0.519121i
\(176\) 0 0
\(177\) 0.566335 4.24401i 0.0425684 0.318999i
\(178\) 0 0
\(179\) 7.59700i 0.567827i 0.958850 + 0.283913i \(0.0916328\pi\)
−0.958850 + 0.283913i \(0.908367\pi\)
\(180\) 0 0
\(181\) 23.5801i 1.75270i 0.481679 + 0.876348i \(0.340027\pi\)
−0.481679 + 0.876348i \(0.659973\pi\)
\(182\) 0 0
\(183\) −0.621497 + 4.65738i −0.0459424 + 0.344284i
\(184\) 0 0
\(185\) 14.5725i 1.07139i
\(186\) 0 0
\(187\) −2.44743 −0.178974
\(188\) 0 0
\(189\) 2.88712 6.86733i 0.210007 0.499525i
\(190\) 0 0
\(191\) 18.3406 1.32708 0.663540 0.748141i \(-0.269053\pi\)
0.663540 + 0.748141i \(0.269053\pi\)
\(192\) 0 0
\(193\) 11.7347 0.844679 0.422340 0.906438i \(-0.361209\pi\)
0.422340 + 0.906438i \(0.361209\pi\)
\(194\) 0 0
\(195\) 0.716832 5.37181i 0.0513334 0.384683i
\(196\) 0 0
\(197\) −0.536694 −0.0382378 −0.0191189 0.999817i \(-0.506086\pi\)
−0.0191189 + 0.999817i \(0.506086\pi\)
\(198\) 0 0
\(199\) 12.2929i 0.871419i −0.900087 0.435710i \(-0.856497\pi\)
0.900087 0.435710i \(-0.143503\pi\)
\(200\) 0 0
\(201\) −11.7901 1.57331i −0.831606 0.110972i
\(202\) 0 0
\(203\) 10.2854i 0.721895i
\(204\) 0 0
\(205\) 30.1821i 2.10801i
\(206\) 0 0
\(207\) −15.4635 4.20184i −1.07479 0.292048i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 17.1683 1.18192 0.590958 0.806702i \(-0.298750\pi\)
0.590958 + 0.806702i \(0.298750\pi\)
\(212\) 0 0
\(213\) 1.88405 + 0.251415i 0.129093 + 0.0172266i
\(214\) 0 0
\(215\) 19.2316 1.31159
\(216\) 0 0
\(217\) −5.73466 −0.389294
\(218\) 0 0
\(219\) 4.65738 + 0.621497i 0.314717 + 0.0419969i
\(220\) 0 0
\(221\) −1.57331 −0.105832
\(222\) 0 0
\(223\) 20.5939i 1.37907i −0.724253 0.689534i \(-0.757815\pi\)
0.724253 0.689534i \(-0.242185\pi\)
\(224\) 0 0
\(225\) 13.8673 + 3.76811i 0.924489 + 0.251207i
\(226\) 0 0
\(227\) 21.2100i 1.40776i −0.710319 0.703880i \(-0.751449\pi\)
0.710319 0.703880i \(-0.248551\pi\)
\(228\) 0 0
\(229\) 4.65738i 0.307768i −0.988089 0.153884i \(-0.950822\pi\)
0.988089 0.153884i \(-0.0491783\pi\)
\(230\) 0 0
\(231\) −3.82890 0.510941i −0.251923 0.0336175i
\(232\) 0 0
\(233\) 25.2553i 1.65453i 0.561810 + 0.827266i \(0.310105\pi\)
−0.561810 + 0.827266i \(0.689895\pi\)
\(234\) 0 0
\(235\) 3.43366 0.223988
\(236\) 0 0
\(237\) 2.48970 18.6574i 0.161724 1.21193i
\(238\) 0 0
\(239\) 26.6830 1.72598 0.862991 0.505219i \(-0.168588\pi\)
0.862991 + 0.505219i \(0.168588\pi\)
\(240\) 0 0
\(241\) 0.154553 0.00995563 0.00497782 0.999988i \(-0.498416\pi\)
0.00497782 + 0.999988i \(0.498416\pi\)
\(242\) 0 0
\(243\) −12.2832 9.59811i −0.787966 0.615719i
\(244\) 0 0
\(245\) −15.4712 −0.988419
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 2.92272 21.9023i 0.185220 1.38800i
\(250\) 0 0
\(251\) 5.37682i 0.339382i 0.985497 + 0.169691i \(0.0542769\pi\)
−0.985497 + 0.169691i \(0.945723\pi\)
\(252\) 0 0
\(253\) 8.30911i 0.522389i
\(254\) 0 0
\(255\) 1.12780 8.45149i 0.0706253 0.529253i
\(256\) 0 0
\(257\) 25.2553i 1.57538i 0.616069 + 0.787692i \(0.288724\pi\)
−0.616069 + 0.787692i \(0.711276\pi\)
\(258\) 0 0
\(259\) 6.67712 0.414896
\(260\) 0 0
\(261\) −20.7695 5.64361i −1.28560 0.349331i
\(262\) 0 0
\(263\) −16.1458 −0.995594 −0.497797 0.867294i \(-0.665857\pi\)
−0.497797 + 0.867294i \(0.665857\pi\)
\(264\) 0 0
\(265\) −32.1821 −1.97693
\(266\) 0 0
\(267\) 2.71278 20.3290i 0.166019 1.24412i
\(268\) 0 0
\(269\) −14.7104 −0.896911 −0.448455 0.893805i \(-0.648026\pi\)
−0.448455 + 0.893805i \(0.648026\pi\)
\(270\) 0 0
\(271\) 4.30099i 0.261267i 0.991431 + 0.130633i \(0.0417011\pi\)
−0.991431 + 0.130633i \(0.958299\pi\)
\(272\) 0 0
\(273\) −2.46136 0.328453i −0.148968 0.0198789i
\(274\) 0 0
