Properties

Label 2442.4.a.n.1.12
Level $2442$
Weight $4$
Character 2442.1
Self dual yes
Analytic conductor $144.083$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2442,4,Mod(1,2442)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2442.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2442, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2442.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-24,-36,48,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.082664234\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} - 849 x^{10} + 1205 x^{9} + 248360 x^{8} - 397682 x^{7} - 29936318 x^{6} + \cdots - 37088275010 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(20.6786\) of defining polynomial
Character \(\chi\) \(=\) 2442.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +19.6786 q^{5} +6.00000 q^{6} -7.62338 q^{7} -8.00000 q^{8} +9.00000 q^{9} -39.3573 q^{10} +11.0000 q^{11} -12.0000 q^{12} -44.5633 q^{13} +15.2468 q^{14} -59.0359 q^{15} +16.0000 q^{16} -128.543 q^{17} -18.0000 q^{18} -59.7027 q^{19} +78.7145 q^{20} +22.8701 q^{21} -22.0000 q^{22} +129.457 q^{23} +24.0000 q^{24} +262.248 q^{25} +89.1267 q^{26} -27.0000 q^{27} -30.4935 q^{28} +176.065 q^{29} +118.072 q^{30} +82.8831 q^{31} -32.0000 q^{32} -33.0000 q^{33} +257.086 q^{34} -150.018 q^{35} +36.0000 q^{36} -37.0000 q^{37} +119.405 q^{38} +133.690 q^{39} -157.429 q^{40} +109.674 q^{41} -45.7403 q^{42} -189.963 q^{43} +44.0000 q^{44} +177.108 q^{45} -258.914 q^{46} +180.860 q^{47} -48.0000 q^{48} -284.884 q^{49} -524.497 q^{50} +385.629 q^{51} -178.253 q^{52} +126.628 q^{53} +54.0000 q^{54} +216.465 q^{55} +60.9870 q^{56} +179.108 q^{57} -352.131 q^{58} +71.2303 q^{59} -236.144 q^{60} +808.643 q^{61} -165.766 q^{62} -68.6104 q^{63} +64.0000 q^{64} -876.945 q^{65} +66.0000 q^{66} -988.947 q^{67} -514.172 q^{68} -388.371 q^{69} +300.035 q^{70} -122.744 q^{71} -72.0000 q^{72} -1011.42 q^{73} +74.0000 q^{74} -786.745 q^{75} -238.811 q^{76} -83.8571 q^{77} -267.380 q^{78} -64.1711 q^{79} +314.858 q^{80} +81.0000 q^{81} -219.347 q^{82} +877.672 q^{83} +91.4805 q^{84} -2529.55 q^{85} +379.925 q^{86} -528.196 q^{87} -88.0000 q^{88} +337.503 q^{89} -354.215 q^{90} +339.723 q^{91} +517.828 q^{92} -248.649 q^{93} -361.720 q^{94} -1174.87 q^{95} +96.0000 q^{96} -788.180 q^{97} +569.768 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{2} - 36 q^{3} + 48 q^{4} - 10 q^{5} + 72 q^{6} - 25 q^{7} - 96 q^{8} + 108 q^{9} + 20 q^{10} + 132 q^{11} - 144 q^{12} + 12 q^{13} + 50 q^{14} + 30 q^{15} + 192 q^{16} - 10 q^{17} - 216 q^{18}+ \cdots + 1188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 19.6786 1.76011 0.880055 0.474872i \(-0.157506\pi\)
0.880055 + 0.474872i \(0.157506\pi\)
\(6\) 6.00000 0.408248
\(7\) −7.62338 −0.411624 −0.205812 0.978592i \(-0.565983\pi\)
−0.205812 + 0.978592i \(0.565983\pi\)
\(8\) −8.00000 −0.353553
\(9\) 9.00000 0.333333
\(10\) −39.3573 −1.24459
\(11\) 11.0000 0.301511
\(12\) −12.0000 −0.288675
\(13\) −44.5633 −0.950742 −0.475371 0.879785i \(-0.657686\pi\)
−0.475371 + 0.879785i \(0.657686\pi\)
\(14\) 15.2468 0.291062
\(15\) −59.0359 −1.01620
\(16\) 16.0000 0.250000
\(17\) −128.543 −1.83390 −0.916950 0.399003i \(-0.869356\pi\)
−0.916950 + 0.399003i \(0.869356\pi\)
\(18\) −18.0000 −0.235702
\(19\) −59.7027 −0.720881 −0.360440 0.932782i \(-0.617374\pi\)
−0.360440 + 0.932782i \(0.617374\pi\)
\(20\) 78.7145 0.880055
\(21\) 22.8701 0.237651
\(22\) −22.0000 −0.213201
\(23\) 129.457 1.17364 0.586818 0.809719i \(-0.300380\pi\)
0.586818 + 0.809719i \(0.300380\pi\)
\(24\) 24.0000 0.204124
\(25\) 262.248 2.09799
\(26\) 89.1267 0.672276
\(27\) −27.0000 −0.192450
\(28\) −30.4935 −0.205812
\(29\) 176.065 1.12740 0.563698 0.825981i \(-0.309378\pi\)
0.563698 + 0.825981i \(0.309378\pi\)
\(30\) 118.072 0.718562
\(31\) 82.8831 0.480201 0.240101 0.970748i \(-0.422820\pi\)
0.240101 + 0.970748i \(0.422820\pi\)
\(32\) −32.0000 −0.176777
\(33\) −33.0000 −0.174078
\(34\) 257.086 1.29676
\(35\) −150.018 −0.724503
\(36\) 36.0000 0.166667
\(37\) −37.0000 −0.164399
\(38\) 119.405 0.509740
\(39\) 133.690 0.548911
\(40\) −157.429 −0.622293
\(41\) 109.674 0.417759 0.208880 0.977941i \(-0.433018\pi\)
0.208880 + 0.977941i \(0.433018\pi\)
\(42\) −45.7403 −0.168045
\(43\) −189.963 −0.673699 −0.336849 0.941559i \(-0.609361\pi\)
−0.336849 + 0.941559i \(0.609361\pi\)
\(44\) 44.0000 0.150756
\(45\) 177.108 0.586703
\(46\) −258.914 −0.829886
\(47\) 180.860 0.561301 0.280650 0.959810i \(-0.409450\pi\)
0.280650 + 0.959810i \(0.409450\pi\)
\(48\) −48.0000 −0.144338
\(49\) −284.884 −0.830566
\(50\) −524.497 −1.48350
\(51\) 385.629 1.05880
\(52\) −178.253 −0.475371
\(53\) 126.628 0.328183 0.164092 0.986445i \(-0.447531\pi\)
0.164092 + 0.986445i \(0.447531\pi\)
\(54\) 54.0000 0.136083
\(55\) 216.465 0.530693
\(56\) 60.9870 0.145531
\(57\) 179.108 0.416201
\(58\) −352.131 −0.797190
\(59\) 71.2303 0.157176 0.0785881 0.996907i \(-0.474959\pi\)
0.0785881 + 0.996907i \(0.474959\pi\)
\(60\) −236.144 −0.508100
\(61\) 808.643 1.69731 0.848657 0.528944i \(-0.177412\pi\)
0.848657 + 0.528944i \(0.177412\pi\)
\(62\) −165.766 −0.339554
