Properties

Label 2442.4.a.o.1.3
Level $2442$
Weight $4$
Character 2442.1
Self dual yes
Analytic conductor $144.083$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2442,4,Mod(1,2442)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2442.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2442, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2442.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,24,-36,48,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.082664234\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 987 x^{10} + 1990 x^{9} + 356253 x^{8} - 389456 x^{7} - 58119076 x^{6} + \cdots - 100856276127 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 11 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-11.9335\) of defining polynomial
Character \(\chi\) \(=\) 2442.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -10.9335 q^{5} -6.00000 q^{6} -16.0653 q^{7} +8.00000 q^{8} +9.00000 q^{9} -21.8671 q^{10} +11.0000 q^{11} -12.0000 q^{12} -13.5335 q^{13} -32.1306 q^{14} +32.8006 q^{15} +16.0000 q^{16} -9.81869 q^{17} +18.0000 q^{18} -11.9414 q^{19} -43.7342 q^{20} +48.1959 q^{21} +22.0000 q^{22} +3.58079 q^{23} -24.0000 q^{24} -5.45769 q^{25} -27.0670 q^{26} -27.0000 q^{27} -64.2613 q^{28} +17.9232 q^{29} +65.6012 q^{30} -158.084 q^{31} +32.0000 q^{32} -33.0000 q^{33} -19.6374 q^{34} +175.651 q^{35} +36.0000 q^{36} -37.0000 q^{37} -23.8828 q^{38} +40.6005 q^{39} -87.4683 q^{40} -317.405 q^{41} +96.3919 q^{42} +77.0272 q^{43} +44.0000 q^{44} -98.4019 q^{45} +7.16157 q^{46} -300.514 q^{47} -48.0000 q^{48} -84.9056 q^{49} -10.9154 q^{50} +29.4561 q^{51} -54.1340 q^{52} -393.890 q^{53} -54.0000 q^{54} -120.269 q^{55} -128.523 q^{56} +35.8242 q^{57} +35.8464 q^{58} -217.312 q^{59} +131.202 q^{60} +786.549 q^{61} -316.168 q^{62} -144.588 q^{63} +64.0000 q^{64} +147.969 q^{65} -66.0000 q^{66} +341.912 q^{67} -39.2748 q^{68} -10.7424 q^{69} +351.302 q^{70} +590.068 q^{71} +72.0000 q^{72} -1132.43 q^{73} -74.0000 q^{74} +16.3731 q^{75} -47.7655 q^{76} -176.718 q^{77} +81.2009 q^{78} +62.5044 q^{79} -174.937 q^{80} +81.0000 q^{81} -634.811 q^{82} +668.540 q^{83} +192.784 q^{84} +107.353 q^{85} +154.054 q^{86} -53.7697 q^{87} +88.0000 q^{88} -490.110 q^{89} -196.804 q^{90} +217.420 q^{91} +14.3231 q^{92} +474.252 q^{93} -601.029 q^{94} +130.562 q^{95} -96.0000 q^{96} +1237.68 q^{97} -169.811 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{2} - 36 q^{3} + 48 q^{4} + 15 q^{5} - 72 q^{6} + 31 q^{7} + 96 q^{8} + 108 q^{9} + 30 q^{10} + 132 q^{11} - 144 q^{12} + 58 q^{13} + 62 q^{14} - 45 q^{15} + 192 q^{16} + 193 q^{17} + 216 q^{18}+ \cdots + 1188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) −10.9335 −0.977926 −0.488963 0.872305i \(-0.662625\pi\)
−0.488963 + 0.872305i \(0.662625\pi\)
\(6\) −6.00000 −0.408248
\(7\) −16.0653 −0.867446 −0.433723 0.901046i \(-0.642800\pi\)
−0.433723 + 0.901046i \(0.642800\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) −21.8671 −0.691498
\(11\) 11.0000 0.301511
\(12\) −12.0000 −0.288675
\(13\) −13.5335 −0.288732 −0.144366 0.989524i \(-0.546114\pi\)
−0.144366 + 0.989524i \(0.546114\pi\)
\(14\) −32.1306 −0.613377
\(15\) 32.8006 0.564606
\(16\) 16.0000 0.250000
\(17\) −9.81869 −0.140081 −0.0700407 0.997544i \(-0.522313\pi\)
−0.0700407 + 0.997544i \(0.522313\pi\)
\(18\) 18.0000 0.235702
\(19\) −11.9414 −0.144186 −0.0720932 0.997398i \(-0.522968\pi\)
−0.0720932 + 0.997398i \(0.522968\pi\)
\(20\) −43.7342 −0.488963
\(21\) 48.1959 0.500820
\(22\) 22.0000 0.213201
\(23\) 3.58079 0.0324629 0.0162314 0.999868i \(-0.494833\pi\)
0.0162314 + 0.999868i \(0.494833\pi\)
\(24\) −24.0000 −0.204124
\(25\) −5.45769 −0.0436615
\(26\) −27.0670 −0.204164
\(27\) −27.0000 −0.192450
\(28\) −64.2613 −0.433723
\(29\) 17.9232 0.114768 0.0573838 0.998352i \(-0.481724\pi\)
0.0573838 + 0.998352i \(0.481724\pi\)
\(30\) 65.6012 0.399236
\(31\) −158.084 −0.915895 −0.457947 0.888979i \(-0.651415\pi\)
−0.457947 + 0.888979i \(0.651415\pi\)
\(32\) 32.0000 0.176777
\(33\) −33.0000 −0.174078
\(34\) −19.6374 −0.0990524
\(35\) 175.651 0.848297
\(36\) 36.0000 0.166667
\(37\) −37.0000 −0.164399
\(38\) −23.8828 −0.101955
\(39\) 40.6005 0.166699
\(40\) −87.4683 −0.345749
\(41\) −317.405 −1.20903 −0.604517 0.796592i \(-0.706634\pi\)
−0.604517 + 0.796592i \(0.706634\pi\)
\(42\) 96.3919 0.354133
\(43\) 77.0272 0.273175 0.136588 0.990628i \(-0.456386\pi\)
0.136588 + 0.990628i \(0.456386\pi\)
\(44\) 44.0000 0.150756
\(45\) −98.4019 −0.325975
\(46\) 7.16157 0.0229547
\(47\) −300.514 −0.932650 −0.466325 0.884614i \(-0.654422\pi\)
−0.466325 + 0.884614i \(0.654422\pi\)
\(48\) −48.0000 −0.144338
\(49\) −84.9056 −0.247538
\(50\) −10.9154 −0.0308733
\(51\) 29.4561 0.0808760
\(52\) −54.1340 −0.144366
\(53\) −393.890 −1.02085 −0.510424 0.859923i \(-0.670512\pi\)
−0.510424 + 0.859923i \(0.670512\pi\)
\(54\) −54.0000 −0.136083
\(55\) −120.269 −0.294856
\(56\) −128.523 −0.306688
\(57\) 35.8242 0.0832461
\(58\) 35.8464 0.0811529
\(59\) −217.312 −0.479519 −0.239759 0.970832i \(-0.577069\pi\)
−0.239759 + 0.970832i \(0.577069\pi\)
\(60\) 131.202 0.282303
\(61\) 786.549 1.65094 0.825469 0.564447i \(-0.190911\pi\)
