Newspace parameters
| Level: | \( N \) | \(=\) | \( 247 = 13 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 247.z (of order \(12\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(1.97230492993\) |
| Analytic rank: | \(0\) |
| Dimension: | \(88\) |
| Relative dimension: | \(22\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 141.1 | −1.86530 | + | 1.86530i | − | 2.56769i | − | 4.95868i | −3.04891 | + | 0.816953i | 4.78951 | + | 4.78951i | −0.371832 | − | 1.38770i | 5.51881 | + | 5.51881i | −3.59305 | 4.16327 | − | 7.21099i | ||||
| 141.2 | −1.81254 | + | 1.81254i | 1.28516i | − | 4.57060i | 2.20779 | − | 0.591576i | −2.32940 | − | 2.32940i | −0.454189 | − | 1.69506i | 4.65931 | + | 4.65931i | 1.34837 | −2.92945 | + | 5.07396i | |||||
| 141.3 | −1.71306 | + | 1.71306i | 1.96487i | − | 3.86916i | −2.94400 | + | 0.788843i | −3.36594 | − | 3.36594i | 1.07500 | + | 4.01196i | 3.20198 | + | 3.20198i | −0.860718 | 3.69192 | − | 6.39459i | |||||
| 141.4 | −1.46122 | + | 1.46122i | − | 2.41824i | − | 2.27034i | 3.58569 | − | 0.960783i | 3.53359 | + | 3.53359i | −0.590401 | − | 2.20341i | 0.395022 | + | 0.395022i | −2.84791 | −3.83557 | + | 6.64341i | ||||
| 141.5 | −1.30928 | + | 1.30928i | 2.83019i | − | 1.42842i | −0.575278 | + | 0.154145i | −3.70551 | − | 3.70551i | −1.04046 | − | 3.88303i | −0.748356 | − | 0.748356i | −5.00998 | 0.551380 | − | 0.955018i | |||||
| 141.6 | −1.20848 | + | 1.20848i | 0.308608i | − | 0.920861i | 1.62953 | − | 0.436631i | −0.372947 | − | 0.372947i | 0.435093 | + | 1.62379i | −1.30412 | − | 1.30412i | 2.90476 | −1.44160 | + | 2.49692i | |||||
| 141.7 | −1.18233 | + | 1.18233i | − | 2.14610i | − | 0.795830i | −0.374156 | + | 0.100255i | 2.53741 | + | 2.53741i | 0.889436 | + | 3.31942i | −1.42373 | − | 1.42373i | −1.60575 | 0.323843 | − | 0.560912i | ||||
| 141.8 | −0.996021 | + | 0.996021i | − | 0.836119i | 0.0158842i | −2.41402 | + | 0.646834i | 0.832792 | + | 0.832792i | −0.702189 | − | 2.62060i | −2.00786 | − | 2.00786i | 2.30090 | 1.76015 | − | 3.04867i | |||||
| 141.9 | −0.317768 | + | 0.317768i | 1.19533i | 1.79805i | 2.57314 | − | 0.689472i | −0.379836 | − | 0.379836i | 0.544490 | + | 2.03206i | −1.20690 | − | 1.20690i | 1.57120 | −0.598570 | + | 1.03675i | ||||||
| 141.10 | −0.273277 | + | 0.273277i | 1.58138i | 1.85064i | −1.36285 | + | 0.365175i | −0.432157 | − | 0.432157i | 0.171253 | + | 0.639124i | −1.05229 | − | 1.05229i | 0.499222 | 0.272642 | − | 0.472230i | ||||||
| 141.11 | −0.0597405 | + | 0.0597405i | − | 0.623849i | 1.99286i | 0.894356 | − | 0.239642i | 0.0372691 | + | 0.0372691i | −1.18379 | − | 4.41795i | −0.238536 | − | 0.238536i | 2.61081 | −0.0391129 | + | 0.0677456i | |||||
| 141.12 | −0.0155569 | + | 0.0155569i | − | 2.63084i | 1.99952i | 3.09539 | − | 0.829408i | 0.0409276 | + | 0.0409276i | 0.629890 | + | 2.35078i | −0.0622200 | − | 0.0622200i | −3.92130 | −0.0352517 | + | 0.0610577i | |||||
| 141.13 | 0.219425 | − | 0.219425i | − | 1.44626i | 1.90371i | −3.86150 | + | 1.03469i | −0.317345 | − | 0.317345i | 0.965483 | + | 3.60323i | 0.856569 | + | 0.856569i | 0.908331 | −0.620272 | + | 1.07434i | |||||
| 141.14 | 0.557483 | − | 0.557483i | 2.96213i | 1.37843i | 3.87110 | − | 1.03726i | 1.65134 | + | 1.65134i | −0.837739 | − | 3.12649i | 1.88341 | + | 1.88341i | −5.77421 | 1.57982 | − | 2.73632i | ||||||
| 141.15 | 0.831895 | − | 0.831895i | − | 1.83299i | 0.615900i | 1.74214 | − | 0.466806i | −1.52485 | − | 1.52485i | −0.569588 | − | 2.12573i | 2.17616 | + | 2.17616i | −0.359836 | 1.06095 | − | 1.83761i | |||||
| 141.16 | 0.895490 | − | 0.895490i | 0.516757i | 0.396194i | −1.13405 | + | 0.303867i | 0.462751 | + | 0.462751i | 0.349756 | + | 1.30531i | 2.14577 | + | 2.14577i | 2.73296 | −0.743418 | + | 1.28764i | ||||||
| 141.17 | 1.04858 | − | 1.04858i | − | 3.10378i | − | 0.199027i | −2.60950 | + | 0.699214i | −3.25455 | − | 3.25455i | −0.699358 | − | 2.61004i | 1.88846 | + | 1.88846i | −6.63347 | −2.00308 | + | 3.46944i | ||||
| 141.18 | 1.09743 | − | 1.09743i | 2.75582i | − | 0.408698i | −2.23116 | + | 0.597838i | 3.02431 | + | 3.02431i | −0.0404798 | − | 0.151073i | 1.74634 | + | 1.74634i | −4.59452 | −1.79246 | + | 3.10462i | |||||
| 141.19 | 1.49300 | − | 1.49300i | 0.393223i | − | 2.45810i | 0.695308 | − | 0.186307i | 0.587083 | + | 0.587083i | −0.516731 | − | 1.92847i | −0.683946 | − | 0.683946i | 2.84538 | 0.759939 | − | 1.31625i | |||||
| 141.20 | 1.63590 | − | 1.63590i | − | 2.40603i | − | 3.35231i | 0.659303 | − | 0.176660i | −3.93602 | − | 3.93602i | 1.09172 | + | 4.07434i | −2.21224 | − | 2.21224i | −2.78899 | 0.789554 | − | 1.36755i | ||||
| See all 88 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 247.z | even | 12 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 247.2.z.a | ✓ | 88 |
| 13.f | odd | 12 | 1 | 247.2.bf.a | yes | 88 | |
| 19.d | odd | 6 | 1 | 247.2.bf.a | yes | 88 | |
| 247.z | even | 12 | 1 | inner | 247.2.z.a | ✓ | 88 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 247.2.z.a | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
| 247.2.z.a | ✓ | 88 | 247.z | even | 12 | 1 | inner |
| 247.2.bf.a | yes | 88 | 13.f | odd | 12 | 1 | |
| 247.2.bf.a | yes | 88 | 19.d | odd | 6 | 1 | |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(247, [\chi])\).