\(63\) −68.6104 −0.137208
\(64\) 64.0000 0.125000
\(65\) −876.945 −1.67341
\(66\) 66.0000 0.123091
\(67\) −988.947 −1.80327 −0.901635 0.432498i \(-0.857632\pi\)
−0.901635 + 0.432498i \(0.857632\pi\)
\(68\) −514.172 −0.916950
\(69\) −388.371 −0.677599
\(70\) 300.035 0.512301
\(71\) −122.744 −0.205170 −0.102585 0.994724i \(-0.532711\pi\)
−0.102585 + 0.994724i \(0.532711\pi\)
\(72\) −72.0000 −0.117851
\(73\) −1011.42 −1.62161 −0.810807 0.585314i \(-0.800971\pi\)
−0.810807 + 0.585314i \(0.800971\pi\)
\(74\) 74.0000 0.116248
\(75\) −786.745 −1.21127
\(76\) −238.811 −0.360440
\(77\) −83.8571 −0.124109
\(78\) −267.380 −0.388139
\(79\) −64.1711 −0.0913900 −0.0456950 0.998955i \(-0.514550\pi\)
−0.0456950 + 0.998955i \(0.514550\pi\)
\(80\) 314.858 0.440027
\(81\) 81.0000 0.111111
\(82\) −219.347 −0.295401
\(83\) 877.672 1.16069 0.580344 0.814372i \(-0.302918\pi\)
0.580344 + 0.814372i \(0.302918\pi\)
\(84\) 91.4805 0.118825
\(85\) −2529.55 −3.22786
\(86\) 379.925 0.476377
\(87\) −528.196 −0.650903
\(88\) −88.0000 −0.106600
\(89\) 337.503 0.401969 0.200985 0.979594i \(-0.435586\pi\)
0.200985 + 0.979594i \(0.435586\pi\)
\(90\) −354.215 −0.414862
\(91\) 339.723 0.391348
\(92\) 517.828 0.586818
\(93\) −248.649 −0.277244
\(94\) −361.720 −0.396899
\(95\) −1174.87 −1.26883
\(96\) 96.0000 0.102062
\(97\) −788.180 −0.825027 −0.412513 0.910952i \(-0.635349\pi\)
−0.412513 + 0.910952i \(0.635349\pi\)
\(98\) 569.768 0.587299
\(99\) 99.0000 0.100504
\(100\) 1048.99 1.04899
\(101\) −650.997 −0.641352 −0.320676 0.947189i \(-0.603910\pi\)
−0.320676 + 0.947189i \(0.603910\pi\)
\(102\) −771.259 −0.748686
\(103\) −1879.07 −1.79758 −0.898789 0.438382i \(-0.855552\pi\)
−0.898789 + 0.438382i \(0.855552\pi\)
\(104\) 356.507 0.336138
\(105\) 450.053 0.418292
\(106\) −253.256 −0.232061
\(107\) −1680.80 −1.51859 −0.759293 0.650749i \(-0.774455\pi\)
−0.759293 + 0.650749i \(0.774455\pi\)
\(108\) −108.000 −0.0962250
\(109\) 2030.90 1.78464 0.892318 0.451408i \(-0.149078\pi\)
0.892318 + 0.451408i \(0.149078\pi\)
\(110\) −432.930 −0.375257
\(111\) 111.000 0.0949158
\(112\) −121.974 −0.102906
\(113\) 1615.98 1.34530 0.672648 0.739962i \(-0.265157\pi\)
0.672648 + 0.739962i \(0.265157\pi\)
\(114\) −358.216 −0.294298
\(115\) 2547.54 2.06573
\(116\) 704.261 0.563698
\(117\) −401.070 −0.316914
\(118\) −142.461 −0.111140
\(119\) 979.932 0.754876
\(120\) 472.287 0.359281
\(121\) 121.000 0.0909091
\(122\) −1617.29 −1.20018
\(123\) −329.021 −0.241194
\(124\) 331.532 0.240101
\(125\) 2700.86 1.93258
\(126\) 137.221 0.0970206
\(127\) −299.357 −0.209163 −0.104581 0.994516i \(-0.533350\pi\)
−0.104581 + 0.994516i \(0.533350\pi\)
\(128\) −128.000 −0.0883883
\(129\) 569.888 0.388960
\(130\) 1753.89 1.18328
\(131\) −1839.11 −1.22659 −0.613295 0.789854i \(-0.710156\pi\)
−0.613295 + 0.789854i \(0.710156\pi\)
\(132\) −132.000 −0.0870388
\(133\) 455.136 0.296732
\(134\) 1977.89 1.27510
\(135\) −531.323 −0.338733
\(136\) 1028.34 0.648381
\(137\) 854.792 0.533064 0.266532 0.963826i \(-0.414122\pi\)
0.266532 + 0.963826i \(0.414122\pi\)
\(138\) 776.742 0.479135
\(139\) −2436.23 −1.48660 −0.743302 0.668956i \(-0.766742\pi\)
−0.743302 + 0.668956i \(0.766742\pi\)
\(140\) −600.070 −0.362251
\(141\) −542.580 −0.324067
\(142\) 245.488 0.145077
\(143\) −490.197 −0.286659
\(144\) 144.000 0.0833333
\(145\) 3464.72 1.98434
\(146\) 2022.84 1.14665
\(147\) 854.652 0.479528
\(148\) −148.000 −0.0821995
\(149\) 696.428 0.382910 0.191455 0.981501i \(-0.438679\pi\)
0.191455 + 0.981501i \(0.438679\pi\)
\(150\) 1573.49 0.856500
\(151\) −1773.95 −0.956039 −0.478019 0.878349i \(-0.658645\pi\)
−0.478019 + 0.878349i \(0.658645\pi\)
\(152\) 477.622 0.254870
\(153\) −1156.89 −0.611300
\(154\) 167.714 0.0877584
\(155\) 1631.03 0.845207
\(156\) 534.760 0.274456
\(157\) −1203.53 −0.611799 −0.305900 0.952064i \(-0.598957\pi\)
−0.305900 + 0.952064i \(0.598957\pi\)
\(158\) 128.342 0.0646225
\(159\) −379.885 −0.189477
\(160\) −629.716 −0.311146
\(161\) −986.899 −0.483097
\(162\) −162.000 −0.0785674
\(163\) 1265.56 0.608137 0.304068 0.952650i \(-0.401655\pi\)
0.304068 + 0.952650i \(0.401655\pi\)
\(164\) 438.694 0.208880
\(165\) −649.395 −0.306396
\(166\) −1755.34 −0.820730
\(167\) 1556.80 0.721372 0.360686 0.932687i \(-0.382543\pi\)
0.360686 + 0.932687i \(0.382543\pi\)
\(168\) −182.961 −0.0840223
\(169\) −211.110 −0.0960901
\(170\) 5059.10 2.28244
\(171\) −537.324 −0.240294
\(172\) −759.851 −0.336849
\(173\) −2217.29 −0.974436 −0.487218 0.873280i \(-0.661988\pi\)
−0.487218 + 0.873280i \(0.661988\pi\)
\(174\) 1056.39 0.460258
\(175\) −1999.22 −0.863581
\(176\) 176.000 0.0753778
\(177\) −213.691 −0.0907457
\(178\) −675.006 −0.284235
\(179\) 616.369 0.257372 0.128686 0.991685i \(-0.458924\pi\)
0.128686 + 0.991685i \(0.458924\pi\)
\(180\) 708.431 0.293352
\(181\) −2737.88 −1.12434 −0.562168 0.827023i \(-0.690033\pi\)
−0.562168 + 0.827023i \(0.690033\pi\)
\(182\) −679.446 −0.276725
\(183\) −2425.93 −0.979945
\(184\) −1035.66 −0.414943
\(185\) −728.109 −0.289360
\(186\) 497.299 0.196041
\(187\) −1413.97 −0.552941
\(188\) 723.440 0.280650
\(189\) 205.831 0.0792170
\(190\) 2349.73 0.897198