0.825469 + 0.564447i \(0.190911\pi\)
\(62\) −316.168 −0.647635
\(63\) −144.588 −0.289149
\(64\) 64.0000 0.125000
\(65\) 147.969 0.282358
\(66\) −66.0000 −0.123091
\(67\) 341.912 0.623451 0.311725 0.950172i \(-0.399093\pi\)
0.311725 + 0.950172i \(0.399093\pi\)
\(68\) −39.2748 −0.0700407
\(69\) −10.7424 −0.0187424
\(70\) 351.302 0.599837
\(71\) 590.068 0.986312 0.493156 0.869941i \(-0.335843\pi\)
0.493156 + 0.869941i \(0.335843\pi\)
\(72\) 72.0000 0.117851
\(73\) −1132.43 −1.81562 −0.907811 0.419379i \(-0.862248\pi\)
−0.907811 + 0.419379i \(0.862248\pi\)
\(74\) −74.0000 −0.116248
\(75\) 16.3731 0.0252080
\(76\) −47.7655 −0.0720932
\(77\) −176.718 −0.261545
\(78\) 81.2009 0.117874
\(79\) 62.5044 0.0890163 0.0445082 0.999009i \(-0.485828\pi\)
0.0445082 + 0.999009i \(0.485828\pi\)
\(80\) −174.937 −0.244481
\(81\) 81.0000 0.111111
\(82\) −634.811 −0.854916
\(83\) 668.540 0.884118 0.442059 0.896986i \(-0.354248\pi\)
0.442059 + 0.896986i \(0.354248\pi\)
\(84\) 192.784 0.250410
\(85\) 107.353 0.136989
\(86\) 154.054 0.193164
\(87\) −53.7697 −0.0662611
\(88\) 88.0000 0.106600
\(89\) −490.110 −0.583726 −0.291863 0.956460i \(-0.594275\pi\)
−0.291863 + 0.956460i \(0.594275\pi\)
\(90\) −196.804 −0.230499
\(91\) 217.420 0.250459
\(92\) 14.3231 0.0162314
\(93\) 474.252 0.528792
\(94\) −601.029 −0.659483
\(95\) 130.562 0.141004
\(96\) −96.0000 −0.102062
\(97\) 1237.68 1.29554 0.647769 0.761837i \(-0.275702\pi\)
0.647769 + 0.761837i \(0.275702\pi\)
\(98\) −169.811 −0.175036
\(99\) 99.0000 0.100504
\(100\) −21.8307 −0.0218307
\(101\) 265.995 0.262055 0.131027 0.991379i \(-0.458172\pi\)
0.131027 + 0.991379i \(0.458172\pi\)
\(102\) 58.9121 0.0571880
\(103\) 301.977 0.288881 0.144440 0.989514i \(-0.453862\pi\)
0.144440 + 0.989514i \(0.453862\pi\)
\(104\) −108.268 −0.102082
\(105\) −526.952 −0.489765
\(106\) −787.780 −0.721849
\(107\) −1143.84 −1.03345 −0.516725 0.856151i \(-0.672849\pi\)
−0.516725 + 0.856151i \(0.672849\pi\)
\(108\) −108.000 −0.0962250
\(109\) −284.939 −0.250387 −0.125193 0.992132i \(-0.539955\pi\)
−0.125193 + 0.992132i \(0.539955\pi\)
\(110\) −240.538 −0.208494
\(111\) 111.000 0.0949158
\(112\) −257.045 −0.216861
\(113\) 2265.41 1.88594 0.942971 0.332876i \(-0.108019\pi\)
0.942971 + 0.332876i \(0.108019\pi\)
\(114\) 71.6483 0.0588639
\(115\) −39.1507 −0.0317463
\(116\) 71.6929 0.0573838
\(117\) −121.801 −0.0962440
\(118\) −434.624 −0.339071
\(119\) 157.740 0.121513
\(120\) 262.405 0.199618
\(121\) 121.000 0.0909091
\(122\) 1573.10 1.16739
\(123\) 952.216 0.698036
\(124\) −632.336 −0.457947
\(125\) 1426.36 1.02062
\(126\) −289.176 −0.204459
\(127\) −261.354 −0.182610 −0.0913048 0.995823i \(-0.529104\pi\)
−0.0913048 + 0.995823i \(0.529104\pi\)
\(128\) 128.000 0.0883883
\(129\) −231.082 −0.157718
\(130\) 295.938 0.199657
\(131\) −1406.58 −0.938119 −0.469060 0.883167i \(-0.655407\pi\)
−0.469060 + 0.883167i \(0.655407\pi\)
\(132\) −132.000 −0.0870388
\(133\) 191.842 0.125074
\(134\) 683.824 0.440846
\(135\) 295.206 0.188202
\(136\) −78.5495 −0.0495262
\(137\) 391.946 0.244425 0.122212 0.992504i \(-0.461001\pi\)
0.122212 + 0.992504i \(0.461001\pi\)
\(138\) −21.4847 −0.0132529
\(139\) 1608.61 0.981587 0.490793 0.871276i \(-0.336707\pi\)
0.490793 + 0.871276i \(0.336707\pi\)
\(140\) 702.603 0.424149
\(141\) 901.543 0.538466
\(142\) 1180.14 0.697428
\(143\) −148.868 −0.0870559
\(144\) 144.000 0.0833333
\(145\) −195.964 −0.112234
\(146\) −2264.85 −1.28384
\(147\) 254.717 0.142916
\(148\) −148.000 −0.0821995
\(149\) −346.803 −0.190679 −0.0953397 0.995445i \(-0.530394\pi\)
−0.0953397 + 0.995445i \(0.530394\pi\)
\(150\) 32.7461 0.0178247
\(151\) 3283.85 1.76977 0.884887 0.465805i \(-0.154235\pi\)
0.884887 + 0.465805i \(0.154235\pi\)
\(152\) −95.5311 −0.0509776
\(153\) −88.3682 −0.0466938
\(154\) −353.437 −0.184940
\(155\) 1728.42 0.895677
\(156\) 162.402 0.0833497
\(157\) 2682.69 1.36371 0.681853 0.731490i \(-0.261175\pi\)
0.681853 + 0.731490i \(0.261175\pi\)
\(158\) 125.009 0.0629441
\(159\) 1181.67 0.589387
\(160\) −349.873 −0.172874
\(161\) −57.5265 −0.0281598
\(162\) 162.000 0.0785674
\(163\) 640.480 0.307768 0.153884 0.988089i \(-0.450822\pi\)
0.153884 + 0.988089i \(0.450822\pi\)
\(164\) −1269.62 −0.604517
\(165\) 360.807 0.170235
\(166\) 1337.08 0.625166
\(167\) −3290.20 −1.52457 −0.762286 0.647240i \(-0.775923\pi\)
−0.762286 + 0.647240i \(0.775923\pi\)
\(168\) 385.568 0.177067
\(169\) −2013.84 −0.916634
\(170\) 214.706 0.0968659
\(171\) −107.472 −0.0480621
\(172\) 308.109 0.136588
\(173\) 2519.04 1.10705 0.553524 0.832833i \(-0.313283\pi\)
0.553524 + 0.832833i \(0.313283\pi\)
\(174\) −107.539 −0.0468536
\(175\) 87.6795 0.0378740
\(176\) 176.000 0.0753778
\(177\) 651.936 0.276850
\(178\) −980.221 −0.412756
\(179\) 3340.79 1.39499 0.697493 0.716592i \(-0.254299\pi\)
0.697493 + 0.716592i \(0.254299\pi\)
\(180\) −393.607 −0.162988
\(181\) −1785.35 −0.733173 −0.366586 0.930384i \(-0.619474\pi\)
−0.366586 + 0.930384i \(0.619474\pi\)
\(182\) 434.840 0.177101
\(183\) −2359.65 −0.953170
\(184\) 28.6463 0.0114774
\(185\) 404.541 0.160770
\(186\) 948.504 0.373912
\(187\) −108.006 −0.0422361
\(188\) −1202.06 −0.466325
\(189\) 433.764 0.166940
\(190\) 261.123 0.0997046