\(275\) 7.45141i 0.449337i
\(276\) 0 0
\(277\) 6.86733i 0.412618i 0.978487 + 0.206309i \(0.0661452\pi\)
−0.978487 + 0.206309i \(0.933855\pi\)
\(278\) 0 0
\(279\) −3.14661 + 11.5801i −0.188383 + 0.693283i
\(280\) 0 0
\(281\) 5.54779i 0.330954i −0.986214 0.165477i \(-0.947084\pi\)
0.986214 0.165477i \(-0.0529163\pi\)
\(282\) 0 0
\(283\) −23.3148 −1.38592 −0.692959 0.720977i \(-0.743694\pi\)
−0.692959 + 0.720977i \(0.743694\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.8294 0.816326
\(288\) 0 0
\(289\) 14.5247 0.854395
\(290\) 0 0
\(291\) −15.2237 2.03150i −0.892430 0.119089i
\(292\) 0 0
\(293\) −14.3307 −0.837210 −0.418605 0.908168i \(-0.637481\pi\)
−0.418605 + 0.908168i \(0.637481\pi\)
\(294\) 0 0
\(295\) 7.73466i 0.450329i
\(296\) 0 0
\(297\) −3.13267 + 7.45141i −0.181776 + 0.432375i
\(298\) 0 0
\(299\) 5.34141i 0.308902i
\(300\) 0 0
\(301\) 8.81193i 0.507911i
\(302\) 0 0
\(303\) −8.48802 1.13267i −0.487624 0.0650702i
\(304\) 0 0
\(305\) 8.48802i 0.486023i
\(306\) 0 0
\(307\) 18.1546 1.03614 0.518068 0.855340i \(-0.326652\pi\)
0.518068 + 0.855340i \(0.326652\pi\)
\(308\) 0 0
\(309\) −0.621497 + 4.65738i −0.0353557 + 0.264949i
\(310\) 0 0
\(311\) −19.2924 −1.09397 −0.546987 0.837141i \(-0.684225\pi\)
−0.546987 + 0.837141i \(0.684225\pi\)
\(312\) 0 0
\(313\) −29.1048 −1.64510 −0.822551 0.568692i \(-0.807450\pi\)
−0.822551 + 0.568692i \(0.807450\pi\)
\(314\) 0 0
\(315\) 3.52877 12.9865i 0.198824 0.731707i
\(316\) 0 0
\(317\) 14.9522 0.839800 0.419900 0.907570i \(-0.362065\pi\)
0.419900 + 0.907570i \(0.362065\pi\)
\(318\) 0 0
\(319\) 11.1602i 0.624852i
\(320\) 0 0
\(321\) 2.65738 19.9139i 0.148321 1.11149i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 4.79005i 0.265704i
\(326\) 0 0
\(327\) 3.32260 24.8989i 0.183740 1.37691i
\(328\) 0 0
\(329\) 1.57331i 0.0867391i
\(330\) 0 0
\(331\) −20.6020 −1.13239 −0.566194 0.824272i \(-0.691585\pi\)
−0.566194 + 0.824272i \(0.691585\pi\)
\(332\) 0 0
\(333\) 3.66374 13.4832i 0.200772 0.738877i
\(334\) 0 0
\(335\) −21.4872 −1.17397
\(336\) 0 0
\(337\) 13.6355 0.742773 0.371387 0.928478i \(-0.378882\pi\)
0.371387 + 0.928478i \(0.378882\pi\)
\(338\) 0 0
\(339\) −4.41989 + 33.1219i −0.240056 + 1.79893i
\(340\) 0 0
\(341\) 6.22240 0.336962
\(342\) 0 0
\(343\) 17.1246i 0.924639i
\(344\) 0 0
\(345\) −28.6930 3.82890i −1.54478 0.206141i
\(346\) 0 0
\(347\) 35.3775i 1.89916i 0.313523 + 0.949581i \(0.398491\pi\)
−0.313523 + 0.949581i \(0.601509\pi\)
\(348\) 0 0
\(349\) 14.5028i 0.776319i 0.921592 + 0.388159i \(0.126889\pi\)
−0.921592 + 0.388159i \(0.873111\pi\)
\(350\) 0 0
\(351\) −2.01380 + 4.79005i −0.107489 + 0.255674i
\(352\) 0 0
\(353\) 21.2808i 1.13267i −0.824177 0.566333i \(-0.808362\pi\)
0.824177 0.566333i \(-0.191638\pi\)
\(354\) 0 0
\(355\) 3.43366 0.182240
\(356\) 0 0
\(357\) −3.87247 0.516756i −0.204953 0.0273496i
\(358\) 0 0
\(359\) 15.9394 0.841251 0.420626 0.907234i \(-0.361811\pi\)
0.420626 + 0.907234i \(0.361811\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −14.7306 1.96570i −0.773156 0.103173i
\(364\) 0 0
\(365\) 8.48802 0.444283
\(366\) 0 0
\(367\) 20.4474i 1.06735i −0.845690 0.533674i \(-0.820811\pi\)
0.845690 0.533674i \(-0.179189\pi\)
\(368\) 0 0
\(369\) 7.58822 27.9260i 0.395027 1.45377i
\(370\) 0 0
\(371\) 14.7458i 0.765566i
\(372\) 0 0
\(373\) 9.58011i 0.496039i 0.968755 + 0.248020i \(0.0797797\pi\)
−0.968755 + 0.248020i \(0.920220\pi\)
\(374\) 0 0
\(375\) −1.12780 0.150497i −0.0582391 0.00777163i
\(376\) 0 0
\(377\) 7.17421i 0.369491i
\(378\) 0 0
\(379\) 30.4474 1.56398 0.781990 0.623291i \(-0.214205\pi\)
0.781990 + 0.623291i \(0.214205\pi\)
