# Properties

 Label 2450.2.c.s Level $2450$ Weight $2$ Character orbit 2450.c Analytic conductor $19.563$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2450 = 2 \cdot 5^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2450.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$19.5633484952$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 70) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{2} + 3 i q^{3} - q^{4} + 3 q^{6} + i q^{8} -6 q^{9} +O(q^{10})$$ $$q -i q^{2} + 3 i q^{3} - q^{4} + 3 q^{6} + i q^{8} -6 q^{9} -2 q^{11} -3 i q^{12} + q^{16} + 4 i q^{17} + 6 i q^{18} + 6 q^{19} + 2 i q^{22} + 3 i q^{23} -3 q^{24} -9 i q^{27} -9 q^{29} -4 q^{31} -i q^{32} -6 i q^{33} + 4 q^{34} + 6 q^{36} + 4 i q^{37} -6 i q^{38} -7 q^{41} -5 i q^{43} + 2 q^{44} + 3 q^{46} -8 i q^{47} + 3 i q^{48} -12 q^{51} -2 i q^{53} -9 q^{54} + 18 i q^{57} + 9 i q^{58} -10 q^{59} + q^{61} + 4 i q^{62} - q^{64} -6 q^{66} + 9 i q^{67} -4 i q^{68} -9 q^{69} + 2 q^{71} -6 i q^{72} -4 i q^{73} + 4 q^{74} -6 q^{76} -10 q^{79} + 9 q^{81} + 7 i q^{82} -7 i q^{83} -5 q^{86} -27 i q^{87} -2 i q^{88} - q^{89} -3 i q^{92} -12 i q^{93} -8 q^{94} + 3 q^{96} -14 i q^{97} + 12 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + 6q^{6} - 12q^{9} + O(q^{10})$$ $$2q - 2q^{4} + 6q^{6} - 12q^{9} - 4q^{11} + 2q^{16} + 12q^{19} - 6q^{24} - 18q^{29} - 8q^{31} + 8q^{34} + 12q^{36} - 14q^{41} + 4q^{44} + 6q^{46} - 24q^{51} - 18q^{54} - 20q^{59} + 2q^{61} - 2q^{64} - 12q^{66} - 18q^{69} + 4q^{71} + 8q^{74} - 12q^{76} - 20q^{79} + 18q^{81} - 10q^{86} - 2q^{89} - 16q^{94} + 6q^{96} + 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$1177$$ $$\chi(n)$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
99.1
 1.00000i − 1.00000i
1.00000i 3.00000i −1.00000 0 3.00000 0 1.00000i −6.00000 0
99.2 1.00000i 3.00000i −1.00000 0 3.00000 0 1.00000i −6.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.c.s 2
5.b even 2 1 inner 2450.2.c.s 2
5.c odd 4 1 490.2.a.k 1
5.c odd 4 1 2450.2.a.b 1
7.b odd 2 1 2450.2.c.a 2
7.c even 3 2 350.2.j.f 4
15.e even 4 1 4410.2.a.r 1
20.e even 4 1 3920.2.a.b 1
35.c odd 2 1 2450.2.c.a 2
35.f even 4 1 490.2.a.e 1
35.f even 4 1 2450.2.a.q 1
35.j even 6 2 350.2.j.f 4
35.k even 12 2 490.2.e.f 2
35.l odd 12 2 70.2.e.a 2
35.l odd 12 2 350.2.e.l 2
105.k odd 4 1 4410.2.a.h 1
105.x even 12 2 630.2.k.f 2
140.j odd 4 1 3920.2.a.bk 1
140.w even 12 2 560.2.q.i 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.e.a 2 35.l odd 12 2
350.2.e.l 2 35.l odd 12 2
350.2.j.f 4 7.c even 3 2
350.2.j.f 4 35.j even 6 2
490.2.a.e 1 35.f even 4 1
490.2.a.k 1 5.c odd 4 1
490.2.e.f 2 35.k even 12 2
560.2.q.i 2 140.w even 12 2
630.2.k.f 2 105.x even 12 2
2450.2.a.b 1 5.c odd 4 1
2450.2.a.q 1 35.f even 4 1
2450.2.c.a 2 7.b odd 2 1
2450.2.c.a 2 35.c odd 2 1
2450.2.c.s 2 1.a even 1 1 trivial
2450.2.c.s 2 5.b even 2 1 inner
3920.2.a.b 1 20.e even 4 1
3920.2.a.bk 1 140.j odd 4 1
4410.2.a.h 1 105.k odd 4 1
4410.2.a.r 1 15.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2450, [\chi])$$:

 $$T_{3}^{2} + 9$$ $$T_{11} + 2$$ $$T_{13}$$ $$T_{19} - 6$$ $$T_{31} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$9 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$( 2 + T )^{2}$$
$13$ $$T^{2}$$
$17$ $$16 + T^{2}$$
$19$ $$( -6 + T )^{2}$$
$23$ $$9 + T^{2}$$
$29$ $$( 9 + T )^{2}$$
$31$ $$( 4 + T )^{2}$$
$37$ $$16 + T^{2}$$
$41$ $$( 7 + T )^{2}$$
$43$ $$25 + T^{2}$$
$47$ $$64 + T^{2}$$
$53$ $$4 + T^{2}$$
$59$ $$( 10 + T )^{2}$$
$61$ $$( -1 + T )^{2}$$
$67$ $$81 + T^{2}$$
$71$ $$( -2 + T )^{2}$$
$73$ $$16 + T^{2}$$
$79$ $$( 10 + T )^{2}$$
$83$ $$49 + T^{2}$$
$89$ $$( 1 + T )^{2}$$
$97$ $$196 + T^{2}$$