\(191\) −777.765 −0.294644 −0.147322 0.989089i \(-0.547065\pi\)
−0.147322 + 0.989089i \(0.547065\pi\)
\(192\) −192.000 −0.0721688
\(193\) 4833.70 1.80278 0.901391 0.433005i \(-0.142547\pi\)
0.901391 + 0.433005i \(0.142547\pi\)
\(194\) 2475.36 0.916083
\(195\) −443.907 −0.163020
\(196\) −339.622 −0.123769
\(197\) −1041.42 −0.376640 −0.188320 0.982108i \(-0.560304\pi\)
−0.188320 + 0.982108i \(0.560304\pi\)
\(198\) 198.000 0.0710669
\(199\) −3545.04 −1.26282 −0.631410 0.775449i \(-0.717524\pi\)
−0.631410 + 0.775449i \(0.717524\pi\)
\(200\) −43.6615 −0.0154367
\(201\) −1025.74 −0.359949
\(202\) 531.990 0.185301
\(203\) −287.942 −0.0995546
\(204\) 117.824 0.0404380
\(205\) 3470.36 1.18235
\(206\) 603.955 0.204270
\(207\) 32.2271 0.0108210
\(208\) −216.536 −0.0721830
\(209\) −131.355 −0.0434738
\(210\) −1053.90 −0.346316
\(211\) 3613.88 1.17910 0.589548 0.807733i \(-0.299306\pi\)
0.589548 + 0.807733i \(0.299306\pi\)
\(212\) −1575.56 −0.510424
\(213\) −1770.20 −0.569447
\(214\) −2287.68 −0.730759
\(215\) −842.180 −0.267145
\(216\) −216.000 −0.0680414
\(217\) 2539.67 0.794489
\(218\) −569.877 −0.177050
\(219\) 3397.28 1.04825
\(220\) −481.076 −0.147428
\(221\) 132.881 0.0404459
\(222\) 222.000 0.0671156
\(223\) 5934.28 1.78201 0.891007 0.453990i \(-0.150000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(224\) −514.090 −0.153344
\(225\) −49.1192 −0.0145538
\(226\) 4530.81 1.33356
\(227\) 2981.33 0.871707 0.435854 0.900018i \(-0.356447\pi\)
0.435854 + 0.900018i \(0.356447\pi\)
\(228\) 143.297 0.0416230
\(229\) −2396.83 −0.691647 −0.345824 0.938300i \(-0.612400\pi\)
−0.345824 + 0.938300i \(0.612400\pi\)
\(230\) −78.3014 −0.0224480
\(231\) 530.155 0.151003
\(232\) 143.386 0.0405765
\(233\) 4593.00 1.29141 0.645703 0.763589i \(-0.276564\pi\)
0.645703 + 0.763589i \(0.276564\pi\)
\(234\) −243.603 −0.0680548
\(235\) 3285.69 0.912062
\(236\) −869.248 −0.239759
\(237\) −187.513 −0.0513936
\(238\) 315.481 0.0859226
\(239\) 2641.69 0.714965 0.357482 0.933920i \(-0.383635\pi\)
0.357482 + 0.933920i \(0.383635\pi\)
\(240\) 524.810 0.141151
\(241\) −3549.78 −0.948803 −0.474402 0.880309i \(-0.657336\pi\)
−0.474402 + 0.880309i \(0.657336\pi\)
\(242\) 242.000 0.0642824
\(243\) −243.000 −0.0641500
\(244\) 3146.19 0.825469
\(245\) 928.319 0.242074
\(246\) 1904.43 0.493586
\(247\) 161.609 0.0416312
\(248\) −1264.67 −0.323818
\(249\) −2005.62 −0.510446
\(250\) 2852.73 0.721690
\(251\) −1648.83 −0.414635 −0.207318 0.978274i \(-0.566473\pi\)
−0.207318 + 0.978274i \(0.566473\pi\)
\(252\) −578.351 −0.144574
\(253\) 39.3887 0.00978792
\(254\) −522.708 −0.129125
\(255\) −322.059 −0.0790907
\(256\) 256.000 0.0625000
\(257\) 6174.78 1.49872 0.749362 0.662161i \(-0.230360\pi\)
0.749362 + 0.662161i \(0.230360\pi\)
\(258\) −462.163 −0.111523
\(259\) 594.417 0.142607
\(260\) 591.876 0.141179
\(261\) 161.309 0.0382558
\(262\) −2813.16 −0.663350
\(263\) 922.879 0.216377 0.108189 0.994130i \(-0.465495\pi\)
0.108189 + 0.994130i \(0.465495\pi\)
\(264\) −264.000 −0.0615457
\(265\) 4306.61 0.998314
\(266\) 383.684 0.0884406
\(267\) 1470.33 0.337014
\(268\) 1367.65 0.311725
\(269\) 7299.94 1.65459 0.827296 0.561766i \(-0.189878\pi\)
0.827296 + 0.561766i \(0.189878\pi\)
\(270\) 590.411 0.133079
\(271\) −2751.56 −0.616772 −0.308386 0.951261i \(-0.599789\pi\)
−0.308386 + 0.951261i \(0.599789\pi\)
\(272\) −157.099 −0.0350203
\(273\) −652.259 −0.144603
\(274\) 783.892 0.172834
\(275\) −60.0345 −0.0131644
\(276\) −42.9694 −0.00937122
\(277\) −7450.39 −1.61607 −0.808033 0.589137i \(-0.799468\pi\)
−0.808033 + 0.589137i \(0.799468\pi\)
\(278\) 3217.22 0.694087
\(279\) −1422.76 −0.305298
\(280\) 1405.21 0.299918
\(281\) −3284.70 −0.697326 −0.348663 0.937248i \(-0.613364\pi\)
−0.348663 + 0.937248i \(0.613364\pi\)
\(282\) 1803.09 0.380753
\(283\) −8610.72 −1.80867 −0.904336 0.426821i \(-0.859634\pi\)
−0.904336 + 0.426821i \(0.859634\pi\)
\(284\) 2360.27 0.493156
\(285\) −391.685 −0.0814085
\(286\) −297.737 −0.0615578
\(287\) 5099.22 1.04877
\(288\) 288.000 0.0589256
\(289\) −4816.59 −0.980377
\(290\) −391.929 −0.0793615
\(291\) −3713.03 −0.747979
\(292\) −4529.70 −0.907811
\(293\) 9597.27 1.91358 0.956789 0.290784i \(-0.0939160\pi\)
0.956789 + 0.290784i \(0.0939160\pi\)
\(294\) 509.434 0.101057
\(295\) 2375.99 0.468934
\(296\) −296.000 −0.0581238
\(297\) −297.000 −0.0580259
\(298\) −693.606 −0.134831
\(299\) −48.4605 −0.00937306
\(300\) 65.4922 0.0126040
\(301\) −1237.47 −0.236965
\(302\) 6567.70 1.25142
\(303\) −797.986 −0.151297
\(304\) −191.062 −0.0360466
\(305\) −8599.76 −1.61449
\(306\) −176.736 −0.0330175
\(307\) 1029.92 0.191469 0.0957344 0.995407i \(-0.469480\pi\)
0.0957344 + 0.995407i \(0.469480\pi\)
\(308\) −706.874 −0.130772
\(309\) −905.932 −0.166785
\(310\) 3456.84 0.633339
\(311\) 7018.15 1.27962 0.639812 0.768532i \(-0.279012\pi\)
0.639812 + 0.768532i \(0.279012\pi\)
\(312\) 324.804 0.0589371
\(313\) −4474.84 −0.808092 −0.404046 0.914739i \(-0.632397\pi\)
−0.404046 + 0.914739i \(0.632397\pi\)
\(314\) 5365.37 0.964285
\(315\) 1580.86 0.282766
\(316\) 250.017 0.0445082
\(317\) 5850.46 1.03658 0.518288 0.855206i \(-0.326570\pi\)
0.518288 + 0.855206i \(0.326570\pi\)
