Properties

Label 2448.1.bw.a
Level $2448$
Weight $1$
Character orbit 2448.bw
Analytic conductor $1.222$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -68
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2448,1,Mod(1087,2448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2448.1087"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2448.bw (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{24}^{5} q^{3} + ( - \zeta_{24}^{7} - \zeta_{24}) q^{7} + \zeta_{24}^{10} q^{9} + (\zeta_{24}^{11} - \zeta_{24}^{9}) q^{11} + (\zeta_{24}^{10} + \zeta_{24}^{6}) q^{13} - q^{17} + (\zeta_{24}^{6} - 1) q^{21} + \cdots + ( - \zeta_{24}^{9} + \zeta_{24}^{7}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{17} - 8 q^{21} - 4 q^{25} + 4 q^{33} - 4 q^{49} + 8 q^{53} + 8 q^{69} + 4 q^{77} + 4 q^{81} - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(1361\) \(1873\) \(2143\)
\(\chi(n)\) \(1\) \(\zeta_{24}^{8}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1087.1
0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
−0.258819 + 0.965926i
0 −0.965926 0.258819i 0 0 0 0.707107 1.22474i 0 0.866025 + 0.500000i 0
1087.2 0 −0.258819 + 0.965926i 0 0 0 −0.707107 + 1.22474i 0 −0.866025 0.500000i 0
1087.3 0 0.258819 0.965926i 0 0 0 0.707107 1.22474i 0 −0.866025 0.500000i 0
1087.4 0 0.965926 + 0.258819i 0 0 0 −0.707107 + 1.22474i 0 0.866025 + 0.500000i 0
1903.1 0 −0.965926 + 0.258819i 0 0 0 0.707107 + 1.22474i 0 0.866025 0.500000i 0
1903.2 0 −0.258819 0.965926i 0 0 0 −0.707107 1.22474i 0 −0.866025 + 0.500000i 0
1903.3 0 0.258819 + 0.965926i 0 0 0 0.707107 + 1.22474i 0 −0.866025 + 0.500000i 0
1903.4 0 0.965926 0.258819i 0 0 0 −0.707107 1.22474i 0 0.866025 0.500000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1087.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
68.d odd 2 1 CM by \(\Q(\sqrt{-17}) \)
4.b odd 2 1 inner
9.c even 3 1 inner
17.b even 2 1 inner
36.f odd 6 1 inner
153.h even 6 1 inner
612.q odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.1.bw.a 8
4.b odd 2 1 inner 2448.1.bw.a 8
9.c even 3 1 inner 2448.1.bw.a 8
17.b even 2 1 inner 2448.1.bw.a 8
36.f odd 6 1 inner 2448.1.bw.a 8
68.d odd 2 1 CM 2448.1.bw.a 8
153.h even 6 1 inner 2448.1.bw.a 8
612.q odd 6 1 inner 2448.1.bw.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2448.1.bw.a 8 1.a even 1 1 trivial
2448.1.bw.a 8 4.b odd 2 1 inner
2448.1.bw.a 8 9.c even 3 1 inner
2448.1.bw.a 8 17.b even 2 1 inner
2448.1.bw.a 8 36.f odd 6 1 inner
2448.1.bw.a 8 68.d odd 2 1 CM
2448.1.bw.a 8 153.h even 6 1 inner
2448.1.bw.a 8 612.q odd 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2448, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( (T^{4} + 3 T^{2} + 9)^{2} \) Copy content Toggle raw display
$17$ \( (T + 1)^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T - 1)^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T^{2} - 3)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less