Defining parameters
Level: | \( N \) | \(=\) | \( 24843 = 3 \cdot 7^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 24843.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 134 \) | ||
Sturm bound: | \(6794\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(24843))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3508 | 1059 | 2449 |
Cusp forms | 3285 | 1059 | 2226 |
Eisenstein series | 223 | 0 | 223 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(429\) | \(130\) | \(299\) | \(402\) | \(130\) | \(272\) | \(27\) | \(0\) | \(27\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(445\) | \(128\) | \(317\) | \(417\) | \(128\) | \(289\) | \(28\) | \(0\) | \(28\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(443\) | \(136\) | \(307\) | \(415\) | \(136\) | \(279\) | \(28\) | \(0\) | \(28\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(435\) | \(135\) | \(300\) | \(407\) | \(135\) | \(272\) | \(28\) | \(0\) | \(28\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(448\) | \(137\) | \(311\) | \(420\) | \(137\) | \(283\) | \(28\) | \(0\) | \(28\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(432\) | \(120\) | \(312\) | \(404\) | \(120\) | \(284\) | \(28\) | \(0\) | \(28\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(434\) | \(126\) | \(308\) | \(406\) | \(126\) | \(280\) | \(28\) | \(0\) | \(28\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(442\) | \(147\) | \(295\) | \(414\) | \(147\) | \(267\) | \(28\) | \(0\) | \(28\) | |||
Plus space | \(+\) | \(1730\) | \(511\) | \(1219\) | \(1619\) | \(511\) | \(1108\) | \(111\) | \(0\) | \(111\) | |||||
Minus space | \(-\) | \(1778\) | \(548\) | \(1230\) | \(1666\) | \(548\) | \(1118\) | \(112\) | \(0\) | \(112\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(24843))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 7 | 13 | |||||||
24843.2.a.a | $1$ | $198.372$ | \(\Q\) | None | \(-2\) | \(-1\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | \(q-2q^{2}-q^{3}+2q^{4}-2q^{5}+2q^{6}+\cdots\) | |
24843.2.a.b | $1$ | $198.372$ | \(\Q\) | None | \(-2\) | \(-1\) | \(1\) | \(0\) | $+$ | $-$ | $+$ | \(q-2q^{2}-q^{3}+2q^{4}+q^{5}+2q^{6}+q^{9}+\cdots\) | |
24843.2.a.c | $1$ | $198.372$ | \(\Q\) | None | \(-2\) | \(-1\) | \(3\) | \(0\) | $+$ | $-$ | $-$ | \(q-2q^{2}-q^{3}+2q^{4}+3q^{5}+2q^{6}+\cdots\) | |
24843.2.a.d | $1$ | $198.372$ | \(\Q\) | None | \(-2\) | \(1\) | \(2\) | \(0\) | $-$ | $+$ | $+$ | \(q-2q^{2}+q^{3}+2q^{4}+2q^{5}-2q^{6}+\cdots\) | |
24843.2.a.e | $1$ | $198.372$ | \(\Q\) | None | \(-1\) | \(-1\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | \(q-q^{2}-q^{3}-q^{4}+2q^{5}+q^{6}+3q^{8}+\cdots\) | |
24843.2.a.f | $1$ | $198.372$ | \(\Q\) | None | \(-1\) | \(1\) | \(-2\) | \(0\) | $-$ | $-$ | $-$ | \(q-q^{2}+q^{3}-q^{4}-2q^{5}-q^{6}+3q^{8}+\cdots\) | |
24843.2.a.g | $1$ | $198.372$ | \(\Q\) | None | \(-1\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}-q^{4}-q^{5}-q^{6}+3q^{8}+\cdots\) | |
24843.2.a.h | $1$ | $198.372$ | \(\Q\) | None | \(-1\) | \(1\) | \(2\) | \(0\) | $-$ | $-$ | $+$ | \(q-q^{2}+q^{3}-q^{4}+2q^{5}-q^{6}+3q^{8}+\cdots\) | |
24843.2.a.i | $1$ | $198.372$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(0\) | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{4}+q^{9}-6q^{11}+2q^{12}+\cdots\) | |
24843.2.a.j | $1$ | $198.372$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(0\) | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{4}+q^{9}+6q^{11}+2q^{12}+\cdots\) | |
24843.2.a.k | $1$ | $198.372$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(0\) | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{4}+q^{5}+q^{9}+2q^{11}+2q^{12}+\cdots\) | |
24843.2.a.l | $1$ | $198.372$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | \(q+q^{3}-2q^{4}-q^{5}+q^{9}+2q^{11}-2q^{12}+\cdots\) | |
24843.2.a.m | $1$ | $198.372$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{4}+q^{9}-6q^{11}-2q^{12}+\cdots\) | |
24843.2.a.n | $1$ | $198.372$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{4}+q^{9}+6q^{11}-2q^{12}+\cdots\) | |
24843.2.a.o | $1$ | $198.372$ | \(\Q\) | None | \(1\) | \(-1\) | \(-2\) | \(0\) | $+$ | $-$ | $-$ | \(q+q^{2}-q^{3}-q^{4}-2q^{5}-q^{6}-3q^{8}+\cdots\) | |
24843.2.a.p | $1$ | $198.372$ | \(\Q\) | None | \(1\) | \(-1\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}-q^{4}-2q^{5}-q^{6}-3q^{8}+\cdots\) | |
24843.2.a.q | $1$ | $198.372$ | \(\Q\) | None | \(1\) | \(-1\) | \(4\) | \(0\) | $+$ | $-$ | $+$ | \(q+q^{2}-q^{3}-q^{4}+4q^{5}-q^{6}-3q^{8}+\cdots\) | |
24843.2.a.r | $1$ | $198.372$ | \(\Q\) | None | \(1\) | \(1\) | \(-4\) | \(0\) | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}-q^{4}-4q^{5}+q^{6}-3q^{8}+\cdots\) | |
24843.2.a.s | $1$ | $198.372$ | \(\Q\) | None | \(1\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}-q^{4}+q^{5}+q^{6}-3q^{8}+\cdots\) | |