\(318\) 2363.34 0.416760
\(319\) 197.155 0.0346037
\(320\) −699.747 −0.122241
\(321\) 3431.52 0.596663
\(322\) −115.053 −0.0199120
\(323\) 117.249 0.0201978
\(324\) 324.000 0.0555556
\(325\) 73.8615 0.0126065
\(326\) 1280.96 0.217625
\(327\) 854.816 0.144561
\(328\) −2539.24 −0.427458
\(329\) 4827.86 0.809023
\(330\) 721.614 0.120374
\(331\) 3949.28 0.655806 0.327903 0.944711i \(-0.393658\pi\)
0.327903 + 0.944711i \(0.393658\pi\)
\(332\) 2674.16 0.442059
\(333\) −333.000 −0.0547997
\(334\) −6580.40 −1.07804
\(335\) −3738.31 −0.609688
\(336\) 771.135 0.125205
\(337\) 1671.16 0.270131 0.135065 0.990837i \(-0.456876\pi\)
0.135065 + 0.990837i \(0.456876\pi\)
\(338\) −4027.69 −0.648158
\(339\) −6796.22 −1.08885
\(340\) 429.412 0.0684946
\(341\) −1738.92 −0.276153
\(342\) −214.945 −0.0339851
\(343\) 6874.44 1.08217
\(344\) 616.218 0.0965821
\(345\) 117.452 0.0183287
\(346\) 5038.09 0.782801
\(347\) −5153.29 −0.797242 −0.398621 0.917116i \(-0.630511\pi\)
−0.398621 + 0.917116i \(0.630511\pi\)
\(348\) −215.079 −0.0331305
\(349\) 4917.61 0.754252 0.377126 0.926162i \(-0.376912\pi\)
0.377126 + 0.926162i \(0.376912\pi\)
\(350\) 175.359 0.0267809
\(351\) 365.404 0.0555665
\(352\) 352.000 0.0533002
\(353\) −9736.55 −1.46806 −0.734029 0.679119i \(-0.762362\pi\)
−0.734029 + 0.679119i \(0.762362\pi\)
\(354\) 1303.87 0.195763
\(355\) −6451.53 −0.964540
\(356\) −1960.44 −0.291863
\(357\) −473.221 −0.0701555
\(358\) 6681.58 0.986404
\(359\) 272.185 0.0400150 0.0200075 0.999800i \(-0.493631\pi\)
0.0200075 + 0.999800i \(0.493631\pi\)
\(360\) −787.215 −0.115250
\(361\) −6716.40 −0.979210
\(362\) −3570.71 −0.518432
\(363\) −363.000 −0.0524864
\(364\) 869.679 0.125230
\(365\) 12381.4 1.77554
\(366\) −4719.29 −0.673993
\(367\) −11252.1 −1.60042 −0.800210 0.599720i \(-0.795279\pi\)
−0.800210 + 0.599720i \(0.795279\pi\)
\(368\) 57.2926 0.00811571
\(369\) −2856.65 −0.403011
\(370\) 809.082 0.113682
\(371\) 6327.97 0.885531
\(372\) 1897.01 0.264396
\(373\) −4371.85 −0.606878 −0.303439 0.952851i \(-0.598135\pi\)
−0.303439 + 0.952851i \(0.598135\pi\)
\(374\) −216.011 −0.0298654
\(375\) −4279.09 −0.589257
\(376\) −2404.12 −0.329742
\(377\) −242.564 −0.0331370
\(378\) 867.527 0.118044
\(379\) 7062.94 0.957253 0.478626 0.878019i \(-0.341135\pi\)
0.478626 + 0.878019i \(0.341135\pi\)
\(380\) 522.247 0.0705018
\(381\) 784.062 0.105430
\(382\) −1555.53 −0.208345
\(383\) −6166.74 −0.822730 −0.411365 0.911471i \(-0.634948\pi\)
−0.411365 + 0.911471i \(0.634948\pi\)
\(384\) −384.000 −0.0510310
\(385\) 1932.16 0.255771
\(386\) 9667.39 1.27476
\(387\) 693.245 0.0910584
\(388\) 4950.71 0.647769
\(389\) 2084.49 0.271691 0.135845 0.990730i \(-0.456625\pi\)
0.135845 + 0.990730i \(0.456625\pi\)
\(390\) −887.814 −0.115272
\(391\) −35.1586 −0.00454744
\(392\) −679.245 −0.0875180
\(393\) 4219.74 0.541623
\(394\) −2082.84 −0.266324
\(395\) −683.394 −0.0870514
\(396\) 396.000 0.0502519
\(397\) 13060.2 1.65107 0.825534 0.564352i \(-0.190874\pi\)
0.825534 + 0.564352i \(0.190874\pi\)
\(398\) −7090.08 −0.892949
\(399\) −575.526 −0.0722114
\(400\) −87.3230 −0.0109154
\(401\) −12346.9 −1.53759 −0.768795 0.639495i \(-0.779144\pi\)
−0.768795 + 0.639495i \(0.779144\pi\)
\(402\) −2051.47 −0.254523
\(403\) 2139.43 0.264448
\(404\) 1063.98 0.131027
\(405\) −885.617 −0.108658
\(406\) −575.884 −0.0703957
\(407\) −407.000 −0.0495682
\(408\) 235.649 0.0285940
\(409\) 6959.79 0.841417 0.420708 0.907196i \(-0.361782\pi\)
0.420708 + 0.907196i \(0.361782\pi\)
\(410\) 6940.73 0.836044
\(411\) −1175.84 −0.141119
\(412\) 1207.91 0.144440
\(413\) 3491.19 0.415957
\(414\) 64.4542 0.00765157
\(415\) −7309.51 −0.864602
\(416\) −433.072 −0.0510411
\(417\) −4825.83 −0.566719
\(418\) −262.710 −0.0307406
\(419\) 4604.08 0.536811 0.268406 0.963306i \(-0.413503\pi\)
0.268406 + 0.963306i \(0.413503\pi\)
\(420\) −2107.81 −0.244882
\(421\) −8610.76 −0.996824 −0.498412 0.866940i \(-0.666083\pi\)
−0.498412 + 0.866940i \(0.666083\pi\)
\(422\) 7227.75 0.833747
\(423\) −2704.63 −0.310883
\(424\) −3151.12 −0.360924
\(425\) 53.5873 0.00611616
\(426\) −3540.41 −0.402660
\(427\) −12636.2 −1.43210
\(428\) −4575.36 −0.516725
\(429\) 446.605 0.0502618
\(430\) −1684.36 −0.188900
\(431\) 13409.1 1.49860 0.749299 0.662232i \(-0.230390\pi\)
0.749299 + 0.662232i \(0.230390\pi\)
\(432\) −432.000 −0.0481125
\(433\) 2097.08 0.232746 0.116373 0.993206i \(-0.462873\pi\)
0.116373 + 0.993206i \(0.462873\pi\)
\(434\) 5079.34 0.561788
\(435\) 587.893 0.0647984
\(436\) −1139.75 −0.125193
\(437\) −42.7596 −0.00468070
\(438\) 6794.56 0.741225
\(439\) −3377.68 −0.367217 −0.183608 0.982999i \(-0.558778\pi\)
−0.183608 + 0.982999i \(0.558778\pi\)
\(440\) −962.152 −0.104247
\(441\) −764.150 −0.0825127
\(442\) 265.762 0.0285996
\(443\) 8334.25 0.893842 0.446921 0.894573i \(-0.352520\pi\)
0.446921 + 0.894573i \(0.352520\pi\)
\(444\) 444.000 0.0474579
\(445\) 5358.64 0.570840
\(446\) 11868.6 1.26007
\(447\) 1040.41 0.110089
\(448\) −1028.18 −0.108431
\(449\) 2914.02 0.306283 0.153141 0.988204i \(-0.451061\pi\)
0.153141 + 0.988204i \(0.451061\pi\)
\(450\) −98.2383 −0.0102911
\(451\) −3491.46 −0.364537
\(452\) 9061.62 0.942971
\(453\) −9851.55 −1.02178