\(191\) 1036.43 0.392637 0.196319 0.980540i \(-0.437101\pi\)
0.196319 + 0.980540i \(0.437101\pi\)
\(192\) −192.000 −0.0721688
\(193\) −910.755 −0.339676 −0.169838 0.985472i \(-0.554325\pi\)
−0.169838 + 0.985472i \(0.554325\pi\)
\(194\) 1576.36 0.583382
\(195\) 2630.84 0.966144
\(196\) −1139.54 −0.415283
\(197\) −3935.82 −1.42343 −0.711715 0.702468i \(-0.752081\pi\)
−0.711715 + 0.702468i \(0.752081\pi\)
\(198\) −198.000 −0.0710669
\(199\) 531.843 0.189454 0.0947270 0.995503i \(-0.469802\pi\)
0.0947270 + 0.995503i \(0.469802\pi\)
\(200\) −2097.99 −0.741750
\(201\) 2966.84 1.04112
\(202\) 1301.99 0.453505
\(203\) −1342.21 −0.464063
\(204\) 1542.52 0.529401
\(205\) 2158.23 0.735303
\(206\) 3758.14 1.27108
\(207\) 1165.11 0.391212
\(208\) −713.013 −0.237685
\(209\) −656.730 −0.217354
\(210\) −900.105 −0.295777
\(211\) 1083.96 0.353662 0.176831 0.984241i \(-0.443415\pi\)
0.176831 + 0.984241i \(0.443415\pi\)
\(212\) 506.513 0.164092
\(213\) 368.232 0.118455
\(214\) 3361.59 1.07380
\(215\) −3738.20 −1.18578
\(216\) 216.000 0.0680414
\(217\) −631.849 −0.197662
\(218\) −4061.81 −1.26193
\(219\) 3034.26 0.936239
\(220\) 865.860 0.265347
\(221\) 5728.31 1.74356
\(222\) −222.000 −0.0671156
\(223\) 3608.94 1.08373 0.541867 0.840464i \(-0.317718\pi\)
0.541867 + 0.840464i \(0.317718\pi\)
\(224\) 243.948 0.0727655
\(225\) 2360.24 0.699329
\(226\) −3231.96 −0.951268
\(227\) 605.777 0.177123 0.0885613 0.996071i \(-0.471773\pi\)
0.0885613 + 0.996071i \(0.471773\pi\)
\(228\) 716.432 0.208100
\(229\) 208.354 0.0601241 0.0300621 0.999548i \(-0.490430\pi\)
0.0300621 + 0.999548i \(0.490430\pi\)
\(230\) −5095.07 −1.46069
\(231\) 251.571 0.0716545
\(232\) −1408.52 −0.398595
\(233\) −2814.81 −0.791436 −0.395718 0.918372i \(-0.629504\pi\)
−0.395718 + 0.918372i \(0.629504\pi\)
\(234\) 802.140 0.224092
\(235\) 3559.07 0.987951
\(236\) 284.921 0.0785881
\(237\) 192.513 0.0527640
\(238\) −1959.86 −0.533778
\(239\) −3270.08 −0.885038 −0.442519 0.896759i \(-0.645915\pi\)
−0.442519 + 0.896759i \(0.645915\pi\)
\(240\) −944.574 −0.254050
\(241\) −2870.78 −0.767317 −0.383658 0.923475i \(-0.625336\pi\)
−0.383658 + 0.923475i \(0.625336\pi\)
\(242\) −242.000 −0.0642824
\(243\) −243.000 −0.0641500
\(244\) 3234.57 0.848657
\(245\) −5606.13 −1.46189
\(246\) 658.042 0.170550
\(247\) 2660.55 0.685372
\(248\) −663.065 −0.169777
\(249\) −2633.02 −0.670123
\(250\) −5401.72 −1.36654
\(251\) −2446.26 −0.615167 −0.307583 0.951521i \(-0.599520\pi\)
−0.307583 + 0.951521i \(0.599520\pi\)
\(252\) −274.442 −0.0686039
\(253\) 1424.03 0.353865
\(254\) 598.714 0.147900
\(255\) 7588.66 1.86361
\(256\) 256.000 0.0625000
\(257\) 5897.70 1.43147 0.715736 0.698371i \(-0.246091\pi\)
0.715736 + 0.698371i \(0.246091\pi\)
\(258\) −1139.78 −0.275036
\(259\) 282.065 0.0676705
\(260\) −3507.78 −0.836705
\(261\) 1584.59 0.375799
\(262\) 3678.21 0.867331
\(263\) −3942.53 −0.924360 −0.462180 0.886786i \(-0.652933\pi\)
−0.462180 + 0.886786i \(0.652933\pi\)
\(264\) 264.000 0.0615457
\(265\) 2491.87 0.577639
\(266\) −910.272 −0.209821
\(267\) −1012.51 −0.232077
\(268\) −3955.79 −0.901635
\(269\) −1688.86 −0.382794 −0.191397 0.981513i \(-0.561302\pi\)
−0.191397 + 0.981513i \(0.561302\pi\)
\(270\) 1062.65 0.239521
\(271\) 4918.72 1.10255 0.551274 0.834324i \(-0.314142\pi\)
0.551274 + 0.834324i \(0.314142\pi\)
\(272\) −2056.69 −0.458475
\(273\) −1019.17 −0.225945
\(274\) −1709.58 −0.376933
\(275\) 2884.73 0.632567
\(276\) −1553.48 −0.338800
\(277\) −8139.00 −1.76543 −0.882717 0.469906i \(-0.844288\pi\)
−0.882717 + 0.469906i \(0.844288\pi\)
\(278\) 4872.45 1.05119
\(279\) 745.948 0.160067
\(280\) 1200.14 0.256150
\(281\) 3013.65 0.639785 0.319892 0.947454i \(-0.396353\pi\)
0.319892 + 0.947454i \(0.396353\pi\)
\(282\) 1085.16 0.229150
\(283\) 439.255 0.0922650 0.0461325 0.998935i \(-0.485310\pi\)
0.0461325 + 0.998935i \(0.485310\pi\)
\(284\) −490.977 −0.102585
\(285\) 3524.60 0.732559
\(286\) 980.393 0.202699
\(287\) −836.083 −0.171960
\(288\) −288.000 −0.0589256
\(289\) 11610.3 2.36319
\(290\) −6929.45 −1.40314
\(291\) 2364.54 0.476329
\(292\) −4045.68 −0.810807
\(293\) 12.5754 0.00250738 0.00125369 0.999999i \(-0.499601\pi\)
0.00125369 + 0.999999i \(0.499601\pi\)
\(294\) −1709.30 −0.339077
\(295\) 1401.71 0.276647
\(296\) 296.000 0.0581238
\(297\) −297.000 −0.0580259
\(298\) −1392.86 −0.270758
\(299\) −5769.03 −1.11583
\(300\) −3146.98 −0.605637
\(301\) 1448.16 0.277310
\(302\) 3547.90 0.676022
\(303\) 1952.99 0.370285
\(304\) −955.243 −0.180220
\(305\) 15913.0 2.98746
\(306\) 2313.78 0.432254
\(307\) 7167.37 1.33245 0.666227 0.745749i \(-0.267908\pi\)
0.666227 + 0.745749i \(0.267908\pi\)
\(308\) −335.429 −0.0620546
\(309\) 5637.22 1.03783
\(310\) −3262.05 −0.597652
\(311\) −5266.79 −0.960297 −0.480149 0.877187i \(-0.659417\pi\)
−0.480149 + 0.877187i \(0.659417\pi\)
\(312\) −1069.52 −0.194069
\(313\) −1484.46 −0.268071 −0.134036 0.990976i \(-0.542794\pi\)
−0.134036 + 0.990976i \(0.542794\pi\)
\(314\) 2407.07 0.432607
\(315\) −1350.16 −0.241501
\(316\) −256.684 −0.0456950
\(317\) −1932.38 −0.342377 −0.171189 0.985238i \(-0.554761\pi\)
−0.171189 + 0.985238i \(0.554761\pi\)
\(318\) 759.769 0.133980