24843.2.a.t | $1$ | $198.372$ | \(\Q\) | None | \(1\) | \(1\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{3}-q^{4}+2q^{5}+q^{6}-3q^{8}+\cdots\) | |
24843.2.a.u | $1$ | $198.372$ | \(\Q\) | None | \(2\) | \(-1\) | \(-3\) | \(0\) | $+$ | $-$ | $-$ | \(q+2q^{2}-q^{3}+2q^{4}-3q^{5}-2q^{6}+\cdots\) | |
24843.2.a.v | $1$ | $198.372$ | \(\Q\) | None | \(2\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | \(q+2q^{2}+q^{3}+2q^{4}-q^{5}+2q^{6}+q^{9}+\cdots\) | |
24843.2.a.w | $2$ | $198.372$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(2\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.x | $2$ | $198.372$ | \(\Q(\sqrt{17}) \) | None | \(-1\) | \(-2\) | \(-3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.y | $2$ | $198.372$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.z | $2$ | $198.372$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | ||
24843.2.a.ba | $2$ | $198.372$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | ||
24843.2.a.bb | $2$ | $198.372$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.bc | $2$ | $198.372$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.bd | $2$ | $198.372$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.be | $2$ | $198.372$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.bf | $2$ | $198.372$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.bg | $2$ | $198.372$ | \(\Q(\sqrt{17}) \) | None | \(1\) | \(-2\) | \(3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.bh | $2$ | $198.372$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(-2\) | \(0\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.bi | $2$ | $198.372$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(-2\) | \(4\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.bj | $2$ | $198.372$ | \(\Q(\sqrt{2}) \) | None | \(2\) | \(2\) | \(-4\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.bk | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(-3\) | \(3\) | \(6\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.bl | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(-2\) | \(-3\) | \(0\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.bm | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(-2\) | \(-3\) | \(3\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.bn | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(-2\) | \(3\) | \(-3\) | \(0\) | $-$ | $+$ | $-$ | ||
24843.2.a.bo | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(-2\) | \(3\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.bp | $3$ | $198.372$ | 3.3.169.1 | None | \(-2\) | \(3\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.bq | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(-1\) | \(-3\) | \(-3\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.br | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(-1\) | \(-3\) | \(4\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.bs | $3$ | $198.372$ | 3.3.148.1 | None | \(-1\) | \(-3\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.bt | $3$ | $198.372$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(-3\) | \(-6\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.bu | $3$ | $198.372$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(-3\) | \(-3\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.bv | $3$ | $198.372$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(-3\) | \(6\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.bw | $3$ | $198.372$ | \(\Q(\zeta_{18})^+\) | None | \(0\) | \(3\) | \(3\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.bx | $3$ | $198.372$ | 3.3.473.1 | None | \(0\) | \(3\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.by | $3$ | $198.372$ | 3.3.473.1 | None | \(0\) | \(3\) | \(2\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.bz | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(1\) | \(-3\) | \(-4\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.ca | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(1\) | \(-3\) | \(3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.cb | $3$ | $198.372$ | 3.3.148.1 | None | \(1\) | \(-3\) | \(-2\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.cc | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(-3\) | \(-3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.cd | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(-3\) | \(-3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.ce | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(-3\) | \(0\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.cf | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(3\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.cg | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(3\) | \(3\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.ch | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(2\) | \(3\) | \(3\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.ci | $3$ | $198.372$ | 3.3.316.1 | None | \(2\) | \(3\) | \(-3\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.cj | $3$ | $198.372$ | 3.3.169.1 | None | \(2\) | \(3\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.ck | $3$ | $198.372$ | \(\Q(\zeta_{14})^+\) | None | \(3\) | \(3\) | \(-6\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.cl | $4$ | $198.372$ | 4.4.17428.1 | None | \(-1\) | \(-4\) | \(-3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.cm | $4$ | $198.372$ | 4.4.64436.1 | None | \(-1\) | \(4\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.cn | $4$ | $198.372$ | \(\Q(\sqrt{3}, \sqrt{7})\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.co | $4$ | $198.372$ | \(\Q(\sqrt{3}, \sqrt{7})\) | None | \(0\) | \(4\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
24843.2.a.cp | $4$ | $198.372$ | 4.4.69777.1 | None | \(1\) | \(-4\) | \(3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.cq | $4$ | $198.372$ | 4.4.64436.1 | None | \(1\) | \(4\) | \(-3\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.cr | $4$ | $198.372$ | 4.4.69777.1 | None | \(1\) | \(4\) | \(-3\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.cs | $5$ | $198.372$ | 5.5.2196544.1 | None | \(-2\) | \(-5\) | \(3\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.ct | $5$ | $198.372$ | 5.5.2196544.1 | None | \(-2\) | \(5\) | \(-3\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.cu | $5$ | $198.372$ | 5.5.375116.1 | None | \(0\) | \(-5\) | \(3\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.cv | $5$ | $198.372$ | 5.5.375116.1 | None | \(0\) | \(5\) | \(-3\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.cw | $6$ | $198.372$ | 6.6.46053184.1 | None | \(-2\) | \(-6\) | \(-2\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.cx | $6$ | $198.372$ | 6.6.121819537.1 | None | \(-2\) | \(6\) | \(-3\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.cy | $6$ | $198.372$ | 6.6.46053184.1 | None | \(-2\) | \(6\) | \(2\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.cz | $6$ | $198.372$ | 6.6.382906624.1 | None | \(0\) | \(-6\) | \(0\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.da | $6$ | $198.372$ | 6.6.382906624.1 | None | \(0\) | \(6\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.db | $6$ | $198.372$ | 6.6.46053184.1 | None | \(2\) | \(-6\) | \(2\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.dc | $6$ | $198.372$ | 6.6.121819537.1 | None | \(2\) | \(6\) | \(3\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.dd | $6$ | $198.372$ | 6.6.46053184.1 | None | \(2\) | \(6\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.de | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-2\) | \(-8\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.df | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-2\) | \(8\) | \(6\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.dg | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-8\) | \(0\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.dh | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-8\) | \(0\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.di | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-8\) | \(0\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.dj | $8$ | $198.372$ | 8.8.\(\cdots\).1 | None | \(0\) | \(-8\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | ||
24843.2.a.dk | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(8\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.dl | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(8\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
24843.2.a.dm | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(8\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.dn | $8$ | $198.372$ | 8.8.\(\cdots\).1 | None | \(0\) | \(8\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.do | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(2\) | \(-8\) | \(-2\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.dp | $8$ | $198.372$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(2\) | \(8\) | \(-6\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.dq | $9$ | $198.372$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-1\) | \(9\) | \(-9\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.dr | $9$ | $198.372$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(1\) | \(9\) | \(9\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.ds | $10$ | $198.372$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-4\) | \(-10\) | \(-6\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.dt | $10$ | $198.372$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-4\) | \(10\) | \(6\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.du | $10$ | $198.372$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-10\) | \(0\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.dv | $10$ | $198.372$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-10\) | \(0\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.dw | $10$ | $198.372$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.dx | $10$ | $198.372$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.dy | $12$ | $198.372$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-12\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | ||