\(454\) 5962.65 0.616390
\(455\) −2377.17 −0.244930
\(456\) 286.593 0.0294319
\(457\) 2488.19 0.254689 0.127344 0.991859i \(-0.459355\pi\)
0.127344 + 0.991859i \(0.459355\pi\)
\(458\) −4793.67 −0.489068
\(459\) 265.105 0.0269587
\(460\) −156.603 −0.0158731
\(461\) −1457.32 −0.147232 −0.0736160 0.997287i \(-0.523454\pi\)
−0.0736160 + 0.997287i \(0.523454\pi\)
\(462\) 1060.31 0.106775
\(463\) −11232.9 −1.12751 −0.563754 0.825943i \(-0.690643\pi\)
−0.563754 + 0.825943i \(0.690643\pi\)
\(464\) 286.772 0.0286919
\(465\) −5185.25 −0.517119
\(466\) 9186.00 0.913162
\(467\) 527.735 0.0522926 0.0261463 0.999658i \(-0.491676\pi\)
0.0261463 + 0.999658i \(0.491676\pi\)
\(468\) −487.206 −0.0481220
\(469\) −5492.92 −0.540810
\(470\) 6571.37 0.644925
\(471\) −8048.06 −0.787336
\(472\) −1738.50 −0.169536
\(473\) 847.299 0.0823655
\(474\) −375.026 −0.0363408
\(475\) 65.1723 0.00629539
\(476\) 630.961 0.0607565
\(477\) −3545.01 −0.340283
\(478\) 5283.37 0.505556
\(479\) 1647.77 0.157178 0.0785892 0.996907i \(-0.474958\pi\)
0.0785892 + 0.996907i \(0.474958\pi\)
\(480\) 1049.62 0.0998091
\(481\) 500.739 0.0474672
\(482\) −7099.56 −0.670905
\(483\) 172.579 0.0162580
\(484\) 484.000 0.0454545
\(485\) −13532.2 −1.26694
\(486\) −486.000 −0.0453609
\(487\) 20901.7 1.94486 0.972429 0.233197i \(-0.0749188\pi\)
0.972429 + 0.233197i \(0.0749188\pi\)
\(488\) 6292.39 0.583695
\(489\) −1921.44 −0.177690
\(490\) 1856.64 0.171172
\(491\) 661.192 0.0607722 0.0303861 0.999538i \(-0.490326\pi\)
0.0303861 + 0.999538i \(0.490326\pi\)
\(492\) 3808.86 0.349018
\(493\) −175.983 −0.0160768
\(494\) 323.217 0.0294377
\(495\) −1082.42 −0.0982852
\(496\) −2529.34 −0.228974
\(497\) −9479.62 −0.855572
\(498\) −4011.24 −0.360940
\(499\) 19224.5 1.72466 0.862330 0.506347i \(-0.169004\pi\)
0.862330 + 0.506347i \(0.169004\pi\)
\(500\) 5705.46 0.510312
\(501\) 9870.61 0.880212
\(502\) −3297.67 −0.293191
\(503\) −15957.6 −1.41454 −0.707269 0.706945i \(-0.750073\pi\)
−0.707269 + 0.706945i \(0.750073\pi\)
\(504\) −1156.70 −0.102229
\(505\) −2908.27 −0.256270
\(506\) 78.7773 0.00692110
\(507\) 6041.53 0.529219
\(508\) −1045.42 −0.0913048
\(509\) −11729.1 −1.02138 −0.510692 0.859763i \(-0.670611\pi\)
−0.510692 + 0.859763i \(0.670611\pi\)
\(510\) −644.118 −0.0559256
\(511\) 18192.8 1.57495
\(512\) 512.000 0.0441942
\(513\) 322.417 0.0277487
\(514\) 12349.6 1.05976
\(515\) −3301.68 −0.282504
\(516\) −924.327 −0.0788589
\(517\) −3305.66 −0.281204
\(518\) 1188.83 0.100838
\(519\) −7557.13 −0.639154
\(520\) 1183.75 0.0998287
\(521\) 12893.1 1.08418 0.542091 0.840320i \(-0.317633\pi\)
0.542091 + 0.840320i \(0.317633\pi\)
\(522\) 322.618 0.0270510
\(523\) −19397.1 −1.62175 −0.810874 0.585221i \(-0.801008\pi\)
−0.810874 + 0.585221i \(0.801008\pi\)
\(524\) −5626.33 −0.469060
\(525\) −263.038 −0.0218665
\(526\) 1845.76 0.153002
\(527\) 1552.18 0.128300
\(528\) −528.000 −0.0435194
\(529\) −12154.2 −0.998946
\(530\) 8613.23 0.705915
\(531\) −1955.81 −0.159840
\(532\) 767.369 0.0625369
\(533\) 4295.60 0.349087
\(534\) 2940.66 0.238305
\(535\) 12506.2 1.01064
\(536\) 2735.30 0.220423
\(537\) −10022.4 −0.805395
\(538\) 14599.9 1.16997
\(539\) −933.962 −0.0746356
\(540\) 1180.82 0.0941009
\(541\) −17804.2 −1.41490 −0.707449 0.706764i \(-0.750154\pi\)
−0.707449 + 0.706764i \(0.750154\pi\)
\(542\) −5503.11 −0.436123
\(543\) 5356.06 0.423298
\(544\) −314.198 −0.0247631
\(545\) 3115.39 0.244860
\(546\) −1304.52 −0.102250
\(547\) 3625.95 0.283427 0.141713 0.989908i \(-0.454739\pi\)
0.141713 + 0.989908i \(0.454739\pi\)
\(548\) 1567.78 0.122212
\(549\) 7078.94 0.550313
\(550\) −120.069 −0.00930866
\(551\) −214.028 −0.0165479
\(552\) −85.9389 −0.00662645
\(553\) −1004.15 −0.0772168
\(554\) −14900.8 −1.14273
\(555\) −1213.62 −0.0928206
\(556\) 6434.44 0.490793
\(557\) 8041.23 0.611702 0.305851 0.952079i \(-0.401059\pi\)
0.305851 + 0.952079i \(0.401059\pi\)
\(558\) −2845.51 −0.215878
\(559\) −1042.45 −0.0788744
\(560\) 2810.41 0.212074
\(561\) 324.017 0.0243850
\(562\) −6569.40 −0.493084
\(563\) 10.2659 0.000768482 0 0.000384241 1.00000i \(-0.499878\pi\)
0.000384241 1.00000i \(0.499878\pi\)
\(564\) 3606.17 0.269233
\(565\) −24768.9 −1.84431
\(566\) −17221.4 −1.27892
\(567\) −1301.29 −0.0963828
\(568\) 4720.54 0.348714
\(569\) 19679.7 1.44994 0.724971 0.688779i \(-0.241853\pi\)
0.724971 + 0.688779i \(0.241853\pi\)
\(570\) −783.370 −0.0575645
\(571\) 18775.0 1.37602 0.688011 0.725700i \(-0.258484\pi\)
0.688011 + 0.725700i \(0.258484\pi\)
\(572\) −595.473 −0.0435280
\(573\) 2333.29 0.170113
\(574\) 10198.4 0.741593
\(575\) −19.5428 −0.00141738
\(576\) 576.000 0.0416667
\(577\) 22172.3 1.59973 0.799867 0.600177i \(-0.204903\pi\)
0.799867 + 0.600177i \(0.204903\pi\)
\(578\) −9633.19 −0.693231
\(579\) −14501.1 −1.04084
\(580\) −783.857 −0.0561171
\(581\) −10740.3 −0.766924
\(582\) −7426.07 −0.528901
\(583\) −4332.79 −0.307797
\(584\) −9059.41 −0.641919
\(585\) 1331.72 0.0941194
\(586\) 19194.5 1.35310
\(587\) 2017.04 0.141826 0.0709131 0.997482i \(-0.477409\pi\)
0.0709131 + 0.997482i \(0.477409\pi\)
\(588\) 1018.87 0.0714581
\(589\) 1887.74 0.132060
\(590\) 4751.98 0.331586
\(591\) 3124.26 0.217453