\(319\) 1936.72 0.339923
\(320\) 1259.43 0.220014
\(321\) 5042.39 0.876756
\(322\) 1973.80 0.341601
\(323\) 7674.37 1.32202
\(324\) 324.000 0.0555556
\(325\) −11686.7 −1.99464
\(326\) −2531.12 −0.430018
\(327\) −6092.71 −1.03036
\(328\) −877.389 −0.147700
\(329\) −1378.76 −0.231045
\(330\) 1298.79 0.216655
\(331\) −5496.59 −0.912749 −0.456375 0.889788i \(-0.650852\pi\)
−0.456375 + 0.889788i \(0.650852\pi\)
\(332\) 3510.69 0.580344
\(333\) −333.000 −0.0547997
\(334\) −3113.61 −0.510087
\(335\) −19461.1 −3.17395
\(336\) 365.922 0.0594127
\(337\) −4874.51 −0.787928 −0.393964 0.919126i \(-0.628896\pi\)
−0.393964 + 0.919126i \(0.628896\pi\)
\(338\) 422.220 0.0679459
\(339\) −4847.94 −0.776707
\(340\) −10118.2 −1.61393
\(341\) 911.714 0.144786
\(342\) 1074.65 0.169913
\(343\) 4786.60 0.753504
\(344\) 1519.70 0.238188
\(345\) −7642.61 −1.19265
\(346\) 4434.58 0.689031
\(347\) −4328.38 −0.669624 −0.334812 0.942285i \(-0.608673\pi\)
−0.334812 + 0.942285i \(0.608673\pi\)
\(348\) −2112.78 −0.325451
\(349\) 2008.31 0.308030 0.154015 0.988068i \(-0.450780\pi\)
0.154015 + 0.988068i \(0.450780\pi\)
\(350\) 3998.44 0.610644
\(351\) 1203.21 0.182970
\(352\) −352.000 −0.0533002
\(353\) 11928.1 1.79849 0.899247 0.437441i \(-0.144115\pi\)
0.899247 + 0.437441i \(0.144115\pi\)
\(354\) 427.382 0.0641669
\(355\) −2415.44 −0.361121
\(356\) 1350.01 0.200985
\(357\) −2939.80 −0.435828
\(358\) −1232.74 −0.181990
\(359\) −12349.1 −1.81549 −0.907744 0.419524i \(-0.862197\pi\)
−0.907744 + 0.419524i \(0.862197\pi\)
\(360\) −1416.86 −0.207431
\(361\) −3294.59 −0.480331
\(362\) 5475.76 0.795026
\(363\) −363.000 −0.0524864
\(364\) 1358.89 0.195674
\(365\) −19903.4 −2.85422
\(366\) 4851.86 0.692925
\(367\) −10206.3 −1.45167 −0.725835 0.687869i \(-0.758546\pi\)
−0.725835 + 0.687869i \(0.758546\pi\)
\(368\) 2071.31 0.293409
\(369\) 987.062 0.139253
\(370\) 1456.22 0.204609
\(371\) −965.334 −0.135088
\(372\) −994.597 −0.138622
\(373\) 3585.24 0.497686 0.248843 0.968544i \(-0.419950\pi\)
0.248843 + 0.968544i \(0.419950\pi\)
\(374\) 2827.95 0.390989
\(375\) −8102.58 −1.11577
\(376\) −1446.88 −0.198450
\(377\) −7846.06 −1.07186
\(378\) −411.662 −0.0560149
\(379\) −1892.67 −0.256516 −0.128258 0.991741i \(-0.540939\pi\)
−0.128258 + 0.991741i \(0.540939\pi\)
\(380\) −4699.47 −0.634415
\(381\) 898.071 0.120760
\(382\) −2072.87 −0.277637
\(383\) −5467.33 −0.729419 −0.364710 0.931121i \(-0.618832\pi\)
−0.364710 + 0.931121i \(0.618832\pi\)
\(384\) 384.000 0.0510310
\(385\) −1650.19 −0.218446
\(386\) 1821.51 0.240187
\(387\) −1709.66 −0.224566
\(388\) −3152.72 −0.412513
\(389\) −10091.5 −1.31532 −0.657661 0.753314i \(-0.728454\pi\)
−0.657661 + 0.753314i \(0.728454\pi\)
\(390\) −5261.67 −0.683167
\(391\) −16640.8 −2.15233
\(392\) 2279.07 0.293649
\(393\) 5517.32 0.708173
\(394\) 7871.65 1.00652
\(395\) −1262.80 −0.160856
\(396\) 396.000 0.0502519
\(397\) −5008.53 −0.633176 −0.316588 0.948563i \(-0.602537\pi\)
−0.316588 + 0.948563i \(0.602537\pi\)
\(398\) −1063.69 −0.133964
\(399\) −1365.41 −0.171318
\(400\) 4195.97 0.524497
\(401\) −9436.86 −1.17520 −0.587599 0.809153i \(-0.699927\pi\)
−0.587599 + 0.809153i \(0.699927\pi\)
\(402\) −5933.68 −0.736182
\(403\) −3693.55 −0.456547
\(404\) −2603.99 −0.320676
\(405\) 1593.97 0.195568
\(406\) 2684.42 0.328142
\(407\) −407.000 −0.0495682
\(408\) −3085.03 −0.374343
\(409\) 7545.40 0.912215 0.456108 0.889925i \(-0.349243\pi\)
0.456108 + 0.889925i \(0.349243\pi\)
\(410\) −4316.45 −0.519937
\(411\) −2564.38 −0.307765
\(412\) −7516.29 −0.898789
\(413\) −543.015 −0.0646974
\(414\) −2330.23 −0.276629
\(415\) 17271.4 2.04294
\(416\) 1426.03 0.168069
\(417\) 7308.68 0.858292
\(418\) 1313.46 0.153692
\(419\) −4840.78 −0.564409 −0.282204 0.959354i \(-0.591066\pi\)
−0.282204 + 0.959354i \(0.591066\pi\)
\(420\) 1800.21 0.209146
\(421\) 5644.79 0.653469 0.326735 0.945116i \(-0.394052\pi\)
0.326735 + 0.945116i \(0.394052\pi\)
\(422\) −2167.92 −0.250077
\(423\) 1627.74 0.187100
\(424\) −1013.03 −0.116030
\(425\) −33710.2 −3.84750
\(426\) −736.465 −0.0837602
\(427\) −6164.59 −0.698654
\(428\) −6723.19 −0.759293
\(429\) 1470.59 0.165503
\(430\) 7476.41 0.838476
\(431\) −13712.7 −1.53252 −0.766260 0.642530i \(-0.777885\pi\)
−0.766260 + 0.642530i \(0.777885\pi\)
\(432\) −432.000 −0.0481125
\(433\) 853.426 0.0947183 0.0473591 0.998878i \(-0.484919\pi\)
0.0473591 + 0.998878i \(0.484919\pi\)
\(434\) 1263.70 0.139768
\(435\) −10394.2 −1.14566
\(436\) 8123.61 0.892318
\(437\) −7728.93 −0.846052
\(438\) −6068.52 −0.662021
\(439\) 9836.18 1.06937 0.534687 0.845050i \(-0.320430\pi\)
0.534687 + 0.845050i \(0.320430\pi\)
\(440\) −1731.72 −0.187628
\(441\) −2563.96 −0.276855
\(442\) −11456.6 −1.23289
\(443\) 10273.2 1.10180 0.550899 0.834572i \(-0.314285\pi\)
0.550899 + 0.834572i \(0.314285\pi\)
\(444\) 444.000 0.0474579
\(445\) 6641.60 0.707510
\(446\) −7217.88 −0.766315
\(447\) −2089.28 −0.221073
\(448\) −487.896 −0.0514529
\(449\) −12358.0 −1.29891 −0.649456 0.760399i \(-0.725003\pi\)
−0.649456 + 0.760399i \(0.725003\pi\)
\(450\) −4720.47 −0.494500
\(451\) 1206.41 0.125959
\(452\) 6463.91 0.672648
\(453\) 5321.85 0.551969