\(380\) 0 0
\(381\) 2.39351 17.9365i 0.122623 0.918914i
\(382\) 0 0
\(383\) 9.58542 0.489792 0.244896 0.969549i \(-0.421246\pi\)
0.244896 + 0.969549i \(0.421246\pi\)
\(384\) 0 0
\(385\) −6.97812 −0.355638
\(386\) 0 0
\(387\) −17.7941 4.83511i −0.904525 0.245783i
\(388\) 0 0
\(389\) 10.8044 0.547805 0.273903 0.961757i \(-0.411685\pi\)
0.273903 + 0.961757i \(0.411685\pi\)
\(390\) 0 0
\(391\) 8.40367i 0.424992i
\(392\) 0 0
\(393\) −2.04958 + 15.3592i −0.103388 + 0.774767i
\(394\) 0 0
\(395\) 34.0029i 1.71087i
\(396\) 0 0
\(397\) 5.16021i 0.258984i −0.991580 0.129492i \(-0.958665\pi\)
0.991580 0.129492i \(-0.0413346\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.1824i 0.858049i 0.903293 + 0.429025i \(0.141143\pi\)
−0.903293 + 0.429025i \(0.858857\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) −24.2877 14.2514i −1.20686 0.708158i
\(406\) 0 0
\(407\) −7.24503 −0.359123
\(408\) 0 0
\(409\) −10.6020 −0.524235 −0.262117 0.965036i \(-0.584421\pi\)
−0.262117 + 0.965036i \(0.584421\pi\)
\(410\) 0 0
\(411\) −3.93649 + 29.4993i −0.194173 + 1.45510i
\(412\) 0 0
\(413\) −3.54402 −0.174390
\(414\) 0 0
\(415\) 39.9168i 1.95944i
\(416\) 0 0
\(417\) −10.5524 1.40815i −0.516754 0.0689574i
\(418\) 0 0
\(419\) 24.2110i 1.18279i −0.806383 0.591393i \(-0.798578\pi\)
0.806383 0.591393i \(-0.201422\pi\)
\(420\) 0 0
\(421\) 10.0829i 0.491412i −0.969344 0.245706i \(-0.920980\pi\)
0.969344 0.245706i \(-0.0790198\pi\)
\(422\) 0 0
\(423\) −3.17700 0.863273i −0.154471 0.0419738i
\(424\) 0 0
\(425\) 7.53621i 0.365560i
\(426\) 0 0
\(427\) 3.88921 0.188212
\(428\) 0 0
\(429\) 2.67071 + 0.356388i 0.128943 + 0.0172066i
\(430\) 0 0
\(431\) 24.7794 1.19358 0.596792 0.802396i \(-0.296442\pi\)
0.596792 + 0.802396i \(0.296442\pi\)
\(432\) 0 0
\(433\) 7.37016 0.354187 0.177094 0.984194i \(-0.443330\pi\)
0.177094 + 0.984194i \(0.443330\pi\)
\(434\) 0 0
\(435\) −38.5385 5.14271i −1.84778 0.246574i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 2.30911i 0.110208i 0.998481 + 0.0551038i \(0.0175490\pi\)
−0.998481 + 0.0551038i \(0.982451\pi\)
\(440\) 0 0
\(441\) 14.3148 + 3.88969i 0.681655 + 0.185223i
\(442\) 0 0
\(443\) 4.48580i 0.213127i 0.994306 + 0.106563i \(0.0339847\pi\)
−0.994306 + 0.106563i \(0.966015\pi\)
\(444\) 0 0
\(445\) 37.0494i 1.75631i
\(446\) 0 0
\(447\) −12.7928 1.70712i −0.605080 0.0807439i
\(448\) 0 0
\(449\) 23.4756i 1.10788i 0.832555 + 0.553942i \(0.186877\pi\)
−0.832555 + 0.553942i \(0.813123\pi\)
\(450\) 0 0
\(451\) −15.0057 −0.706589
\(452\) 0 0
\(453\) 4.71806 35.3562i 0.221674 1.66118i
\(454\) 0 0
\(455\) −4.48580 −0.210298
\(456\) 0 0
\(457\) 5.27100 0.246567 0.123283 0.992371i \(-0.460658\pi\)
0.123283 + 0.992371i \(0.460658\pi\)
\(458\) 0 0
\(459\) −3.16832 + 7.53621i −0.147885 + 0.351760i
\(460\) 0 0
\(461\) 23.7351 1.10546 0.552728 0.833362i \(-0.313587\pi\)
0.552728 + 0.833362i \(0.313587\pi\)
\(462\) 0 0
\(463\) 3.69089i 0.171530i −0.996315 0.0857652i \(-0.972667\pi\)
0.996315 0.0857652i \(-0.0273335\pi\)
\(464\) 0 0
\(465\) −2.86733 + 21.4872i −0.132969 + 0.996446i
\(466\) 0 0
\(467\) 39.5013i 1.82790i 0.405827 + 0.913950i \(0.366984\pi\)
−0.405827 + 0.913950i \(0.633016\pi\)
\(468\) 0 0
\(469\) 9.84545i 0.454621i
\(470\) 0 0
\(471\) 1.57331 11.7901i 0.0724941 0.543257i
\(472\) 0 0
\(473\) 9.56141i 0.439634i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 29.7765 + 8.09105i 1.36337 + 0.370464i
\(478\) 0 0
\(479\) −18.1950 −0.831352 −0.415676 0.909513i \(-0.636455\pi\)
−0.415676 + 0.909513i \(0.636455\pi\)
\(480\) 0 0
\(481\) −4.65738 −0.212358
\(482\) 0 0
\(483\) −1.75440 + 13.1471i −0.0798280 + 0.598216i
