Properties

Label 2442.2.n
Level $2442$
Weight $2$
Character orbit 2442.n
Rep. character $\chi_{2442}(223,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $288$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2442.n (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2442, [\chi])\).

Total New Old
Modular forms 1856 288 1568
Cusp forms 1792 288 1504
Eisenstein series 64 0 64

Trace form

\( 288 q - 72 q^{4} - 16 q^{5} - 4 q^{6} + 16 q^{7} - 72 q^{9} - 8 q^{10} + 24 q^{11} - 16 q^{14} - 4 q^{15} - 72 q^{16} + 32 q^{17} - 24 q^{19} - 16 q^{20} - 12 q^{22} - 4 q^{24} - 72 q^{25} - 8 q^{26} - 4 q^{28}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2442, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2442, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2442, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(407, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(814, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1221, [\chi])\)\(^{\oplus 2}\)