\(454\) −1211.55 −0.125245
\(455\) 6685.28 0.688815
\(456\) −1432.86 −0.147149
\(457\) 4803.00 0.491630 0.245815 0.969317i \(-0.420944\pi\)
0.245815 + 0.969317i \(0.420944\pi\)
\(458\) −416.708 −0.0425142
\(459\) 3470.66 0.352934
\(460\) 10190.1 1.03286
\(461\) 11574.5 1.16936 0.584682 0.811263i \(-0.301219\pi\)
0.584682 + 0.811263i \(0.301219\pi\)
\(462\) −503.143 −0.0506674
\(463\) −12838.1 −1.28864 −0.644318 0.764758i \(-0.722858\pi\)
−0.644318 + 0.764758i \(0.722858\pi\)
\(464\) 2817.04 0.281849
\(465\) −4893.08 −0.487981
\(466\) 5629.62 0.559629
\(467\) −13745.1 −1.36199 −0.680994 0.732289i \(-0.738452\pi\)
−0.680994 + 0.732289i \(0.738452\pi\)
\(468\) −1604.28 −0.158457
\(469\) 7539.11 0.742269
\(470\) −7118.15 −0.698587
\(471\) 3610.60 0.353222
\(472\) −569.842 −0.0555702
\(473\) −2089.59 −0.203128
\(474\) −385.026 −0.0373098
\(475\) −15656.9 −1.51240
\(476\) 3919.73 0.377438
\(477\) 1139.65 0.109394
\(478\) 6540.16 0.625816
\(479\) −9500.67 −0.906256 −0.453128 0.891445i \(-0.649692\pi\)
−0.453128 + 0.891445i \(0.649692\pi\)
\(480\) 1889.15 0.179640
\(481\) 1648.84 0.156301
\(482\) 5741.56 0.542575
\(483\) 2960.70 0.278916
\(484\) 484.000 0.0454545
\(485\) −15510.3 −1.45214
\(486\) 486.000 0.0453609
\(487\) −10163.7 −0.945710 −0.472855 0.881140i \(-0.656777\pi\)
−0.472855 + 0.881140i \(0.656777\pi\)
\(488\) −6469.15 −0.600091
\(489\) −3796.68 −0.351108
\(490\) 11212.3 1.03371
\(491\) −9197.61 −0.845382 −0.422691 0.906274i \(-0.638914\pi\)
−0.422691 + 0.906274i \(0.638914\pi\)
\(492\) −1316.08 −0.120597
\(493\) −22632.0 −2.06753
\(494\) −5321.10 −0.484631
\(495\) 1948.18 0.176898
\(496\) 1326.13 0.120050
\(497\) 935.725 0.0844527
\(498\) 5266.03 0.473849
\(499\) 12568.2 1.12751 0.563756 0.825941i \(-0.309356\pi\)
0.563756 + 0.825941i \(0.309356\pi\)
\(500\) 10803.4 0.966289
\(501\) −4670.41 −0.416484
\(502\) 4892.53 0.434989
\(503\) 15386.9 1.36395 0.681974 0.731376i \(-0.261122\pi\)
0.681974 + 0.731376i \(0.261122\pi\)
\(504\) 548.883 0.0485103
\(505\) −12810.7 −1.12885
\(506\) −2848.05 −0.250220
\(507\) 633.330 0.0554776
\(508\) −1197.43 −0.104581
\(509\) −896.573 −0.0780745 −0.0390372 0.999238i \(-0.512429\pi\)
−0.0390372 + 0.999238i \(0.512429\pi\)
\(510\) −15177.3 −1.31777
\(511\) 7710.44 0.667494
\(512\) −512.000 −0.0441942
\(513\) 1611.97 0.138734
\(514\) −11795.4 −1.01220
\(515\) −36977.6 −3.16393
\(516\) 2279.55 0.194480
\(517\) 1989.46 0.169239
\(518\) −564.130 −0.0478503
\(519\) 6651.87 0.562591
\(520\) 7015.56 0.591640
\(521\) 11113.4 0.934526 0.467263 0.884118i \(-0.345240\pi\)
0.467263 + 0.884118i \(0.345240\pi\)
\(522\) −3169.18 −0.265730
\(523\) 3046.49 0.254711 0.127355 0.991857i \(-0.459351\pi\)
0.127355 + 0.991857i \(0.459351\pi\)
\(524\) −7356.42 −0.613295
\(525\) 5997.65 0.498589
\(526\) 7885.06 0.653621
\(527\) −10654.0 −0.880641
\(528\) −528.000 −0.0435194
\(529\) 4592.11 0.377423
\(530\) −4983.74 −0.408452
\(531\) 641.073 0.0523921
\(532\) 1820.54 0.148366
\(533\) −4887.42 −0.397181
\(534\) 2025.02 0.164103
\(535\) −33075.8 −2.67288
\(536\) 7911.58 0.637552
\(537\) −1849.11 −0.148594
\(538\) 3377.72 0.270676
\(539\) −3133.73 −0.250425
\(540\) −2125.29 −0.169367
\(541\) −4054.27 −0.322194 −0.161097 0.986939i \(-0.551503\pi\)
−0.161097 + 0.986939i \(0.551503\pi\)
\(542\) −9837.43 −0.779620
\(543\) 8213.64 0.649136
\(544\) 4113.38 0.324191
\(545\) 39965.4 3.14115
\(546\) 2038.34 0.159767
\(547\) −17601.1 −1.37581 −0.687906 0.725799i \(-0.741470\pi\)
−0.687906 + 0.725799i \(0.741470\pi\)
\(548\) 3419.17 0.266532
\(549\) 7277.79 0.565771
\(550\) −5769.46 −0.447292
\(551\) −10511.6 −0.812719
\(552\) 3106.97 0.239568
\(553\) 489.200 0.0376183
\(554\) 16278.0 1.24835
\(555\) 2184.33 0.167062
\(556\) −9744.91 −0.743302
\(557\) 18422.1 1.40138 0.700691 0.713465i \(-0.252875\pi\)
0.700691 + 0.713465i \(0.252875\pi\)
\(558\) −1491.90 −0.113185
\(559\) 8465.37 0.640513
\(560\) −2400.28 −0.181126
\(561\) 4241.92 0.319241
\(562\) −6027.31 −0.452396
\(563\) −16043.3 −1.20096 −0.600482 0.799638i \(-0.705025\pi\)
−0.600482 + 0.799638i \(0.705025\pi\)
\(564\) −2170.32 −0.162034
\(565\) 31800.2 2.36787
\(566\) −878.510 −0.0652412
\(567\) −617.493 −0.0457360
\(568\) 981.953 0.0725385
\(569\) 13106.4 0.965641 0.482821 0.875719i \(-0.339612\pi\)
0.482821 + 0.875719i \(0.339612\pi\)
\(570\) −7049.20 −0.517998
\(571\) −16227.9 −1.18934 −0.594671 0.803969i \(-0.702718\pi\)
−0.594671 + 0.803969i \(0.702718\pi\)
\(572\) −1960.79 −0.143330
\(573\) −3109.30 −0.226689
\(574\) 1672.17 0.121594
\(575\) 33949.9 2.46227
\(576\) 576.000 0.0416667
\(577\) 9933.42 0.716696 0.358348 0.933588i \(-0.383340\pi\)
0.358348 + 0.933588i \(0.383340\pi\)
\(578\) −23220.7 −1.67102
\(579\) 2732.26 0.196112
\(580\) 13858.9 0.992171
\(581\) −6690.82 −0.477766
\(582\) −4729.08 −0.336816
\(583\) 1392.91 0.0989510
\(584\) 8091.36 0.573327
\(585\) −7892.51 −0.557803
\(586\) −25.1508 −0.00177299
\(587\) −24494.9 −1.72234 −0.861170 0.508317i \(-0.830268\pi\)
−0.861170 + 0.508317i \(0.830268\pi\)
\(588\) 3418.61 0.239764
\(589\) −4948.34 −0.346168
\(590\) −2803.43 −0.195619
\(591\) 11807.5 0.821818