\(484\) 0 0
\(485\) −27.7450 −1.25984
\(486\) 0 0
\(487\) 29.7347i 1.34741i −0.739002 0.673703i \(-0.764703\pi\)
0.739002 0.673703i \(-0.235297\pi\)
\(488\) 0 0
\(489\) −28.6930 3.82890i −1.29754 0.173149i
\(490\) 0 0
\(491\) 24.2110i 1.09263i 0.837580 + 0.546315i \(0.183970\pi\)
−0.837580 + 0.546315i \(0.816030\pi\)
\(492\) 0 0
\(493\) 11.2872i 0.508351i
\(494\) 0 0
\(495\) −3.82890 + 14.0910i −0.172096 + 0.633345i
\(496\) 0 0
\(497\) 1.57331i 0.0705724i
\(498\) 0 0
\(499\) 23.0494 1.03183 0.515917 0.856639i \(-0.327451\pi\)
0.515917 + 0.856639i \(0.327451\pi\)
\(500\) 0 0
\(501\) 34.9015 + 4.65738i 1.55929 + 0.208076i
\(502\) 0 0
\(503\) 29.9752 1.33653 0.668265 0.743923i \(-0.267037\pi\)
0.668265 + 0.743923i \(0.267037\pi\)
\(504\) 0 0
\(505\) −15.4693 −0.688376
\(506\) 0 0
\(507\) 1.71683 + 0.229100i 0.0762472 + 0.0101747i
\(508\) 0 0
\(509\) 30.5790 1.35539 0.677696 0.735342i \(-0.262978\pi\)
0.677696 + 0.735342i \(0.262978\pi\)
\(510\) 0 0
\(511\) 3.88921i 0.172049i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.48802i 0.374027i
\(516\) 0 0
\(517\) 1.70712i 0.0750790i
\(518\) 0 0
\(519\) 7.59700 + 1.01377i 0.333471 + 0.0444996i
\(520\) 0 0
\(521\) 13.3295i 0.583977i 0.956422 + 0.291988i \(0.0943169\pi\)
−0.956422 + 0.291988i \(0.905683\pi\)
\(522\) 0 0
\(523\) 8.30911 0.363332 0.181666 0.983360i \(-0.441851\pi\)
0.181666 + 0.983360i \(0.441851\pi\)
\(524\) 0 0
\(525\) 1.57331 11.7901i 0.0686647 0.514560i
\(526\) 0 0
\(527\) 6.29322 0.274137
\(528\) 0 0
\(529\) 5.53068 0.240464
\(530\) 0 0
\(531\) −1.94461 + 7.15651i −0.0843887 + 0.310566i
\(532\) 0 0
\(533\) −9.64621 −0.417824
\(534\) 0 0
\(535\) 36.2929i 1.56908i
\(536\) 0 0
\(537\) 1.74047 13.0428i 0.0751070 0.562838i
\(538\) 0 0
\(539\) 7.69183i 0.331311i
\(540\) 0 0
\(541\) 12.9665i 0.557473i −0.960368 0.278736i \(-0.910084\pi\)
0.960368 0.278736i \(-0.0899156\pi\)
\(542\) 0 0
\(543\) 5.40220 40.4831i 0.231831 1.73730i
\(544\) 0 0
\(545\) 45.3780i 1.94378i
\(546\) 0 0
\(547\) 1.25157 0.0535133 0.0267567 0.999642i \(-0.491482\pi\)
0.0267567 + 0.999642i \(0.491482\pi\)
\(548\) 0 0
\(549\) 2.13401 7.85356i 0.0910774 0.335182i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −15.5801 −0.662533
\(554\) 0 0
\(555\) 3.33856 25.0186i 0.141714 1.06198i
\(556\) 0 0
\(557\) 19.2747 0.816696 0.408348 0.912826i \(-0.366105\pi\)
0.408348 + 0.912826i \(0.366105\pi\)
\(558\) 0 0
\(559\) 6.14644i 0.259967i
\(560\) 0 0
\(561\) 4.20184 + 0.560707i 0.177402 + 0.0236731i
\(562\) 0 0
\(563\) 4.91862i 0.207295i 0.994614 + 0.103648i \(0.0330514\pi\)
−0.994614 + 0.103648i \(0.966949\pi\)
\(564\) 0 0
\(565\) 60.3642i 2.53954i
\(566\) 0 0
\(567\) −6.53000 + 11.1286i −0.274234 + 0.467358i
\(568\) 0 0
\(569\) 25.2553i 1.05876i −0.848385 0.529379i \(-0.822425\pi\)
0.848385 0.529379i \(-0.177575\pi\)
\(570\) 0 0
\(571\) −31.4337 −1.31546 −0.657729 0.753255i \(-0.728483\pi\)
−0.657729 + 0.753255i \(0.728483\pi\)
\(572\) 0 0
\(573\) −31.4878 4.20184i −1.31542 0.175534i
\(574\) 0 0
\(575\) −25.5856 −1.06700
\(576\) 0 0
\(577\) −45.3423 −1.88762 −0.943812 0.330482i \(-0.892789\pi\)
−0.943812 + 0.330482i \(0.892789\pi\)
\(578\) 0 0
\(579\) −20.1464 2.68841i −0.837258 0.111727i
\(580\) 0 0
\(581\) −18.2899 −0.758791
\(582\) 0 0
\(583\) 16.0000i 0.662652i
\(584\) 0 0
\(585\) −2.46136 + 9.05827i −0.101765 + 0.374513i
\(586\) 0 0
\(587\) 15.9748i 0.659352i −0.944094 0.329676i \(-0.893060\pi\)
0.944094 0.329676i \(-0.106940\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0.921413 + 0.122957i 0.0379019 + 0.00505776i
\(592\) 0 0
\(593\) 47.1577i 1.93653i 0.249919 + 0.968267i \(0.419596\pi\)
