# Properties

 Label 2496.1.bw.a Level $2496$ Weight $1$ Character orbit 2496.bw Analytic conductor $1.246$ Analytic rank $0$ Dimension $4$ Projective image $D_{6}$ CM discriminant -3 Inner twists $8$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2496,1,Mod(1505,2496)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2496, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 3, 3, 5]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2496.1505");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2496 = 2^{6} \cdot 3 \cdot 13$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 2496.bw (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.24566627153$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - x^{2} + 1$$ x^4 - x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{6}$$ Projective field: Galois closure of 6.0.6843672576.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

The $$q$$-expansion and trace form are shown below.

 $$f(q)$$ $$=$$ $$q - \zeta_{12}^{5} q^{3} + \zeta_{12} q^{7} - \zeta_{12}^{4} q^{9} +O(q^{10})$$ q - z^5 * q^3 + z * q^7 - z^4 * q^9 $$q - \zeta_{12}^{5} q^{3} + \zeta_{12} q^{7} - \zeta_{12}^{4} q^{9} + \zeta_{12}^{4} q^{13} + q^{21} + q^{25} - \zeta_{12}^{3} q^{27} - \zeta_{12}^{3} q^{31} + \zeta_{12}^{2} q^{37} + \zeta_{12}^{3} q^{39} - \zeta_{12} q^{43} + ( - \zeta_{12}^{2} - 1) q^{61} - \zeta_{12}^{5} q^{63} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{67} + (\zeta_{12}^{4} + \zeta_{12}^{2}) q^{73} - \zeta_{12}^{5} q^{75} + (\zeta_{12}^{5} - \zeta_{12}) q^{79} - \zeta_{12}^{2} q^{81} + \zeta_{12}^{5} q^{91} - \zeta_{12}^{2} q^{93} + (\zeta_{12}^{2} + 1) q^{97} +O(q^{100})$$ q - z^5 * q^3 + z * q^7 - z^4 * q^9 + z^4 * q^13 + q^21 + q^25 - z^3 * q^27 - z^3 * q^31 + z^2 * q^37 + z^3 * q^39 - z * q^43 + (-z^2 - 1) * q^61 - z^5 * q^63 + (-z^3 - z) * q^67 + (z^4 + z^2) * q^73 - z^5 * q^75 + (z^5 - z) * q^79 - z^2 * q^81 + z^5 * q^91 - z^2 * q^93 + (z^2 + 1) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 2 q^{9}+O(q^{10})$$ 4 * q + 2 * q^9 $$4 q + 2 q^{9} - 2 q^{13} + 4 q^{21} + 4 q^{25} + 4 q^{37} - 6 q^{61} - 2 q^{81} - 2 q^{93} + 6 q^{97}+O(q^{100})$$ 4 * q + 2 * q^9 - 2 * q^13 + 4 * q^21 + 4 * q^25 + 4 * q^37 - 6 * q^61 - 2 * q^81 - 2 * q^93 + 6 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2496\mathbb{Z}\right)^\times$$.

 $$n$$ $$703$$ $$769$$ $$833$$ $$1093$$ $$\chi(n)$$ $$1$$ $$-\zeta_{12}^{4}$$ $$-1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1505.1
 −0.866025 − 0.500000i 0.866025 + 0.500000i −0.866025 + 0.500000i 0.866025 − 0.500000i
0 −0.866025 + 0.500000i 0 0 0 −0.866025 0.500000i 0 0.500000 0.866025i 0
1505.2 0 0.866025 0.500000i 0 0 0 0.866025 + 0.500000i 0 0.500000 0.866025i 0
1889.1 0 −0.866025 0.500000i 0 0 0 −0.866025 + 0.500000i 0 0.500000 + 0.866025i 0
1889.2 0 0.866025 + 0.500000i 0 0 0 0.866025 0.500000i 0 0.500000 + 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
4.b odd 2 1 inner
12.b even 2 1 inner
104.p odd 6 1 inner
104.s even 6 1 inner
312.ba even 6 1 inner
312.bg odd 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2496.1.bw.a 4
3.b odd 2 1 CM 2496.1.bw.a 4
4.b odd 2 1 inner 2496.1.bw.a 4
8.b even 2 1 2496.1.bw.b yes 4
8.d odd 2 1 2496.1.bw.b yes 4
12.b even 2 1 inner 2496.1.bw.a 4
13.e even 6 1 2496.1.bw.b yes 4
24.f even 2 1 2496.1.bw.b yes 4
24.h odd 2 1 2496.1.bw.b yes 4
39.h odd 6 1 2496.1.bw.b yes 4
52.i odd 6 1 2496.1.bw.b yes 4
104.p odd 6 1 inner 2496.1.bw.a 4
104.s even 6 1 inner 2496.1.bw.a 4
156.r even 6 1 2496.1.bw.b yes 4
312.ba even 6 1 inner 2496.1.bw.a 4
312.bg odd 6 1 inner 2496.1.bw.a 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2496.1.bw.a 4 1.a even 1 1 trivial
2496.1.bw.a 4 3.b odd 2 1 CM
2496.1.bw.a 4 4.b odd 2 1 inner
2496.1.bw.a 4 12.b even 2 1 inner
2496.1.bw.a 4 104.p odd 6 1 inner
2496.1.bw.a 4 104.s even 6 1 inner
2496.1.bw.a 4 312.ba even 6 1 inner
2496.1.bw.a 4 312.bg odd 6 1 inner
2496.1.bw.b yes 4 8.b even 2 1
2496.1.bw.b yes 4 8.d odd 2 1
2496.1.bw.b yes 4 13.e even 6 1
2496.1.bw.b yes 4 24.f even 2 1
2496.1.bw.b yes 4 24.h odd 2 1
2496.1.bw.b yes 4 39.h odd 6 1
2496.1.bw.b yes 4 52.i odd 6 1
2496.1.bw.b yes 4 156.r even 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{37}^{2} - 2T_{37} + 4$$ acting on $$S_{1}^{\mathrm{new}}(2496, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4} - T^{2} + 1$$
$5$ $$T^{4}$$
$7$ $$T^{4} - T^{2} + 1$$
$11$ $$T^{4}$$
$13$ $$(T^{2} + T + 1)^{2}$$
$17$ $$T^{4}$$
$19$ $$T^{4}$$
$23$ $$T^{4}$$
$29$ $$T^{4}$$
$31$ $$(T^{2} + 1)^{2}$$
$37$ $$(T^{2} - 2 T + 4)^{2}$$
$41$ $$T^{4}$$
$43$ $$T^{4} - T^{2} + 1$$
$47$ $$T^{4}$$
$53$ $$T^{4}$$
$59$ $$T^{4}$$
$61$ $$(T^{2} + 3 T + 3)^{2}$$
$67$ $$T^{4} + 3T^{2} + 9$$
$71$ $$T^{4}$$
$73$ $$(T^{2} + 3)^{2}$$
$79$ $$(T^{2} - 3)^{2}$$
$83$ $$T^{4}$$
$89$ $$T^{4}$$
$97$ $$(T^{2} - 3 T + 3)^{2}$$