\(592\) −592.000 −0.0410997
\(593\) 13342.9 0.923989 0.461994 0.886883i \(-0.347134\pi\)
0.461994 + 0.886883i \(0.347134\pi\)
\(594\) 594.000 0.0410305
\(595\) 19283.7 1.32866
\(596\) 2785.71 0.191455
\(597\) −1595.53 −0.109381
\(598\) 11538.1 0.789008
\(599\) −2082.93 −0.142081 −0.0710403 0.997473i \(-0.522632\pi\)
−0.0710403 + 0.997473i \(0.522632\pi\)
\(600\) 6293.96 0.428250
\(601\) 15572.9 1.05696 0.528478 0.848947i \(-0.322763\pi\)
0.528478 + 0.848947i \(0.322763\pi\)
\(602\) −2896.31 −0.196088
\(603\) −8900.52 −0.601090
\(604\) −7095.79 −0.478019
\(605\) 2381.11 0.160010
\(606\) −3905.98 −0.261831
\(607\) −18666.2 −1.24817 −0.624085 0.781357i \(-0.714528\pi\)
−0.624085 + 0.781357i \(0.714528\pi\)
\(608\) 1910.49 0.127435
\(609\) 4026.64 0.267927
\(610\) −31826.0 −2.11245
\(611\) −8059.72 −0.533652
\(612\) −4627.55 −0.305650
\(613\) 6576.58 0.433320 0.216660 0.976247i \(-0.430484\pi\)
0.216660 + 0.976247i \(0.430484\pi\)
\(614\) −14334.7 −0.942188
\(615\) −6474.68 −0.424527
\(616\) 670.857 0.0438792
\(617\) −21150.1 −1.38001 −0.690007 0.723802i \(-0.742393\pi\)
−0.690007 + 0.723802i \(0.742393\pi\)
\(618\) −11274.4 −0.733858
\(619\) 21259.4 1.38043 0.690217 0.723602i \(-0.257515\pi\)
0.690217 + 0.723602i \(0.257515\pi\)
\(620\) 6524.10 0.422604
\(621\) −3495.34 −0.225866
\(622\) 10533.6 0.679033
\(623\) −2572.91 −0.165460
\(624\) 2139.04 0.137228
\(625\) 20368.2 1.30356
\(626\) 2968.91 0.189555
\(627\) 1970.19 0.125489
\(628\) −4814.14 −0.305900
\(629\) 4756.10 0.301491
\(630\) 2700.32 0.170767
\(631\) 2631.83 0.166040 0.0830202 0.996548i \(-0.473543\pi\)
0.0830202 + 0.996548i \(0.473543\pi\)
\(632\) 513.369 0.0323112
\(633\) −3251.87 −0.204187
\(634\) 3864.77 0.242097
\(635\) −5890.94 −0.368149
\(636\) −1519.54 −0.0947384
\(637\) 12695.4 0.789654
\(638\) −3873.44 −0.240362
\(639\) −1104.70 −0.0683899
\(640\) −2518.86 −0.155573
\(641\) 13428.3 0.827436 0.413718 0.910405i \(-0.364230\pi\)
0.413718 + 0.910405i \(0.364230\pi\)
\(642\) −10084.8 −0.619960
\(643\) −24625.7 −1.51033 −0.755167 0.655532i \(-0.772444\pi\)
−0.755167 + 0.655532i \(0.772444\pi\)
\(644\) −3947.60 −0.241548
\(645\) 11214.6 0.684612
\(646\) −15348.7 −0.934811
\(647\) −5842.98 −0.355041 −0.177520 0.984117i \(-0.556808\pi\)
−0.177520 + 0.984117i \(0.556808\pi\)
\(648\) −648.000 −0.0392837
\(649\) 783.533 0.0473904
\(650\) 23373.3 1.41043
\(651\) 1895.55 0.114120
\(652\) 5062.24 0.304068
\(653\) 16490.4 0.988240 0.494120 0.869394i \(-0.335490\pi\)
0.494120 + 0.869394i \(0.335490\pi\)
\(654\) 12185.4 0.728574
\(655\) −36191.1 −2.15893
\(656\) 1754.78 0.104440
\(657\) −9102.78 −0.540538
\(658\) 2757.53 0.163373
\(659\) −2850.53 −0.168499 −0.0842495 0.996445i \(-0.526849\pi\)
−0.0842495 + 0.996445i \(0.526849\pi\)
\(660\) −2597.58 −0.153198
\(661\) 3529.11 0.207665 0.103833 0.994595i \(-0.466889\pi\)
0.103833 + 0.994595i \(0.466889\pi\)
\(662\) 10993.2 0.645411
\(663\) −17184.9 −1.00665
\(664\) −7021.38 −0.410365
\(665\) 8956.45 0.522280
\(666\) 666.000 0.0387492
\(667\) 22792.9 1.32315
\(668\) 6227.21 0.360686
\(669\) −10826.8 −0.625694
\(670\) 38922.2 2.24432
\(671\) 8895.07 0.511759
\(672\) −731.844 −0.0420112
\(673\) −13791.6 −0.789936 −0.394968 0.918695i \(-0.629244\pi\)
−0.394968 + 0.918695i \(0.629244\pi\)
\(674\) 9749.03 0.557149
\(675\) −7080.71 −0.403758
\(676\) −844.439 −0.0480450
\(677\) −19272.6 −1.09410 −0.547050 0.837100i \(-0.684249\pi\)
−0.547050 + 0.837100i \(0.684249\pi\)
\(678\) 9695.87 0.549215
\(679\) 6008.60 0.339600
\(680\) 20236.4 1.14122
\(681\) −1817.33 −0.102262
\(682\) −1823.43 −0.102379
\(683\) −15061.0 −0.843769 −0.421884 0.906650i \(-0.638631\pi\)
−0.421884 + 0.906650i \(0.638631\pi\)
\(684\) −2149.30 −0.120147
\(685\) 16821.1 0.938252
\(686\) −9573.19 −0.532808
\(687\) −625.062 −0.0347127
\(688\) −3039.40 −0.168425
\(689\) −5642.97 −0.312018
\(690\) 15285.2 0.843331
\(691\) 28229.4 1.55412 0.777059 0.629428i \(-0.216711\pi\)
0.777059 + 0.629428i \(0.216711\pi\)
\(692\) −8869.16 −0.487218
\(693\) −754.714 −0.0413697
\(694\) 8656.76 0.473496
\(695\) −47941.6 −2.61659
\(696\) 4225.57 0.230129
\(697\) −14097.8 −0.766129
\(698\) −4016.63 −0.217810
\(699\) 8444.44 0.456936
\(700\) −7996.87 −0.431790
\(701\) −12949.8 −0.697729 −0.348865 0.937173i \(-0.613433\pi\)
−0.348865 + 0.937173i \(0.613433\pi\)
\(702\) −2406.42 −0.129380
\(703\) 2209.00 0.118512
\(704\) 704.000 0.0376889
\(705\) −10677.2 −0.570394
\(706\) −23856.2 −1.27173
\(707\) 4962.79 0.263996
\(708\) −854.764 −0.0453729
\(709\) 4907.28 0.259939 0.129969 0.991518i \(-0.458512\pi\)
0.129969 + 0.991518i \(0.458512\pi\)
\(710\) 4830.87 0.255351
\(711\) −577.540 −0.0304633
\(712\) −2700.03 −0.142118
\(713\) 10729.8 0.563582
\(714\) 5879.59 0.308177
\(715\) −9646.40 −0.504552
\(716\) 2465.48 0.128686
\(717\) 9810.25 0.510977
\(718\) 24698.2 1.28374
\(719\) 261.021 0.0135389 0.00676943 0.999977i \(-0.497845\pi\)
0.00676943 + 0.999977i \(0.497845\pi\)
\(720\) 2833.72 0.146676
\(721\) 14324.9 0.739925
\(722\) 6589.18 0.339645
\(723\) 8612.34 0.443010
\(724\) −10951.5 −0.562168
\(725\) 46172.8 2.36526
\(726\) 726.000 0.0371135
\(727\) 20347.7 1.03804 0.519019 0.854763i \(-0.326298\pi\)
