Properties

Label 24843.2.a
Level $24843$
Weight $2$
Character orbit 24843.a
Rep. character $\chi_{24843}(1,\cdot)$
Character field $\Q$
Dimension $1059$
Newform subspaces $134$
Sturm bound $6794$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24843 = 3 \cdot 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24843.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 134 \)
Sturm bound: \(6794\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(24843))\).

Total New Old
Modular forms 3508 1059 2449
Cusp forms 3285 1059 2226
Eisenstein series 223 0 223

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(429\)\(130\)\(299\)\(402\)\(130\)\(272\)\(27\)\(0\)\(27\)
\(+\)\(+\)\(-\)\(-\)\(445\)\(128\)\(317\)\(417\)\(128\)\(289\)\(28\)\(0\)\(28\)
\(+\)\(-\)\(+\)\(-\)\(443\)\(136\)\(307\)\(415\)\(136\)\(279\)\(28\)\(0\)\(28\)
\(+\)\(-\)\(-\)\(+\)\(435\)\(135\)\(300\)\(407\)\(135\)\(272\)\(28\)\(0\)\(28\)
\(-\)\(+\)\(+\)\(-\)\(448\)\(137\)\(311\)\(420\)\(137\)\(283\)\(28\)\(0\)\(28\)
\(-\)\(+\)\(-\)\(+\)\(432\)\(120\)\(312\)\(404\)\(120\)\(284\)\(28\)\(0\)\(28\)
\(-\)\(-\)\(+\)\(+\)\(434\)\(126\)\(308\)\(406\)\(126\)\(280\)\(28\)\(0\)\(28\)
\(-\)\(-\)\(-\)\(-\)\(442\)\(147\)\(295\)\(414\)\(147\)\(267\)\(28\)\(0\)\(28\)
Plus space\(+\)\(1730\)\(511\)\(1219\)\(1619\)\(511\)\(1108\)\(111\)\(0\)\(111\)
Minus space\(-\)\(1778\)\(548\)\(1230\)\(1666\)\(548\)\(1118\)\(112\)\(0\)\(112\)

