Properties

Label 2448.1.bf.a
Level $2448$
Weight $1$
Character orbit 2448.bf
Analytic conductor $1.222$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2448,1,Mod(1135,2448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2448.1135"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2448.bf (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22171115093\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.176868.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - i - 1) q^{5} - i q^{17} + i q^{25} + ( - i - 1) q^{29} + ( - i - 1) q^{37} + (i - 1) q^{41} - i q^{49} - 2 i q^{53} + (i - 1) q^{61} + ( - i - 1) q^{73} + (i - 1) q^{85} + 2 q^{89} + (i + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{29} - 2 q^{37} - 2 q^{41} - 2 q^{61} - 2 q^{73} - 2 q^{85} + 4 q^{89} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(1361\) \(1873\) \(2143\)
\(\chi(n)\) \(1\) \(1\) \(i\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1135.1
1.00000i
1.00000i
0 0 0 −1.00000 1.00000i 0 0 0 0 0
1279.1 0 0 0 −1.00000 + 1.00000i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
17.c even 4 1 inner
68.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2448.1.bf.a 2
3.b odd 2 1 2448.1.bf.b yes 2
4.b odd 2 1 CM 2448.1.bf.a 2
12.b even 2 1 2448.1.bf.b yes 2
17.c even 4 1 inner 2448.1.bf.a 2
51.f odd 4 1 2448.1.bf.b yes 2
68.f odd 4 1 inner 2448.1.bf.a 2
204.l even 4 1 2448.1.bf.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2448.1.bf.a 2 1.a even 1 1 trivial
2448.1.bf.a 2 4.b odd 2 1 CM
2448.1.bf.a 2 17.c even 4 1 inner
2448.1.bf.a 2 68.f odd 4 1 inner
2448.1.bf.b yes 2 3.b odd 2 1
2448.1.bf.b yes 2 12.b even 2 1
2448.1.bf.b yes 2 51.f odd 4 1
2448.1.bf.b yes 2 204.l even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 2T_{5} + 2 \) acting on \(S_{1}^{\mathrm{new}}(2448, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 1 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
show more
show less