\(592\) −592.000 −0.0410997
\(593\) 5067.42 0.350918 0.175459 0.984487i \(-0.443859\pi\)
0.175459 + 0.984487i \(0.443859\pi\)
\(594\) −594.000 −0.0410305
\(595\) −1724.66 −0.118831
\(596\) −1387.21 −0.0953397
\(597\) 10635.1 0.729090
\(598\) −96.9211 −0.00662775
\(599\) 2237.92 0.152653 0.0763264 0.997083i \(-0.475681\pi\)
0.0763264 + 0.997083i \(0.475681\pi\)
\(600\) 130.984 0.00891236
\(601\) 21595.8 1.46574 0.732871 0.680368i \(-0.238180\pi\)
0.732871 + 0.680368i \(0.238180\pi\)
\(602\) −2474.93 −0.167559
\(603\) 3077.21 0.207817
\(604\) 13135.4 0.884887
\(605\) −1322.96 −0.0889023
\(606\) −1595.97 −0.106983
\(607\) 8000.48 0.534974 0.267487 0.963561i \(-0.413807\pi\)
0.267487 + 0.963561i \(0.413807\pi\)
\(608\) −382.124 −0.0254888
\(609\) 863.827 0.0574779
\(610\) −17199.5 −1.14162
\(611\) 4067.01 0.269286
\(612\) −353.473 −0.0233469
\(613\) 15369.7 1.01268 0.506342 0.862333i \(-0.330997\pi\)
0.506342 + 0.862333i \(0.330997\pi\)
\(614\) 2059.85 0.135389
\(615\) −10411.1 −0.682627
\(616\) −1413.75 −0.0924700
\(617\) 24121.7 1.57391 0.786954 0.617011i \(-0.211657\pi\)
0.786954 + 0.617011i \(0.211657\pi\)
\(618\) −1811.86 −0.117935
\(619\) −27287.9 −1.77188 −0.885941 0.463798i \(-0.846486\pi\)
−0.885941 + 0.463798i \(0.846486\pi\)
\(620\) 6913.67 0.447838
\(621\) −96.6812 −0.00624748
\(622\) 14036.3 0.904830
\(623\) 7873.78 0.506350
\(624\) 649.607 0.0416749
\(625\) −14913.0 −0.954432
\(626\) −8949.68 −0.571408
\(627\) 394.066 0.0250996
\(628\) 10730.7 0.681853
\(629\) 363.292 0.0230292
\(630\) 3161.71 0.199946
\(631\) −19680.5 −1.24163 −0.620816 0.783956i \(-0.713199\pi\)
−0.620816 + 0.783956i \(0.713199\pi\)
\(632\) 500.035 0.0314720
\(633\) −10841.6 −0.680752
\(634\) 11700.9 0.732970
\(635\) 2857.53 0.178579
\(636\) 4726.68 0.294694
\(637\) 1149.07 0.0714722
\(638\) 394.311 0.0244685
\(639\) 5310.61 0.328771
\(640\) −1399.49 −0.0864372
\(641\) 28859.6 1.77829 0.889147 0.457622i \(-0.151299\pi\)
0.889147 + 0.457622i \(0.151299\pi\)
\(642\) 6863.04 0.421904
\(643\) −21497.3 −1.31846 −0.659232 0.751939i \(-0.729119\pi\)
−0.659232 + 0.751939i \(0.729119\pi\)
\(644\) −230.106 −0.0140799
\(645\) 2526.54 0.154236
\(646\) 234.498 0.0142820
\(647\) −30378.2 −1.84589 −0.922945 0.384932i \(-0.874225\pi\)
−0.922945 + 0.384932i \(0.874225\pi\)
\(648\) 648.000 0.0392837
\(649\) −2390.43 −0.144580
\(650\) 147.723 0.00891412
\(651\) −7619.01 −0.458698
\(652\) 2561.92 0.153884
\(653\) 17274.5 1.03522 0.517612 0.855615i \(-0.326821\pi\)
0.517612 + 0.855615i \(0.326821\pi\)
\(654\) 1709.63 0.102220
\(655\) 15378.9 0.917411
\(656\) −5078.49 −0.302259
\(657\) −10191.8 −0.605207
\(658\) 9655.72 0.572066
\(659\) −29879.4 −1.76621 −0.883107 0.469172i \(-0.844552\pi\)
−0.883107 + 0.469172i \(0.844552\pi\)
\(660\) 1443.23 0.0851175
\(661\) 19911.1 1.17164 0.585818 0.810443i \(-0.300773\pi\)
0.585818 + 0.810443i \(0.300773\pi\)
\(662\) 7898.55 0.463725
\(663\) −398.643 −0.0233515
\(664\) 5348.32 0.312583
\(665\) −2097.51 −0.122313
\(666\) −666.000 −0.0387492
\(667\) 64.1792 0.00372568
\(668\) −13160.8 −0.762286
\(669\) −17802.8 −1.02885
\(670\) −7476.62 −0.431115
\(671\) 8652.04 0.497777
\(672\) 1542.27 0.0885333
\(673\) 28656.4 1.64134 0.820670 0.571403i \(-0.193601\pi\)
0.820670 + 0.571403i \(0.193601\pi\)
\(674\) 3342.33 0.191011
\(675\) 147.358 0.00840266
\(676\) −8055.38 −0.458317
\(677\) −14001.2 −0.794842 −0.397421 0.917636i \(-0.630095\pi\)
−0.397421 + 0.917636i \(0.630095\pi\)
\(678\) −13592.4 −0.769932
\(679\) −19883.7 −1.12381
\(680\) 858.824 0.0484330
\(681\) −8943.98 −0.503280
\(682\) −3477.85 −0.195269
\(683\) 2831.74 0.158643 0.0793217 0.996849i \(-0.474725\pi\)
0.0793217 + 0.996849i \(0.474725\pi\)
\(684\) −429.890 −0.0240311
\(685\) −4285.36 −0.239029
\(686\) 13748.9 0.765211
\(687\) 7190.50 0.399323
\(688\) 1232.44 0.0682938
\(689\) 5330.71 0.294752
\(690\) 234.904 0.0129604
\(691\) −18470.6 −1.01686 −0.508432 0.861102i \(-0.669775\pi\)
−0.508432 + 0.861102i \(0.669775\pi\)
\(692\) 10076.2 0.553524
\(693\) −1590.47 −0.0871816
\(694\) −10306.6 −0.563735
\(695\) −17587.8 −0.959919
\(696\) −430.157 −0.0234268
\(697\) 3116.51 0.169363
\(698\) 9835.23 0.533336
\(699\) −13779.0 −0.745593
\(700\) 350.718 0.0189370
\(701\) 16189.8 0.872295 0.436147 0.899875i \(-0.356343\pi\)
0.436147 + 0.899875i \(0.356343\pi\)
\(702\) 730.808 0.0392914
\(703\) 441.831 0.0237041
\(704\) 704.000 0.0376889
\(705\) −9857.06 −0.526579
\(706\) −19473.1 −1.03807
\(707\) −4273.30 −0.227318
\(708\) 2607.74 0.138425
\(709\) −7521.26 −0.398402 −0.199201 0.979959i \(-0.563835\pi\)
−0.199201 + 0.979959i \(0.563835\pi\)
\(710\) −12903.1 −0.682033
\(711\) 562.539 0.0296721
\(712\) −3920.88 −0.206378
\(713\) −566.065 −0.0297326
\(714\) −946.442 −0.0496074
\(715\) 1627.66 0.0851342
\(716\) 13363.2 0.697493
\(717\) −7925.06 −0.412785
\(718\) 544.370 0.0282949
\(719\) −11287.2 −0.585455 −0.292727 0.956196i \(-0.594563\pi\)
−0.292727 + 0.956196i \(0.594563\pi\)
\(720\) −1574.43 −0.0814938
\(721\) −4851.36 −0.250588
\(722\) −13432.8 −0.692406
\(723\) 10649.3 0.547792
\(724\) −7141.42 −0.366586
\(725\) −97.8193 −0.00501092
\(726\) −726.000 −0.0371135
\(727\) 23970.1 1.22284 0.611418 0.791308i \(-0.290599\pi\)