Trace form

\( 1059 q - 3 q^{2} + q^{3} + 1059 q^{4} - 6 q^{5} + q^{6} - 15 q^{8} + 1059 q^{9} - 10 q^{10} - 4 q^{11} - q^{12} - 2 q^{15} + 1063 q^{16} - 6 q^{17} - 3 q^{18} + 8 q^{19} - 26 q^{20} - 16 q^{22} - 12 q^{23}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(24843))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7 13
24843.2.a.a 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-2\) \(-1\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}-2q^{5}+2q^{6}+\cdots\)
24843.2.a.b 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-2\) \(-1\) \(1\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}+q^{5}+2q^{6}+q^{9}+\cdots\)
24843.2.a.c 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-2\) \(-1\) \(3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+2q^{4}+3q^{5}+2q^{6}+\cdots\)
24843.2.a.d 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-2\) \(1\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+2q^{4}+2q^{5}-2q^{6}+\cdots\)
24843.2.a.e 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-1\) \(-1\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}-q^{4}+2q^{5}+q^{6}+3q^{8}+\cdots\)
24843.2.a.f 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-1\) \(1\) \(-2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-2q^{5}-q^{6}+3q^{8}+\cdots\)
24843.2.a.g 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-1\) \(1\) \(-1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-q^{5}-q^{6}+3q^{8}+\cdots\)
24843.2.a.h 24843.a 1.a $1$ $198.372$ \(\Q\) None \(-1\) \(1\) \(2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}+2q^{5}-q^{6}+3q^{8}+\cdots\)
24843.2.a.i 24843.a 1.a $1$ $198.372$ \(\Q\) None \(0\) \(-1\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}+q^{9}-6q^{11}+2q^{12}+\cdots\)
24843.2.a.j 24843.a 1.a $1$ $198.372$ \(\Q\) None \(0\) \(-1\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}+q^{9}+6q^{11}+2q^{12}+\cdots\)
24843.2.a.k 24843.a 1.a $1$ $198.372$ \(\Q\) None \(0\) \(-1\) \(1\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}+q^{5}+q^{9}+2q^{11}+2q^{12}+\cdots\)
24843.2.a.l 24843.a 1.a $1$ $198.372$ \(\Q\) None \(0\) \(1\) \(-1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}-q^{5}+q^{9}+2q^{11}-2q^{12}+\cdots\)
24843.2.a.m 24843.a 1.a $1$ $198.372$ \(\Q\) None \(0\) \(1\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}+q^{9}-6q^{11}-2q^{12}+\cdots\)
24843.2.a.n 24843.a 1.a $1$ $198.372$ \(\Q\) None \(0\) \(1\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}+q^{9}+6q^{11}-2q^{12}+\cdots\)
24843.2.a.o 24843.a 1.a $1$ $198.372$ \(\Q\) None \(1\) \(-1\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}-2q^{5}-q^{6}-3q^{8}+\cdots\)
24843.2.a.p 24843.a 1.a $1$ $198.372$ \(\Q\) None \(1\) \(-1\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}-2q^{5}-q^{6}-3q^{8}+\cdots\)
24843.2.a.q 24843.a 1.a $1$ $198.372$ \(\Q\) None \(1\) \(-1\) \(4\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}+4q^{5}-q^{6}-3q^{8}+\cdots\)
24843.2.a.r 24843.a 1.a $1$ $198.372$ \(\Q\) None \(1\) \(1\) \(-4\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}-4q^{5}+q^{6}-3q^{8}+\cdots\)
24843.2.a.s 24843.a 1.a $1$ $198.372$ \(\Q\) None \(1\) \(1\) \(1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}+q^{5}+q^{6}-3q^{8}+\cdots\)
24843.2.a.t 24843.a 1.a $1$ $198.372$ \(\Q\) None \(1\) \(1\) \(2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}+2q^{5}+q^{6}-3q^{8}+\cdots\)
24843.2.a.u 24843.a 1.a $1$ $198.372$ \(\Q\) None \(2\) \(-1\) \(-3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-q^{3}+2q^{4}-3q^{5}-2q^{6}+\cdots\)
24843.2.a.v 24843.a 1.a $1$ $198.372$ \(\Q\) None \(2\) \(1\) \(-1\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}-q^{5}+2q^{6}+q^{9}+\cdots\)
24843.2.a.w 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{2}) \) None \(-2\) \(2\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.x 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{17}) \) None \(-1\) \(-2\) \(-3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.y 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(-2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.z 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.ba 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.bb 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.bc 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.bd 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.be 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.bf 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.bg 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{17}) \) None \(1\) \(-2\) \(3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bh 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{2}) \) None \(2\) \(-2\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bi 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{2}) \) None \(2\) \(-2\) \(4\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.bj 24843.a 1.a $2$ $198.372$ \(\Q(\sqrt{2}) \) None \(2\) \(2\) \(-4\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.bk 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(-3\) \(3\) \(6\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bl 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(-2\) \(-3\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bm 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(-2\) \(-3\) \(3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.bn 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(-2\) \(3\) \(-3\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.bo 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(-2\) \(3\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.bp 24843.a 1.a $3$ $198.372$ 3.3.169.1 None \(-2\) \(3\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bq 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(-1\) \(-3\) \(-3\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.br 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(-1\) \(-3\) \(4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.bs 24843.a 1.a $3$ $198.372$ 3.3.148.1 None \(-1\) \(-3\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.bt 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{18})^+\) None \(0\) \(-3\) \(-6\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bu 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{18})^+\) None \(0\) \(-3\) \(-3\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.bv 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{18})^+\) None \(0\) \(-3\) \(6\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bw 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{18})^+\) None \(0\) \(3\) \(3\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bx 24843.a 1.a $3$ $198.372$ 3.3.473.1 None \(0\) \(3\) \(-2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.by 24843.a 1.a $3$ $198.372$ 3.3.473.1 None \(0\) \(3\) \(2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.bz 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(1\) \(-3\) \(-4\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.ca 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(1\) \(-3\) \(3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cb 24843.a 1.a $3$ $198.372$ 3.3.148.1 None \(1\) \(-3\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.cc 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(2\) \(-3\) \(-3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cd 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(2\) \(-3\) \(-3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.ce 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(2\) \(-3\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cf 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(2\) \(3\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cg 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(2\) \(3\) \(3\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.ch 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(2\) \(3\) \(3\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.ci 24843.a 1.a $3$ $198.372$ 3.3.316.1 None \(2\) \(3\) \(-3\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cj 24843.a 1.a $3$ $198.372$ 3.3.169.1 None \(2\) \(3\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.ck 24843.a 1.a $3$ $198.372$ \(\Q(\zeta_{14})^+\) None \(3\) \(3\) \(-6\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.cl 24843.a 1.a $4$ $198.372$ 4.4.17428.1 None \(-1\) \(-4\) \(-3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cm 24843.a 1.a $4$ $198.372$ 4.4.64436.1 None \(-1\) \(4\) \(3\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.cn 24843.a 1.a $4$ $198.372$ \(\Q(\sqrt{3}, \sqrt{7})\) None \(0\) \(-4\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.co 24843.a 1.a $4$ $198.372$ \(\Q(\sqrt{3}, \sqrt{7})\) None \(0\) \(4\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.cp 24843.a 