0.519019 + 0.854763i \(0.326298\pi\)
\(728\) −2717.78 −0.138362
\(729\) 729.000 0.0370370
\(730\) 39806.7 2.01824
\(731\) 24418.4 1.23550
\(732\) −9703.72 −0.489972
\(733\) 21666.5 1.09177 0.545887 0.837859i \(-0.316193\pi\)
0.545887 + 0.837859i \(0.316193\pi\)
\(734\) 20412.5 1.02649
\(735\) 16818.4 0.844021
\(736\) −4142.62 −0.207472
\(737\) −10878.4 −0.543706
\(738\) −1974.12 −0.0984668
\(739\) −14740.0 −0.733719 −0.366859 0.930276i \(-0.619567\pi\)
−0.366859 + 0.930276i \(0.619567\pi\)
\(740\) −2912.44 −0.144680
\(741\) −7981.65 −0.395699
\(742\) 1930.67 0.0955217
\(743\) −17530.5 −0.865588 −0.432794 0.901493i \(-0.642472\pi\)
−0.432794 + 0.901493i \(0.642472\pi\)
\(744\) 1989.19 0.0980207
\(745\) 13704.7 0.673963
\(746\) −7170.49 −0.351917
\(747\) 7899.05 0.386896
\(748\) −5655.90 −0.276471
\(749\) 12813.3 0.625086
\(750\) 16205.2 0.788971
\(751\) −24646.5 −1.19755 −0.598777 0.800916i \(-0.704347\pi\)
−0.598777 + 0.800916i \(0.704347\pi\)
\(752\) 2893.76 0.140325
\(753\) 7338.79 0.355167
\(754\) 15692.1 0.757922
\(755\) −34908.9 −1.68273
\(756\) 823.325 0.0396085
\(757\) 15563.6 0.747251 0.373625 0.927580i \(-0.378115\pi\)
0.373625 + 0.927580i \(0.378115\pi\)
\(758\) 3785.33 0.181384
\(759\) −4272.08 −0.204304
\(760\) 9398.94 0.448599
\(761\) −31578.1 −1.50421 −0.752107 0.659041i \(-0.770962\pi\)
−0.752107 + 0.659041i \(0.770962\pi\)
\(762\) −1796.14 −0.0853903
\(763\) −15482.3 −0.734598
\(764\) 4145.74 0.196319
\(765\) −22766.0 −1.07595
\(766\) 10934.7 0.515777
\(767\) −3174.26 −0.149434
\(768\) −768.000 −0.0360844
\(769\) 6887.27 0.322967 0.161483 0.986875i \(-0.448372\pi\)
0.161483 + 0.986875i \(0.448372\pi\)
\(770\) 3300.39 0.154465
\(771\) −17693.1 −0.826461
\(772\) −3643.02 −0.169838
\(773\) −1973.37 −0.0918203 −0.0459102 0.998946i \(-0.514619\pi\)
−0.0459102 + 0.998946i \(0.514619\pi\)
\(774\) 3419.33 0.158792
\(775\) 21736.0 1.00746
\(776\) 6305.44 0.291691
\(777\) −846.195 −0.0390696
\(778\) 20183.0 0.930074
\(779\) −6547.81 −0.301155
\(780\) 10523.3 0.483072
\(781\) −1350.19 −0.0618610
\(782\) 33281.6 1.52193
\(783\) −4753.76 −0.216968
\(784\) −4558.15 −0.207642
\(785\) −23683.9 −1.07683
\(786\) −11034.6 −0.500754
\(787\) 24591.4 1.11384 0.556918 0.830568i \(-0.311984\pi\)
0.556918 + 0.830568i \(0.311984\pi\)
\(788\) −15743.3 −0.711715
\(789\) 11827.6 0.533680
\(790\) 2525.60 0.113743
\(791\) −12319.2 −0.553756
\(792\) −792.000 −0.0355335
\(793\) −36035.8 −1.61371
\(794\) 10017.1 0.447723
\(795\) −7475.61 −0.333500
\(796\) 2127.37 0.0947270
\(797\) 32687.9 1.45278 0.726388 0.687284i \(-0.241197\pi\)
0.726388 + 0.687284i \(0.241197\pi\)
\(798\) 2730.82 0.121140
\(799\) −23248.3 −1.02937
\(800\) −8391.95 −0.370875
\(801\) 3037.53 0.133990
\(802\) 18873.7 0.830990
\(803\) −11125.6 −0.488935
\(804\) 11867.4 0.520559
\(805\) −19420.8 −0.850303
\(806\) 7387.09 0.322828
\(807\) 5066.58 0.221006
\(808\) 5207.97 0.226752
\(809\) 36034.6 1.56602 0.783010 0.622009i \(-0.213683\pi\)
0.783010 + 0.622009i \(0.213683\pi\)
\(810\) −3187.94 −0.138287
\(811\) 29746.7 1.28798 0.643988 0.765035i \(-0.277279\pi\)
0.643988 + 0.765035i \(0.277279\pi\)
\(812\) −5368.85 −0.232032
\(813\) −14756.1 −0.636557
\(814\) 814.000 0.0350500
\(815\) 24904.5 1.07039
\(816\) 6170.07 0.264701
\(817\) 11341.3 0.485656
\(818\) −15090.8 −0.645034
\(819\) 3057.51 0.130449
\(820\) 8632.90 0.367651
\(821\) 16006.4 0.680421 0.340211 0.940349i \(-0.389502\pi\)
0.340211 + 0.940349i \(0.389502\pi\)
\(822\) 5128.75 0.217623
\(823\) 3807.17 0.161251 0.0806255 0.996744i \(-0.474308\pi\)
0.0806255 + 0.996744i \(0.474308\pi\)
\(824\) 15032.6 0.635540
\(825\) −8654.20 −0.365213
\(826\) 1086.03 0.0457480
\(827\) −26132.1 −1.09879 −0.549396 0.835562i \(-0.685142\pi\)
−0.549396 + 0.835562i \(0.685142\pi\)
\(828\) 4660.45 0.195606
\(829\) 19673.3 0.824222 0.412111 0.911134i \(-0.364792\pi\)
0.412111 + 0.911134i \(0.364792\pi\)
\(830\) −34542.8 −1.44457
\(831\) 24417.0 1.01927
\(832\) −2852.05 −0.118843
\(833\) 36619.9 1.52317
\(834\) −14617.4 −0.606904
\(835\) 30635.8 1.26969
\(836\) −2626.92 −0.108677
\(837\) −2237.84 −0.0924148
\(838\) 9681.55 0.399097
\(839\) −18550.6 −0.763336 −0.381668 0.924300i \(-0.624650\pi\)
−0.381668 + 0.924300i \(0.624650\pi\)
\(840\) −3600.42 −0.147889
\(841\) 6609.99 0.271023
\(842\) −11289.6 −0.462072
\(843\) −9040.96 −0.369380
\(844\) 4335.83 0.176831
\(845\) −4154.35 −0.169129
\(846\) −3255.48 −0.132300
\(847\) −922.428 −0.0374203
\(848\) 2026.05 0.0820459
\(849\) −1317.76 −0.0532692
\(850\) 67420.4 2.72059
\(851\) −4789.91 −0.192945
\(852\) 1472.93 0.0592274
\(853\) −7325.39 −0.294041 −0.147020 0.989133i \(-0.546968\pi\)
−0.147020 + 0.989133i \(0.546968\pi\)
\(854\) 12329.2 0.494023
\(855\) −10573.8 −0.422943
\(856\) 13446.4 0.536901
\(857\) 359.529 0.0143305 0.00716526 0.999974i \(-0.497719\pi\)
0.00716526 + 0.999974i \(0.497719\pi\)
\(858\) −2941.18 −0.117028
\(859\) −11820.7 −0.469521 −0.234760 0.972053i \(-0.575431\pi\)
−0.234760 + 0.972053i \(0.575431\pi\)
\(860\) −14952.8 −0.592892
\(861\) 2508.25 0.0992809
\(862\) 27425.4 1.08366
\(863\) −12468.0 −0.491791 −0.245896 0.969296i \(-0.579082\pi\)
