Properties

Label 2442.2.cb
Level $2442$
Weight $2$
Character orbit 2442.cb
Rep. character $\chi_{2442}(109,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $912$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2442.cb (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 407 \)
Character field: \(\Q(\zeta_{36})\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2442, [\chi])\).

Total New Old
Modular forms 5568 912 4656
Cusp forms 5376 912 4464
Eisenstein series 192 0 192

Trace form

\( 912 q + 48 q^{14} - 48 q^{31} + 48 q^{33} + 96 q^{34} - 48 q^{42} - 144 q^{53} - 72 q^{55} - 96 q^{59} - 96 q^{67} + 96 q^{69} + 48 q^{70} - 96 q^{77} + 96 q^{86} + 24 q^{88} - 144 q^{89} + 96 q^{91} - 48 q^{93}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2442, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2442, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2442, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(407, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(814, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1221, [\chi])\)\(^{\oplus 2}\)