−0.249919 + 0.968267i \(0.580404\pi\)
\(594\) 0 0
\(595\) −7.05753 −0.289331
\(596\) 0 0
\(597\) −2.81630 + 21.1048i −0.115263 + 0.863763i
\(598\) 0 0
\(599\) −37.5115 −1.53268 −0.766338 0.642437i \(-0.777923\pi\)
−0.766338 + 0.642437i \(0.777923\pi\)
\(600\) 0 0
\(601\) −13.9446 −0.568812 −0.284406 0.958704i \(-0.591796\pi\)
−0.284406 + 0.958704i \(0.591796\pi\)
\(602\) 0 0
\(603\) 19.8811 + 5.40220i 0.809621 + 0.219995i
\(604\) 0 0
\(605\) −26.8463 −1.09146
\(606\) 0 0
\(607\) 47.2040i 1.91595i −0.286851 0.957975i \(-0.592609\pi\)
0.286851 0.957975i \(-0.407391\pi\)
\(608\) 0 0
\(609\) −2.35639 + 17.6583i −0.0954857 + 0.715552i
\(610\) 0 0
\(611\) 1.09740i 0.0443961i
\(612\) 0 0
\(613\) 32.6295i 1.31789i −0.752189 0.658947i \(-0.771002\pi\)
0.752189 0.658947i \(-0.228998\pi\)
\(614\) 0 0
\(615\) 6.91472 51.8176i 0.278828 2.08949i
\(616\) 0 0
\(617\) 3.23141i 0.130092i −0.997882 0.0650459i \(-0.979281\pi\)
0.997882 0.0650459i \(-0.0207194\pi\)
\(618\) 0 0
\(619\) 42.2096 1.69655 0.848274 0.529557i \(-0.177642\pi\)
0.848274 + 0.529557i \(0.177642\pi\)
\(620\) 0 0
\(621\) 25.5856 + 10.7565i 1.02672 + 0.431645i
\(622\) 0 0
\(623\) −16.9760 −0.680131
\(624\) 0 0
\(625\) −26.0057 −1.04023
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.32748 −0.292166
\(630\) 0 0
\(631\) 9.72655i 0.387208i −0.981080 0.193604i \(-0.937982\pi\)
0.981080 0.193604i \(-0.0620176\pi\)
\(632\) 0 0
\(633\) −29.4751 3.93326i −1.17153 0.156333i
\(634\) 0 0
\(635\) 32.6890i 1.29723i
\(636\) 0 0
\(637\) 4.94461i 0.195912i
\(638\) 0 0
\(639\) −3.17700 0.863273i −0.125680 0.0341506i
\(640\) 0 0
\(641\) 16.9760i 0.670513i −0.942127 0.335257i \(-0.891177\pi\)
0.942127 0.335257i \(-0.108823\pi\)
\(642\) 0 0
\(643\) −34.3366 −1.35411 −0.677053 0.735935i \(-0.736743\pi\)
−0.677053 + 0.735935i \(0.736743\pi\)
\(644\) 0 0
\(645\) −33.0175 4.40597i −1.30006 0.173485i
\(646\) 0 0
\(647\) 18.2190 0.716264 0.358132 0.933671i \(-0.383414\pi\)
0.358132 + 0.933671i \(0.383414\pi\)
\(648\) 0 0
\(649\) 3.84545 0.150947
\(650\) 0 0
\(651\) 9.84545 + 1.31381i 0.385873 + 0.0514923i
\(652\) 0 0
\(653\) 24.4769 0.957853 0.478927 0.877855i \(-0.341026\pi\)
0.478927 + 0.877855i \(0.341026\pi\)
\(654\) 0 0
\(655\) 27.9919i 1.09373i
\(656\) 0 0
\(657\) −7.85356 2.13401i −0.306397 0.0832557i
\(658\) 0 0
\(659\) 8.48802i 0.330646i 0.986239 + 0.165323i \(0.0528667\pi\)
−0.986239 + 0.165323i \(0.947133\pi\)
\(660\) 0 0
\(661\) 41.4693i 1.61297i −0.591255 0.806485i \(-0.701367\pi\)
0.591255 0.806485i \(-0.298633\pi\)
\(662\) 0 0
\(663\) 2.70110 + 0.360444i 0.104902 + 0.0139985i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 38.3204 1.48377
\(668\) 0 0
\(669\) −4.71806 + 35.3562i −0.182411 + 1.36695i
\(670\) 0 0
\(671\) −4.22000 −0.162911
\(672\) 0 0
\(673\) 22.6849 0.874439 0.437220 0.899355i \(-0.355963\pi\)
0.437220 + 0.899355i \(0.355963\pi\)
\(674\) 0 0
\(675\) −22.9446 9.64621i −0.883138 0.371283i
\(676\) 0 0
\(677\) 26.2742 1.00980 0.504901 0.863178i \(-0.331529\pi\)
0.504901 + 0.863178i \(0.331529\pi\)
\(678\) 0 0
\(679\) 12.7128i 0.487872i
\(680\) 0 0
\(681\) −4.85922 + 36.4141i −0.186206 + 1.39539i
\(682\) 0 0
\(683\) 9.09182i 0.347889i 0.984755 + 0.173944i \(0.0556513\pi\)
−0.984755 + 0.173944i \(0.944349\pi\)
\(684\) 0 0
\(685\) 53.7622i 2.05415i
\(686\) 0 0
\(687\) −1.06701 + 7.99594i −0.0407088 + 0.305064i
\(688\) 0 0
\(689\) 10.2854i 0.391843i
\(690\) 0 0
\(691\) 22.0438 0.838584 0.419292 0.907851i \(-0.362278\pi\)
0.419292 + 0.907851i \(0.362278\pi\)
\(692\) 0 0
\(693\) 6.45652 + 1.75440i 0.245263 + 0.0666442i
