Properties

Label 2442.2.bv
Level $2442$
Weight $2$
Character orbit 2442.bv
Rep. character $\chi_{2442}(619,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $608$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2442.bv (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 407 \)
Character field: \(\Q(\zeta_{30})\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2442, [\chi])\).

Total New Old
Modular forms 3712 608 3104
Cusp forms 3584 608 2976
Eisenstein series 128 0 128

Trace form

\( 608 q - 76 q^{4} + 76 q^{9} + 64 q^{10} - 8 q^{11} + 76 q^{16} + 24 q^{19} + 32 q^{21} - 64 q^{25} - 16 q^{26} + 4 q^{33} - 8 q^{34} + 72 q^{35} + 152 q^{36} - 56 q^{37} - 24 q^{39} - 8 q^{40} + 12 q^{42}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2442, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2442, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2442, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(407, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(814, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1221, [\chi])\)\(^{\oplus 2}\)