Properties

Label 24843.2.a.bv
Level $24843$
Weight $2$
Character orbit 24843.a
Self dual yes
Analytic conductor $198.372$
Dimension $3$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24843,2,Mod(1,24843)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24843, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24843.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 24843 = 3 \cdot 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24843.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,6,0,0,3,3,3,-6,0,0,0,-6,-6,-6,0,9,-3,0,-3,3,-3,3,0, -3,0,9,-3,9,-9,6,-6,0,0,-12,6,0,3,6,0,9,-15,6,21,3,6,0,6,6,0,3,0,0,0,-9, -30,15,3,15,-9,0,-3,0,3,-9,-21,-3,0,12,3,30,-21,-3,-6,0,0,-21,0,3,0,24, 0,3,-15,-9,-3,-9,3,0,6,-9,-15,30,9,3,0,-6,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(198.372353741\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 3 q - 3 q^{3} + 6 q^{5} + 3 q^{8} + 3 q^{9} + 3 q^{10} - 6 q^{11} - 6 q^{15} - 6 q^{16} - 6 q^{17} + 9 q^{19} - 3 q^{20} - 3 q^{22} + 3 q^{23} - 3 q^{24} + 3 q^{25} - 3 q^{27} + 9 q^{29} - 3 q^{30} + 9 q^{31}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.