0.611418 + 0.791308i \(0.290599\pi\)
\(728\) 1739.36 0.0885507
\(729\) 729.000 0.0370370
\(730\) 24762.9 1.25550
\(731\) −756.306 −0.0382668
\(732\) −9438.58 −0.476585
\(733\) 1783.83 0.0898872 0.0449436 0.998990i \(-0.485689\pi\)
0.0449436 + 0.998990i \(0.485689\pi\)
\(734\) −22504.2 −1.13167
\(735\) −2784.96 −0.139761
\(736\) 114.585 0.00573868
\(737\) 3761.03 0.187977
\(738\) −5713.30 −0.284972
\(739\) −35016.9 −1.74305 −0.871526 0.490349i \(-0.836869\pi\)
−0.871526 + 0.490349i \(0.836869\pi\)
\(740\) 1618.16 0.0803850
\(741\) −484.826 −0.0240358
\(742\) 12655.9 0.626165
\(743\) 27471.1 1.35642 0.678208 0.734870i \(-0.262757\pi\)
0.678208 + 0.734870i \(0.262757\pi\)
\(744\) 3794.02 0.186956
\(745\) 3791.79 0.186470
\(746\) −8743.69 −0.429128
\(747\) 6016.86 0.294706
\(748\) −432.022 −0.0211181
\(749\) 18376.1 0.896462
\(750\) −8558.19 −0.416668
\(751\) 27502.9 1.33634 0.668172 0.744007i \(-0.267077\pi\)
0.668172 + 0.744007i \(0.267077\pi\)
\(752\) −4808.23 −0.233162
\(753\) 4946.50 0.239390
\(754\) −485.127 −0.0234314
\(755\) −35904.1 −1.73071
\(756\) 1735.05 0.0834700
\(757\) −20274.0 −0.973408 −0.486704 0.873567i \(-0.661801\pi\)
−0.486704 + 0.873567i \(0.661801\pi\)
\(758\) 14125.9 0.676880
\(759\) −118.166 −0.00565106
\(760\) 1044.49 0.0498523
\(761\) −18725.1 −0.891965 −0.445982 0.895042i \(-0.647146\pi\)
−0.445982 + 0.895042i \(0.647146\pi\)
\(762\) 1568.12 0.0745501
\(763\) 4577.63 0.217197
\(764\) −3111.06 −0.147322
\(765\) 966.177 0.0456630
\(766\) −12333.5 −0.581758
\(767\) 2940.99 0.138452
\(768\) −768.000 −0.0360844
\(769\) −18962.7 −0.889224 −0.444612 0.895723i \(-0.646658\pi\)
−0.444612 + 0.895723i \(0.646658\pi\)
\(770\) 3864.32 0.180858
\(771\) −18524.3 −0.865288
\(772\) 19334.8 0.901391
\(773\) 5471.66 0.254595 0.127298 0.991865i \(-0.459370\pi\)
0.127298 + 0.991865i \(0.459370\pi\)
\(774\) 1386.49 0.0643880
\(775\) 862.773 0.0399893
\(776\) 9901.42 0.458042
\(777\) −1783.25 −0.0823343
\(778\) 4168.97 0.192114
\(779\) 3790.26 0.174326
\(780\) −1775.63 −0.0815098
\(781\) 6490.74 0.297384
\(782\) −70.3173 −0.00321553
\(783\) −483.927 −0.0220870
\(784\) −1358.49 −0.0618846
\(785\) −29331.3 −1.33360
\(786\) 8439.49 0.382986
\(787\) −8383.96 −0.379741 −0.189870 0.981809i \(-0.560807\pi\)
−0.189870 + 0.981809i \(0.560807\pi\)
\(788\) −4165.67 −0.188320
\(789\) −2768.64 −0.124925
\(790\) −1366.79 −0.0615546
\(791\) −36394.5 −1.63595
\(792\) 792.000 0.0355335
\(793\) −10644.7 −0.476679
\(794\) 26120.5 1.16748
\(795\) −12919.8 −0.576377
\(796\) −14180.2 −0.631410
\(797\) 716.910 0.0318623 0.0159311 0.999873i \(-0.494929\pi\)
0.0159311 + 0.999873i \(0.494929\pi\)
\(798\) −1151.05 −0.0510612
\(799\) 2950.66 0.130647
\(800\) −174.646 −0.00771833
\(801\) −4410.99 −0.194575
\(802\) −24693.8 −1.08724
\(803\) −12456.7 −0.547431
\(804\) −4102.94 −0.179975
\(805\) 628.968 0.0275382
\(806\) 4278.86 0.186993
\(807\) −21899.8 −0.955279
\(808\) 2127.96 0.0926503
\(809\) −35809.3 −1.55623 −0.778115 0.628122i \(-0.783824\pi\)
−0.778115 + 0.628122i \(0.783824\pi\)
\(810\) −1771.23 −0.0768331
\(811\) 20095.8 0.870110 0.435055 0.900404i \(-0.356729\pi\)
0.435055 + 0.900404i \(0.356729\pi\)
\(812\) −1151.77 −0.0497773
\(813\) 8254.67 0.356093
\(814\) −814.000 −0.0350500
\(815\) −7002.71 −0.300975
\(816\) 471.297 0.0202190
\(817\) −919.812 −0.0393882
\(818\) 13919.6 0.594972
\(819\) 1956.78 0.0834864
\(820\) 13881.5 0.591173
\(821\) −39766.0 −1.69043 −0.845216 0.534425i \(-0.820528\pi\)
−0.845216 + 0.534425i \(0.820528\pi\)
\(822\) −2351.67 −0.0997860
\(823\) −43505.2 −1.84264 −0.921322 0.388800i \(-0.872890\pi\)
−0.921322 + 0.388800i \(0.872890\pi\)
\(824\) 2415.82 0.102135
\(825\) 180.104 0.00760049
\(826\) 6982.37 0.294126
\(827\) −10669.9 −0.448642 −0.224321 0.974515i \(-0.572016\pi\)
−0.224321 + 0.974515i \(0.572016\pi\)
\(828\) 128.908 0.00541048
\(829\) 16961.4 0.710609 0.355304 0.934751i \(-0.384377\pi\)
0.355304 + 0.934751i \(0.384377\pi\)
\(830\) −14619.0 −0.611366
\(831\) 22351.2 0.933036
\(832\) −866.143 −0.0360915
\(833\) 833.662 0.0346755
\(834\) −9651.66 −0.400731
\(835\) 35973.6 1.49092
\(836\) −525.421 −0.0217369
\(837\) 4268.27 0.176264
\(838\) 9208.15 0.379583
\(839\) −12511.8 −0.514845 −0.257422 0.966299i \(-0.582873\pi\)
−0.257422 + 0.966299i \(0.582873\pi\)
\(840\) −4215.62 −0.173158
\(841\) −24067.8 −0.986828
\(842\) −17221.5 −0.704861
\(843\) 9854.09 0.402601
\(844\) 14455.5 0.589548
\(845\) 22018.5 0.896400
\(846\) −5409.26 −0.219828
\(847\) −1943.90 −0.0788587
\(848\) −6302.24 −0.255212
\(849\) 25832.2 1.04424
\(850\) 107.175 0.00432478
\(851\) −132.489 −0.00533686
\(852\) −7080.81 −0.284724
\(853\) 11339.9 0.455183 0.227591 0.973757i \(-0.426915\pi\)
0.227591 + 0.973757i \(0.426915\pi\)
\(854\) −25272.3 −1.01265
\(855\) 1175.05 0.0470012
\(856\) −9150.72 −0.365380
\(857\) 36159.9 1.44131 0.720653 0.693296i \(-0.243842\pi\)
0.720653 + 0.693296i \(0.243842\pi\)
\(858\) 893.210 0.0355404
\(859\) 8136.73 0.323192 0.161596 0.986857i \(-0.448336\pi\)
0.161596 + 0.986857i \(0.448336\pi\)
\(860\) −3368.72 −0.133573
\(861\) −15297.7 −0.605508
\(862\) 26818.3 1.05967