−0.245896 + 0.969296i \(0.579082\pi\)
\(864\) 864.000 0.0340207
\(865\) −43633.2 −1.71512
\(866\) −1706.85 −0.0669759
\(867\) −34831.0 −1.36439
\(868\) −2527.40 −0.0988311
\(869\) −705.882 −0.0275551
\(870\) 20788.3 0.810104
\(871\) 44070.8 1.71444
\(872\) −16247.2 −0.630964
\(873\) −7093.62 −0.275009
\(874\) 15457.9 0.598249
\(875\) −20589.7 −0.795495
\(876\) 12137.0 0.468119
\(877\) 41133.6 1.58379 0.791895 0.610657i \(-0.209094\pi\)
0.791895 + 0.610657i \(0.209094\pi\)
\(878\) −19672.4 −0.756162
\(879\) −37.7262 −0.00144764
\(880\) 3463.44 0.132673
\(881\) 14973.3 0.572602 0.286301 0.958140i \(-0.407574\pi\)
0.286301 + 0.958140i \(0.407574\pi\)
\(882\) 5127.91 0.195766
\(883\) −6806.20 −0.259396 −0.129698 0.991554i \(-0.541401\pi\)
−0.129698 + 0.991554i \(0.541401\pi\)
\(884\) 22913.2 0.871782
\(885\) −4205.14 −0.159722
\(886\) −20546.5 −0.779089
\(887\) 34169.6 1.29346 0.646732 0.762717i \(-0.276135\pi\)
0.646732 + 0.762717i \(0.276135\pi\)
\(888\) −888.000 −0.0335578
\(889\) 2282.11 0.0860962
\(890\) −13283.2 −0.500285
\(891\) 891.000 0.0335013
\(892\) 14435.8 0.541867
\(893\) −10797.8 −0.404631
\(894\) 4178.57 0.156322
\(895\) 12129.3 0.453003
\(896\) 975.792 0.0363827
\(897\) 17307.1 0.644222
\(898\) 24716.1 0.918469
\(899\) 14592.8 0.541377
\(900\) 9440.94 0.349664
\(901\) −16277.2 −0.601855
\(902\) −2412.82 −0.0890666
\(903\) −4344.47 −0.160105
\(904\) −12927.8 −0.475634
\(905\) −53877.7 −1.97896
\(906\) −10643.7 −0.390301
\(907\) −7416.61 −0.271515 −0.135758 0.990742i \(-0.543347\pi\)
−0.135758 + 0.990742i \(0.543347\pi\)
\(908\) 2423.11 0.0885613
\(909\) −5858.97 −0.213784
\(910\) −13370.6 −0.487066
\(911\) 11599.0 0.421837 0.210919 0.977504i \(-0.432355\pi\)
0.210919 + 0.977504i \(0.432355\pi\)
\(912\) 2865.73 0.104050
\(913\) 9654.39 0.349960
\(914\) −9606.00 −0.347635
\(915\) −47739.0 −1.72481
\(916\) 833.416 0.0300621
\(917\) 14020.2 0.504894
\(918\) −6941.33 −0.249562
\(919\) −21110.5 −0.757750 −0.378875 0.925448i \(-0.623689\pi\)
−0.378875 + 0.925448i \(0.623689\pi\)
\(920\) −20380.3 −0.730346
\(921\) −21502.1 −0.769293
\(922\) −23148.9 −0.826865
\(923\) 5469.89 0.195063
\(924\) 1006.29 0.0358272
\(925\) −9703.19 −0.344907
\(926\) 25676.2 0.911203
\(927\) −16911.7 −0.599193
\(928\) −5634.09 −0.199297
\(929\) −26121.8 −0.922527 −0.461263 0.887263i \(-0.652604\pi\)
−0.461263 + 0.887263i \(0.652604\pi\)
\(930\) 9786.15 0.345054
\(931\) 17008.4 0.598739
\(932\) −11259.2 −0.395718
\(933\) 15800.4 0.554428
\(934\) 27490.2 0.963070
\(935\) −27825.1 −0.973238
\(936\) 3208.56 0.112046
\(937\) −6932.22 −0.241692 −0.120846 0.992671i \(-0.538561\pi\)
−0.120846 + 0.992671i \(0.538561\pi\)
\(938\) −15078.2 −0.524863
\(939\) 4453.37 0.154771
\(940\) 14236.3 0.493975
\(941\) −25606.7 −0.887093 −0.443546 0.896251i \(-0.646280\pi\)
−0.443546 + 0.896251i \(0.646280\pi\)
\(942\) −7221.20 −0.249766
\(943\) 14198.0 0.490298
\(944\) 1139.68 0.0392940
\(945\) 4050.47 0.139431
\(946\) 4179.18 0.143633
\(947\) 50905.3 1.74678 0.873390 0.487021i \(-0.161917\pi\)
0.873390 + 0.487021i \(0.161917\pi\)
\(948\) 770.053 0.0263820
\(949\) 45072.2 1.54174
\(950\) 31313.9 1.06943
\(951\) 5797.15 0.197671
\(952\) −7839.46 −0.266889
\(953\) −26708.4 −0.907837 −0.453919 0.891043i \(-0.649974\pi\)
−0.453919 + 0.891043i \(0.649974\pi\)
\(954\) −2279.31 −0.0773536
\(955\) 20395.6 0.691085
\(956\) −13080.3 −0.442519
\(957\) −5810.15 −0.196255
\(958\) 19001.3 0.640820
\(959\) −6516.40 −0.219422
\(960\) −3778.30 −0.127025
\(961\) −22921.4 −0.769407
\(962\) −3297.69 −0.110521
\(963\) −15127.2 −0.506195
\(964\) −11483.1 −0.383658
\(965\) −17922.4 −0.597868
\(966\) −5921.39 −0.197223
\(967\) 11436.7 0.380330 0.190165 0.981752i \(-0.439098\pi\)
0.190165 + 0.981752i \(0.439098\pi\)
\(968\) −968.000 −0.0321412
\(969\) −23023.1 −0.763270
\(970\) 31020.6 1.02682
\(971\) 38157.4 1.26110 0.630551 0.776148i \(-0.282829\pi\)
0.630551 + 0.776148i \(0.282829\pi\)
\(972\) −972.000 −0.0320750
\(973\) 18572.3 0.611922
\(974\) 20327.4 0.668718
\(975\) 35060.0 1.15161
\(976\) 12938.3 0.424328
\(977\) 8159.41 0.267188 0.133594 0.991036i \(-0.457348\pi\)
0.133594 + 0.991036i \(0.457348\pi\)
\(978\) 7593.36 0.248271
\(979\) 3712.53 0.121198
\(980\) −22424.5 −0.730944
\(981\) 18278.1 0.594879
\(982\) 18395.2 0.597775
\(983\) 22858.6 0.741685 0.370842 0.928696i \(-0.379069\pi\)
0.370842 + 0.928696i \(0.379069\pi\)
\(984\) 2632.17 0.0852748
\(985\) −77451.6 −2.50539
\(986\) 45264.0 1.46197
\(987\) 4136.29 0.133394
\(988\) 10642.2 0.342686
\(989\) −24592.0 −0.790677
\(990\) −3896.37 −0.125086
\(991\) −42120.6 −1.35016 −0.675078 0.737746i \(-0.735890\pi\)
−0.675078 + 0.737746i \(0.735890\pi\)
\(992\) −2652.26 −0.0848884
\(993\) 16489.8 0.526976
\(994\) −1871.45 −0.0597171
\(995\) 10465.9 0.333460
\(996\) −10532.1 −0.335062
\(997\) 43308.1 1.37571 0.687855 0.725848i \(-0.258553\pi\)
0.687855 + 0.725848i \(0.258553\pi\)
\(998\) −25136.3 −0.797271
\(999\) 999.000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2442.4.a.n.1.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2442.4.a.n.1.12 12 1.1 even 1 trivial