24843.2.a.dz | $12$ | $198.372$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-12\) | \(0\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.ea | $12$ | $198.372$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(12\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
24843.2.a.eb | $12$ | $198.372$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(12\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
24843.2.a.ec | $15$ | $198.372$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(-2\) | \(-15\) | \(-9\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.ed | $15$ | $198.372$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(2\) | \(-15\) | \(9\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.ee | $16$ | $198.372$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-16\) | \(0\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.ef | $16$ | $198.372$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-16\) | \(0\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.eg | $16$ | $198.372$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-16\) | \(0\) | \(0\) | $+$ | $+$ | $+$ | ||
24843.2.a.eh | $16$ | $198.372$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(16\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.ei | $16$ | $198.372$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(16\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | ||
24843.2.a.ej | $16$ | $198.372$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(16\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.ek | $18$ | $198.372$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-1\) | \(-18\) | \(-12\) | \(0\) | $+$ | $-$ | $-$ | ||
24843.2.a.el | $18$ | $198.372$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-1\) | \(18\) | \(12\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.em | $18$ | $198.372$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(1\) | \(-18\) | \(12\) | \(0\) | $+$ | $-$ | $+$ | ||
24843.2.a.en | $18$ | $198.372$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(1\) | \(18\) | \(-12\) | \(0\) | $-$ | $-$ | $+$ | ||
24843.2.a.eo | $20$ | $198.372$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(-20\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | ||
24843.2.a.ep | $20$ | $198.372$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(20\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
24843.2.a.eq | $21$ | $198.372$ | None | \(-3\) | \(-21\) | \(-1\) | \(0\) | $+$ | $-$ | $-$ | |||
24843.2.a.er | $21$ | $198.372$ | None | \(-3\) | \(21\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | |||
24843.2.a.es | $21$ | $198.372$ | None | \(3\) | \(-21\) | \(1\) | \(0\) | $+$ | $-$ | $+$ | |||
24843.2.a.et | $21$ | $198.372$ | None | \(3\) | \(21\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | |||
24843.2.a.eu | $24$ | $198.372$ | None | \(-7\) | \(-24\) | \(0\) | \(0\) | $+$ | $+$ | $+$ | |||
24843.2.a.ev | $24$ | $198.372$ | None | \(-7\) | \(24\) | \(0\) | \(0\) | $-$ | $-$ | $+$ | |||
24843.2.a.ew | $24$ | $198.372$ | None | \(0\) | \(-24\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | |||
24843.2.a.ex | $24$ | $198.372$ | None | \(0\) | \(24\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | |||
24843.2.a.ey | $24$ | $198.372$ | None | \(7\) | \(-24\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | |||
24843.2.a.ez | $24$ | $198.372$ | None | \(7\) | \(24\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | |||
24843.2.a.fa | $36$ | $198.372$ | None | \(-2\) | \(-36\) | \(24\) | \(0\) | $+$ | $+$ | $-$ | |||
24843.2.a.fb | $36$ | $198.372$ | None | \(-2\) | \(36\) | \(-24\) | \(0\) | $-$ | $+$ | $-$ | |||
24843.2.a.fc | $36$ | $198.372$ | None | \(2\) | \(-36\) | \(-24\) | \(0\) | $+$ | $+$ | $+$ | |||
24843.2.a.fd | $36$ | $198.372$ | None | \(2\) | \(36\) | \(24\) | \(0\) | $-$ | $+$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(24843))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(24843)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(637))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1911))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3549))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8281))\)\(^{\oplus 2}\)