\(694\) 0 0
\(695\) −19.2316 −0.729498
\(696\) 0 0
\(697\) −15.1764 −0.574848
\(698\) 0 0
\(699\) 5.78600 43.3592i 0.218846 1.63999i
\(700\) 0 0
\(701\) −33.4839 −1.26467 −0.632334 0.774696i \(-0.717903\pi\)
−0.632334 + 0.774696i \(0.717903\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −5.89503 0.786653i −0.222020 0.0296270i
\(706\) 0 0
\(707\) 7.08804i 0.266573i
\(708\) 0 0
\(709\) 38.0551i 1.42919i 0.699539 + 0.714594i \(0.253389\pi\)
−0.699539 + 0.714594i \(0.746611\pi\)
\(710\) 0 0
\(711\) −8.54881 + 31.4612i −0.320605 + 1.17989i
\(712\) 0 0
\(713\) 21.3656i 0.800150i
\(714\) 0 0
\(715\) 4.86733 0.182028
\(716\) 0 0
\(717\) −45.8103 6.11309i −1.71082 0.228297i
\(718\) 0 0
\(719\) 4.09842 0.152845 0.0764226 0.997076i \(-0.475650\pi\)
0.0764226 + 0.997076i \(0.475650\pi\)
\(720\) 0 0
\(721\) 3.88921 0.144842
\(722\) 0 0
\(723\) −0.265341 0.0354081i −0.00986816 0.00131684i
\(724\) 0 0
\(725\) −34.3649 −1.27628
\(726\) 0 0
\(727\) 32.1821i 1.19357i −0.802402 0.596784i \(-0.796445\pi\)
0.802402 0.596784i \(-0.203555\pi\)
\(728\) 0 0
\(729\) 18.8892 + 19.2924i 0.699600 + 0.714534i
\(730\) 0 0
\(731\) 9.67023i 0.357666i
\(732\) 0 0
\(733\) 32.6574i 1.20623i −0.797655 0.603114i \(-0.793926\pi\)
0.797655 0.603114i \(-0.206074\pi\)
\(734\) 0 0
\(735\) 26.5615 + 3.54445i 0.979734 + 0.130739i
\(736\) 0 0
\(737\) 10.6828i 0.393507i
\(738\) 0 0
\(739\) 31.8892 1.17306 0.586532 0.809926i \(-0.300493\pi\)
0.586532 + 0.809926i \(0.300493\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.19582 −0.190616 −0.0953081 0.995448i \(-0.530384\pi\)
−0.0953081 + 0.995448i \(0.530384\pi\)
\(744\) 0 0
\(745\) −23.3148 −0.854187
\(746\) 0 0
\(747\) −10.0357 + 36.9331i −0.367185 + 1.35131i
\(748\) 0 0
\(749\) −16.6294 −0.607625
\(750\) 0 0
\(751\) 31.7347i 1.15801i 0.815323 + 0.579007i \(0.196560\pi\)
−0.815323 + 0.579007i \(0.803440\pi\)
\(752\) 0 0
\(753\) 1.23183 9.23110i 0.0448904 0.336400i
\(754\) 0 0
\(755\) 64.4363i 2.34508i
\(756\) 0 0
\(757\) 1.17644i 0.0427583i −0.999771 0.0213791i \(-0.993194\pi\)
0.999771 0.0213791i \(-0.00680571\pi\)
\(758\) 0 0
\(759\) 1.90362 14.2653i 0.0690969 0.517799i
\(760\) 0 0
\(761\) 3.35299i 0.121546i −0.998152 0.0607729i \(-0.980643\pi\)
0.998152 0.0607729i \(-0.0193566\pi\)
\(762\) 0 0
\(763\) −20.7922 −0.752728
\(764\) 0 0
\(765\) −3.87247 + 14.2514i −0.140010 + 0.515261i
\(766\) 0 0
\(767\) 2.47200 0.0892588
\(768\) 0 0
\(769\) 21.0494 0.759062 0.379531 0.925179i \(-0.376085\pi\)
0.379531 + 0.925179i \(0.376085\pi\)
\(770\) 0 0
\(771\) 5.78600 43.3592i 0.208378 1.56154i
\(772\) 0 0
\(773\) 18.0317 0.648556 0.324278 0.945962i \(-0.394879\pi\)
0.324278 + 0.945962i \(0.394879\pi\)
\(774\) 0 0
\(775\) 19.1602i 0.688255i
\(776\) 0 0
\(777\) −11.4635 1.52973i −0.411251 0.0548787i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 1.70712i 0.0610855i
\(782\) 0 0
\(783\) 34.3649 + 14.4474i 1.22810 + 0.516309i
\(784\) 0 0
\(785\) 21.4872i 0.766912i
\(786\) 0 0
\(787\) −29.0057 −1.03394 −0.516970 0.856004i \(-0.672940\pi\)
−0.516970 + 0.856004i \(0.672940\pi\)
\(788\) 0 0
\(789\) 27.7197 + 3.69901i 0.986846 + 0.131688i
\(790\) 0 0
\(791\) 27.6589 0.983436
\(792\) 0 0
\(793\) −2.71278 −0.0963335
\(794\) 0 0
\(795\) 55.2513 + 7.37292i 1.95956 + 0.261490i
\(796\) 0 0
\(797\) −14.2776 −0.505739 −0.252869 0.967500i \(-0.581374\pi\)
−0.252869 + 0.967500i \(0.581374\pi\)
\(798\) 0 0
\(799\) 1.72655i 0.0610808i
\(800\) 0 0
\(801\) −9.31476 + 34.2801i −0.329121 + 1.21123i
\(802\) 0 0
\(803\) 4.22000i 0.148920i
\(804\) 0 0
\(805\) 23.9605i 0.844497i
\(806\) 0 0
\(807\) 25.2553 + 3.37016i 0.889030 + 0.118635i