1.a $4$ $198.372$ 4.4.69777.1 None \(1\) \(-4\) \(3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cq 24843.a 1.a $4$ $198.372$ 4.4.64436.1 None \(1\) \(4\) \(-3\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.cr 24843.a 1.a $4$ $198.372$ 4.4.69777.1 None \(1\) \(4\) \(-3\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.cs 24843.a 1.a $5$ $198.372$ 5.5.2196544.1 None \(-2\) \(-5\) \(3\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.ct 24843.a 1.a $5$ $198.372$ 5.5.2196544.1 None \(-2\) \(5\) \(-3\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cu 24843.a 1.a $5$ $198.372$ 5.5.375116.1 None \(0\) \(-5\) \(3\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.cv 24843.a 1.a $5$ $198.372$ 5.5.375116.1 None \(0\) \(5\) \(-3\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cw 24843.a 1.a $6$ $198.372$ 6.6.46053184.1 None \(-2\) \(-6\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cx 24843.a 1.a $6$ $198.372$ 6.6.121819537.1 None \(-2\) \(6\) \(-3\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cy 24843.a 1.a $6$ $198.372$ 6.6.46053184.1 None \(-2\) \(6\) \(2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.cz 24843.a 1.a $6$ $198.372$ 6.6.382906624.1 None \(0\) \(-6\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.da 24843.a 1.a $6$ $198.372$ 6.6.382906624.1 None \(0\) \(6\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.db 24843.a 1.a $6$ $198.372$ 6.6.46053184.1 None \(2\) \(-6\) \(2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.dc 24843.a 1.a $6$ $198.372$ 6.6.121819537.1 None \(2\) \(6\) \(3\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.dd 24843.a 1.a $6$ $198.372$ 6.6.46053184.1 None \(2\) \(6\) \(-2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.de 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-2\) \(-8\) \(2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.df 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-2\) \(8\) \(6\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.dg 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-8\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.dh 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-8\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.di 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-8\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.dj 24843.a 1.a $8$ $198.372$ 8.8.\(\cdots\).1 None \(0\) \(-8\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.dk 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(8\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.dl 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(8\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.dm 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(8\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.dn 24843.a 1.a $8$ $198.372$ 8.8.\(\cdots\).1 None \(0\) \(8\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.do 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(2\) \(-8\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.dp 24843.a 1.a $8$ $198.372$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(2\) \(8\) \(-6\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.dq 24843.a 1.a $9$ $198.372$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(-1\) \(9\) \(-9\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.dr 24843.a 1.a $9$ $198.372$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None \(1\) \(9\) \(9\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.ds 24843.a 1.a $10$ $198.372$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(-4\) \(-10\) \(-6\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.dt 24843.a 1.a $10$ $198.372$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(-4\) \(10\) \(6\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.du 24843.a 1.a $10$ $198.372$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-10\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.dv 24843.a 1.a $10$ $198.372$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-10\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.dw 24843.a 1.a $10$ $198.372$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(10\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.dx 24843.a 1.a $10$ $198.372$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(10\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.dy 24843.a 1.a $12$ $198.372$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-12\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.dz 24843.a 1.a $12$ $198.372$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-12\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.ea 24843.a 1.a $12$ $198.372$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(12\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.eb 24843.a 1.a $12$ $198.372$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(12\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.ec 24843.a 1.a $15$ $198.372$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(-2\) \(-15\) \(-9\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.ed 24843.a 1.a $15$ $198.372$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None \(2\) \(-15\) \(9\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.ee 24843.a 1.a $16$ $198.372$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(-16\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.ef 24843.a 1.a $16$ $198.372$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(-16\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.eg 24843.a 1.a $16$ $198.372$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(-16\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.eh 24843.a 1.a $16$ $198.372$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(16\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.ei 24843.a 1.a $16$ $198.372$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(16\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.ej 24843.a 1.a $16$ $198.372$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(16\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.ek 24843.a 1.a $18$ $198.372$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(-1\) \(-18\) \(-12\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.el 24843.a 1.a $18$ $198.372$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(-1\) \(18\) \(12\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.em 24843.a 1.a $18$ $198.372$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(1\) \(-18\) \(12\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.en 24843.a 1.a $18$ $198.372$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(1\) \(18\) \(-12\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.eo 24843.a 1.a $20$ $198.372$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(0\) \(-20\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.ep 24843.a 1.a $20$ $198.372$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(0\) \(20\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.eq 24843.a 1.a $21$ $198.372$ None \(-3\) \(-21\) \(-1\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.er 24843.a 1.a $21$ $198.372$ None \(-3\) \(21\) \(1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.es 24843.a 1.a $21$ $198.372$ None \(3\) \(-21\) \(1\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.et 24843.a 1.a $21$ $198.372$ None \(3\) \(21\) \(-1\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.eu 24843.a 1.a $24$ $198.372$ None \(-7\) \(-24\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.ev 24843.a 1.a $24$ $198.372$ None \(-7\) \(24\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24843.2.a.ew 24843.a 1.a $24$ $198.372$ None \(0\) \(-24\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.ex 24843.a 1.a $24$ $198.372$ None \(0\) \(24\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.ey 24843.a 1.a $24$ $198.372$ None \(7\) \(-24\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.ez 24843.a 1.a $24$ $198.372$ None \(7\) \(24\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24843.2.a.fa 24843.a 1.a $36$ $198.372$ None \(-2\) \(-36\) \(24\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.fb 24843.a 1.a $36$ $198.372$ None \(-2\) \(36\) \(-24\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24843.2.a.fc 24843.a 1.a $36$ $198.372$ None \(2\) \(-36\) \(-24\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24843.2.a.fd 24843.a 1.a $36$ $198.372$ None \(2\) \(36\) \(24\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(24843))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(24843)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(273))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(637))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1911))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3549))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(8281))\)\(^{\oplus 2}\)