Properties

Label 2442.2.cc
Level $2442$
Weight $2$
Character orbit 2442.cc
Rep. character $\chi_{2442}(89,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $1536$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2442.cc (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 111 \)
Character field: \(\Q(\zeta_{36})\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2442, [\chi])\).

Total New Old
Modular forms 5568 1536 4032
Cusp forms 5376 1536 3840
Eisenstein series 192 0 192

Trace form

\( 1536 q - 12 q^{9} + 12 q^{12} - 12 q^{15} - 48 q^{28} + 144 q^{31} + 48 q^{34} + 48 q^{37} + 96 q^{40} + 72 q^{42} + 96 q^{45} + 48 q^{49} - 72 q^{54} + 72 q^{57} + 48 q^{58} + 72 q^{63} - 72 q^{67} + 48 q^{79}+ \cdots - 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2442, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2442, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2442, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1221, [\chi])\)\(^{\oplus 2}\)