\(808\) 0 0
\(809\) 7.03630i 0.247383i −0.992321 0.123692i \(-0.960527\pi\)
0.992321 0.123692i \(-0.0394733\pi\)
\(810\) 0 0
\(811\) 24.5858 0.863323 0.431661 0.902036i \(-0.357928\pi\)
0.431661 + 0.902036i \(0.357928\pi\)
\(812\) 0 0
\(813\) 0.985358 7.38409i 0.0345580 0.258971i
\(814\) 0 0
\(815\) −52.2927 −1.83173
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 4.15050 + 1.12780i 0.145030 + 0.0394084i
\(820\) 0 0
\(821\) 29.4740 1.02865 0.514324 0.857596i \(-0.328043\pi\)
0.514324 + 0.857596i \(0.328043\pi\)
\(822\) 0 0
\(823\) 1.16021i 0.0404424i −0.999796 0.0202212i \(-0.993563\pi\)
0.999796 0.0202212i \(-0.00643705\pi\)
\(824\) 0 0
\(825\) −1.70712 + 12.7928i −0.0594342 + 0.445389i
\(826\) 0 0
\(827\) 45.5527i 1.58402i −0.610507 0.792011i \(-0.709034\pi\)
0.610507 0.792011i \(-0.290966\pi\)
\(828\) 0 0
\(829\) 41.4693i 1.44029i 0.693824 + 0.720144i \(0.255924\pi\)
−0.693824 + 0.720144i \(0.744076\pi\)
\(830\) 0 0
\(831\) 1.57331 11.7901i 0.0545773 0.408992i
\(832\) 0 0
\(833\) 7.77937i 0.269539i
\(834\) 0 0
\(835\) 63.6076 2.20123
\(836\) 0 0
\(837\) 8.05520 19.1602i 0.278429 0.662274i
\(838\) 0 0
\(839\) −26.6223 −0.919102 −0.459551 0.888151i \(-0.651990\pi\)
−0.459551 + 0.888151i \(0.651990\pi\)
\(840\) 0 0
\(841\) 22.4693 0.774804
\(842\) 0 0
\(843\) −1.27100 + 9.52463i −0.0437756 + 0.328046i
\(844\) 0 0
\(845\) 3.12891 0.107638
\(846\) 0 0
\(847\) 12.3010i 0.422667i
\(848\) 0 0
\(849\) 40.0275 + 5.34141i 1.37374 + 0.183317i
\(850\) 0 0
\(851\) 24.8770i 0.852772i
\(852\) 0 0
\(853\) 5.18807i 0.177636i −0.996048 0.0888180i \(-0.971691\pi\)
0.996048 0.0888180i \(-0.0283089\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.6820i 0.808963i 0.914546 + 0.404481i \(0.132548\pi\)
−0.914546 + 0.404481i \(0.867452\pi\)
\(858\) 0 0
\(859\) −18.4199 −0.628479 −0.314239 0.949344i \(-0.601749\pi\)
−0.314239 + 0.949344i \(0.601749\pi\)
\(860\) 0 0
\(861\) −23.7428 3.16832i −0.809153 0.107976i
\(862\) 0 0
\(863\) −14.0966 −0.479854 −0.239927 0.970791i \(-0.577124\pi\)
−0.239927 + 0.970791i \(0.577124\pi\)
\(864\) 0 0
\(865\) 13.8454 0.470759
\(866\) 0 0
\(867\) −24.9365 3.32761i −0.846888 0.113012i
\(868\) 0 0
\(869\) 16.9052 0.573471
\(870\) 0 0
\(871\) 6.86733i 0.232691i
\(872\) 0 0
\(873\) 25.6712 + 6.97551i 0.868837 + 0.236085i
\(874\) 0 0
\(875\) 0.941782i 0.0318380i
\(876\) 0 0
\(877\) 47.3977i 1.60051i 0.599662 + 0.800253i \(0.295302\pi\)
−0.599662 + 0.800253i \(0.704698\pi\)
\(878\) 0 0
\(879\) 24.6034 + 3.28317i 0.829854 + 0.110738i
\(880\) 0 0
\(881\) 20.8657i 0.702984i 0.936191 + 0.351492i \(0.114326\pi\)
−0.936191 + 0.351492i \(0.885674\pi\)
\(882\) 0 0
\(883\) −29.4612 −0.991448 −0.495724 0.868480i \(-0.665097\pi\)
−0.495724 + 0.868480i \(0.665097\pi\)
\(884\) 0 0
\(885\) −1.77201 + 13.2791i −0.0595655 + 0.446372i
\(886\) 0 0
\(887\) 24.7554 0.831206 0.415603 0.909546i \(-0.363571\pi\)
0.415603 + 0.909546i \(0.363571\pi\)
\(888\) 0 0
\(889\) −14.9781 −0.502350
\(890\) 0 0
\(891\) 7.08539 12.0751i 0.237369 0.404532i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 23.7703i 0.794554i
\(896\) 0 0
\(897\) 1.22372 9.17031i 0.0408587 0.306188i
\(898\) 0 0
\(899\) 28.6968i 0.957093i
\(900\) 0 0
\(901\) 16.1821i 0.539104i
\(902\) 0 0
\(903\) −2.01881 + 15.1286i −0.0671819 + 0.503449i
\(904\) 0 0
\(905\) 73.7799i 2.45253i
\(906\) 0 0
\(907\) −26.0081 −0.863585 −0.431793 0.901973i \(-0.642119\pi\)
−0.431793 + 0.901973i \(0.642119\pi\)
\(908\) 0 0
\(909\) 14.3130 + 3.88921i 0.474733 + 0.128997i
\(910\) 0 0
\(911\) 20.2442 0.670721 0.335361 0.942090i \(-0.391142\pi\)
0.335361 + 0.942090i \(0.391142\pi\)
