Properties

Label 24843.2.a.ck
Level $24843$
Weight $2$
Character orbit 24843.a
Self dual yes
Analytic conductor $198.372$
Dimension $3$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24843,2,Mod(1,24843)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24843, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24843.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 24843 = 3 \cdot 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24843.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,3,11,-6,3,0,12,3,1,5,11,0,0,-6,11,1,3,7,-15,0,-9,0,12,11, 0,3,0,-2,1,16,22,5,8,0,11,22,0,0,-3,-11,0,-15,16,-6,-7,-7,11,0,-3,1,0, -17,3,-3,0,7,12,6,-15,13,2,0,0,0,-9,11,13,0,0,0,12,-6,15,11,21,0,0,3,20, 3,3,-12,0,19,-29,-2,13,-1,1,0,7,16,0,-21,22,5,0,5,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(198.372353741\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 3 q + 3 q^{2} + 3 q^{3} + 11 q^{4} - 6 q^{5} + 3 q^{6} + 12 q^{8} + 3 q^{9} + q^{10} + 5 q^{11} + 11 q^{12} - 6 q^{15} + 11 q^{16} + q^{17} + 3 q^{18} + 7 q^{19} - 15 q^{20} - 9 q^{22} + 12 q^{24} + 11 q^{25}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.