\(863\) 24275.8 0.957543 0.478771 0.877940i \(-0.341082\pi\)
0.478771 + 0.877940i \(0.341082\pi\)
\(864\) −864.000 −0.0340207
\(865\) −27542.1 −1.08261
\(866\) 4194.15 0.164576
\(867\) 14449.8 0.566021
\(868\) 10158.7 0.397244
\(869\) 687.548 0.0268394
\(870\) 1175.79 0.0458194
\(871\) −4627.26 −0.180010
\(872\) −2279.51 −0.0885251
\(873\) 11139.1 0.431846
\(874\) −85.5191 −0.00330976
\(875\) −22915.0 −0.885335
\(876\) 13589.1 0.524125
\(877\) −27741.5 −1.06815 −0.534073 0.845438i \(-0.679339\pi\)
−0.534073 + 0.845438i \(0.679339\pi\)
\(878\) −6755.37 −0.259661
\(879\) −28791.8 −1.10480
\(880\) −1924.30 −0.0737139
\(881\) 10558.1 0.403758 0.201879 0.979410i \(-0.435295\pi\)
0.201879 + 0.979410i \(0.435295\pi\)
\(882\) −1528.30 −0.0583453
\(883\) −24625.3 −0.938512 −0.469256 0.883062i \(-0.655478\pi\)
−0.469256 + 0.883062i \(0.655478\pi\)
\(884\) 531.525 0.0202230
\(885\) −7127.97 −0.270739
\(886\) 16668.5 0.632042
\(887\) 32180.1 1.21815 0.609077 0.793111i \(-0.291540\pi\)
0.609077 + 0.793111i \(0.291540\pi\)
\(888\) 888.000 0.0335578
\(889\) 4198.74 0.158404
\(890\) 10717.3 0.403645
\(891\) 891.000 0.0335013
\(892\) 23737.1 0.891007
\(893\) 3588.56 0.134475
\(894\) 2080.82 0.0778445
\(895\) −36526.7 −1.36419
\(896\) −2056.36 −0.0766721
\(897\) 145.382 0.00541154
\(898\) 5828.03 0.216575
\(899\) −2833.37 −0.105115
\(900\) −196.477 −0.00727691
\(901\) 3867.49 0.143002
\(902\) −6982.92 −0.257767
\(903\) 3712.40 0.136812
\(904\) 18123.2 0.666781
\(905\) 19520.2 0.716989
\(906\) −19703.1 −0.722508
\(907\) −35394.5 −1.29576 −0.647880 0.761743i \(-0.724344\pi\)
−0.647880 + 0.761743i \(0.724344\pi\)
\(908\) 11925.3 0.435854
\(909\) 2393.96 0.0873515
\(910\) −4754.34 −0.173192
\(911\) −11137.1 −0.405039 −0.202519 0.979278i \(-0.564913\pi\)
−0.202519 + 0.979278i \(0.564913\pi\)
\(912\) 573.187 0.0208115
\(913\) 7353.94 0.266572
\(914\) 4976.39 0.180092
\(915\) 25799.3 0.932129
\(916\) −9587.33 −0.345824
\(917\) 22597.2 0.813767
\(918\) 530.209 0.0190627
\(919\) −25258.6 −0.906642 −0.453321 0.891347i \(-0.649761\pi\)
−0.453321 + 0.891347i \(0.649761\pi\)
\(920\) −313.205 −0.0112240
\(921\) −3089.77 −0.110545
\(922\) −2914.63 −0.104109
\(923\) −7985.67 −0.284780
\(924\) 2120.62 0.0755014
\(925\) 201.934 0.00717790
\(926\) −22465.8 −0.797268
\(927\) 2717.80 0.0962936
\(928\) 573.543 0.0202882
\(929\) −39068.1 −1.37975 −0.689873 0.723931i \(-0.742333\pi\)
−0.689873 + 0.723931i \(0.742333\pi\)
\(930\) −10370.5 −0.365658
\(931\) 1013.89 0.0356916
\(932\) 18372.0 0.645703
\(933\) −21054.5 −0.738791
\(934\) 1055.47 0.0369765
\(935\) 1180.88 0.0413038
\(936\) −974.411 −0.0340274
\(937\) 7059.61 0.246134 0.123067 0.992398i \(-0.460727\pi\)
0.123067 + 0.992398i \(0.460727\pi\)
\(938\) −10985.8 −0.382410
\(939\) 13424.5 0.466552
\(940\) 13142.7 0.456031
\(941\) −30205.1 −1.04640 −0.523198 0.852211i \(-0.675261\pi\)
−0.523198 + 0.852211i \(0.675261\pi\)
\(942\) −16096.1 −0.556730
\(943\) −1136.56 −0.0392487
\(944\) −3476.99 −0.119880
\(945\) −4742.57 −0.163255
\(946\) 1694.60 0.0582412
\(947\) −14988.2 −0.514308 −0.257154 0.966370i \(-0.582785\pi\)
−0.257154 + 0.966370i \(0.582785\pi\)
\(948\) −750.052 −0.0256968
\(949\) 15325.7 0.524228
\(950\) 130.345 0.00445152
\(951\) −17551.4 −0.598468
\(952\) 1261.92 0.0429613
\(953\) −49715.9 −1.68988 −0.844940 0.534861i \(-0.820364\pi\)
−0.844940 + 0.534861i \(0.820364\pi\)
\(954\) −7090.02 −0.240616
\(955\) 8503.72 0.288140
\(956\) 10566.7 0.357482
\(957\) −591.466 −0.0199785
\(958\) 3295.54 0.111142
\(959\) −6296.73 −0.212025
\(960\) 2099.24 0.0705757
\(961\) −4800.44 −0.161137
\(962\) 1001.48 0.0335644
\(963\) −10294.6 −0.344483
\(964\) −14199.1 −0.474402
\(965\) −52849.4 −1.76299
\(966\) 345.159 0.0114962
\(967\) 28000.7 0.931170 0.465585 0.885003i \(-0.345844\pi\)
0.465585 + 0.885003i \(0.345844\pi\)
\(968\) 968.000 0.0321412
\(969\) −351.746 −0.0116612
\(970\) −27064.4 −0.895861
\(971\) 27496.8 0.908770 0.454385 0.890805i \(-0.349859\pi\)
0.454385 + 0.890805i \(0.349859\pi\)
\(972\) −972.000 −0.0320750
\(973\) −25842.8 −0.851473
\(974\) 41803.4 1.37522
\(975\) −221.585 −0.00727834
\(976\) 12584.8 0.412735
\(977\) 2327.76 0.0762248 0.0381124 0.999273i \(-0.487866\pi\)
0.0381124 + 0.999273i \(0.487866\pi\)
\(978\) −3842.88 −0.125646
\(979\) −5391.21 −0.176000
\(980\) 3713.28 0.121037
\(981\) −2564.45 −0.0834623
\(982\) 1322.38 0.0429724
\(983\) 38486.6 1.24876 0.624380 0.781120i \(-0.285352\pi\)
0.624380 + 0.781120i \(0.285352\pi\)
\(984\) 7617.73 0.246793
\(985\) 11386.4 0.368325
\(986\) −351.965 −0.0113680
\(987\) −14483.6 −0.467090
\(988\) 646.434 0.0208156
\(989\) 275.818 0.00886805
\(990\) −2164.84 −0.0694981
\(991\) 24411.0 0.782482 0.391241 0.920288i \(-0.372046\pi\)
0.391241 + 0.920288i \(0.372046\pi\)
\(992\) −5058.69 −0.161909
\(993\) −11847.8 −0.378630
\(994\) −18959.2 −0.604981
\(995\) 38759.9 1.23494
\(996\) −8022.48 −0.255223
\(997\) −27824.6 −0.883866 −0.441933 0.897048i \(-0.645707\pi\)
−0.441933 + 0.897048i \(0.645707\pi\)
\(998\) 38448.9 1.21952
\(999\) 999.000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2442.4.a.o.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2442.4.a.o.1.3 12 1.1 even 1 trivial