\(912\) 0 0
\(913\) 19.8454 0.656788
\(914\) 0 0
\(915\) 1.94461 14.5725i 0.0642867 0.481752i
\(916\) 0 0
\(917\) 12.8259 0.423548
\(918\) 0 0
\(919\) 19.4693i 0.642234i 0.947040 + 0.321117i \(0.104058\pi\)
−0.947040 + 0.321117i \(0.895942\pi\)
\(920\) 0 0
\(921\) −31.1683 4.15921i −1.02703 0.137051i
\(922\) 0 0
\(923\) 1.09740i 0.0361214i
\(924\) 0 0
\(925\) 22.3091i 0.733519i
\(926\) 0 0
\(927\) 2.13401 7.85356i 0.0700902 0.257945i
\(928\) 0 0
\(929\) 13.7446i 0.450947i −0.974249 0.225473i \(-0.927607\pi\)
0.974249 0.225473i \(-0.0723929\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 33.1219 + 4.41989i 1.08436 + 0.144701i
\(934\) 0 0
\(935\) 7.65779 0.250437
\(936\) 0 0
\(937\) −29.6239 −0.967770 −0.483885 0.875132i \(-0.660775\pi\)
−0.483885 + 0.875132i \(0.660775\pi\)
\(938\) 0 0
\(939\) 49.9681 + 6.66791i 1.63065 + 0.217599i
\(940\) 0 0
\(941\) −51.1182 −1.66641 −0.833203 0.552968i \(-0.813495\pi\)
−0.833203 + 0.552968i \(0.813495\pi\)
\(942\) 0 0
\(943\) 51.5244i 1.67787i
\(944\) 0 0
\(945\) −9.03351 + 21.4872i −0.293860 + 0.698980i
\(946\) 0 0
\(947\) 8.57283i 0.278579i 0.990252 + 0.139290i \(0.0444819\pi\)
−0.990252 + 0.139290i \(0.955518\pi\)
\(948\) 0 0
\(949\) 2.71278i 0.0880604i
\(950\) 0 0
\(951\) −25.6704 3.42555i −0.832421 0.111081i
\(952\) 0 0
\(953\) 35.9382i 1.16415i 0.813135 + 0.582076i \(0.197759\pi\)
−0.813135 + 0.582076i \(0.802241\pi\)
\(954\) 0 0
\(955\) −57.3861 −1.85697
\(956\) 0 0
\(957\) 2.55680 19.1602i 0.0826497 0.619362i
\(958\) 0 0
\(959\) 24.6338 0.795468
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) −9.12456 + 33.5801i −0.294035 + 1.08210i
\(964\) 0 0
\(965\) −36.7166 −1.18195
\(966\) 0 0
\(967\) 2.56634i 0.0825278i 0.999148 + 0.0412639i \(0.0131384\pi\)
−0.999148 + 0.0412639i \(0.986862\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.95660i 0.191156i 0.995422 + 0.0955782i \(0.0304700\pi\)
−0.995422 + 0.0955782i \(0.969530\pi\)
\(972\) 0 0
\(973\) 8.81193i 0.282498i
\(974\) 0 0
\(975\) −1.09740 + 8.22372i −0.0351450 + 0.263370i
\(976\) 0 0
\(977\) 17.3040i 0.553604i 0.960927 + 0.276802i \(0.0892746\pi\)
−0.960927 + 0.276802i \(0.910725\pi\)
\(978\) 0 0
\(979\) 18.4199 0.588702
\(980\) 0 0
\(981\) −11.4087 + 41.9861i −0.364251 + 1.34051i
\(982\) 0 0
\(983\) 0.806215 0.0257143 0.0128571 0.999917i \(-0.495907\pi\)
0.0128571 + 0.999917i \(0.495907\pi\)
\(984\) 0 0
\(985\) 1.67926 0.0535058
\(986\) 0 0
\(987\) −0.360444 + 2.70110i −0.0114731 + 0.0859770i
\(988\) 0 0
\(989\) 32.8307 1.04395
\(990\) 0 0
\(991\) 50.1659i 1.59357i −0.604262 0.796786i \(-0.706532\pi\)
0.604262 0.796786i \(-0.293468\pi\)
\(992\) 0 0
\(993\) 35.3702 + 4.71992i 1.12244 + 0.149782i
\(994\) 0 0
\(995\) 38.4633i 1.21937i
\(996\) 0 0
\(997\) 2.44743i 0.0775110i −0.999249 0.0387555i \(-0.987661\pi\)
0.999249 0.0387555i \(-0.0123394\pi\)
\(998\) 0 0
\(999\) −9.37904 + 22.3091i −0.296740 + 0.705829i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2496.2.j.c.287.1 12
3.2 odd 2 inner 2496.2.j.c.287.4 yes 12
4.3 odd 2 2496.2.j.d.287.11 yes 12
8.3 odd 2 inner 2496.2.j.c.287.2 yes 12
8.5 even 2 2496.2.j.d.287.12 yes 12
12.11 even 2 2496.2.j.d.287.10 yes 12
24.5 odd 2 2496.2.j.d.287.9 yes 12
24.11 even 2 inner 2496.2.j.c.287.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2496.2.j.c.287.1 12 1.1 even 1 trivial
2496.2.j.c.287.2 yes 12 8.3 odd 2 inner
2496.2.j.c.287.3 yes 12 24.11 even 2 inner
2496.2.j.c.287.4 yes 12 3.2 odd 2 inner
2496.2.j.d.287.9 yes 12 24.5 odd 2
2496.2.j.d.287.10 yes 12 12.11 even 2
2496.2.j.d.287.11 yes 12 4.3 odd 2
2496.2.j.d.287.12 yes 12 8.5 even 2